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SUMMARY 
 
A simplified hollow stiffened hybrid laminated plate model has been developed for the marine structures. The detailed 
stress analysis through the thickness of the stiffened plate based on the higher order shear deformation theory has been 
carried out under sinusoidal loading. The hybrid laminates are made by wrapping the GFRP laminates with CFRP at the 
outermost layers of the stiffened panel. This hybridization technique can be an optimum solution from the point of view 
of cost reduction as well as enhancement of strength properties. The layer-wise stresses for the stiffened plate have been 
calculated in the present paper. A 3D polynomial curve fitting technique has been used  to obtain higher accuracy and 
consistency in the computation of stresses. The computer code has been developed using MATLAB considering the 
plates as eight noded isoparametric plate bending element and the stiffener has been modeled as three noded 
isoparametric beam element. The stiffened panel has also been analysed using the ANSYS14.0 software package 
considering 2D model. The results obtained from the present formulation have been compared with those available in 
the published literature to validate the present formulation. The stiffened panels made of GFRP, CFRP and GFRP-CFRP 
hybrid laminates have been studied here. An extensive parametric study has been carried out with varying fibre content 
in the laminates.   
 
 
NOMENCLATURE  
 
u, v, w  displacements along x, y and z 

directions 
θx, θy , ζx , ζy rotations of the normals to the mid-

plane about x- and y-axes and their 
corresponding higher order terms in 
Taylor’s series 

E11, E22  moduli of elasticity along and 
transverse to fiber direction 

G12, G13, G23   rigidity moduli 
υ12, υ13  Poisson's ratios 
[N]i in plane force resultant 
[M]i bending moment resultant 
[Q]i transverse shear force resultant 
[P]i, [R]i  higher order stress resultant 
[D] rigidity matrix 
{ε} strain  vector 
ሺܳపఫതതതതሻ௞  compliance matrix of  the individual 

laminae with different material 
properties 

[B] strain-displacement matrix 
[Ke] stiffness matrix of the plate element 
aoh  width of stiffener 
hoh  depth of stiffener 
[Λ] orientation matrix 
[T] transformation matrix 
[Dh] rigidity matrix of the stiffener element 
{εh}   strain vector of the stiffener 

element 
[Bh] strain-displacement matrix of the 

stiffener element  
[Kh] stiffness matrix of the stiffener element 
 
 
 
 

1. INTRODUCTION 
 
The stiffened structural configuration may be considered 
as the backbone of most of the marine structures. Several 
primary components like deck, hull, bottom and 
superstructures are modeled as stiffened plates. Due to 
the weight sensitivity of such structures, light weight 
constituent material is also of prime concern. The marine 
structures are subjected to wave loading of high 
frequency dynamic nature as well as low frequency quasi 
static nature. The quasi static wave induced load which is 
sinusoidal in nature acting on the ship structures may 
cause i) compression in plate and tension in stiffener ii) 
tension in plate and compression in stiffener and iii) in 
plane axial loading.  
 
Several researchers have concentrated on the analysis 
of stiffened plates. Bedair and Troitsky [1] have 
presented the review of the analytical procedures for 
the analysis of stiffened plates. Hovichitr et al. [2] 
have presented an analytical formulation of 
rectangular plate with eccentric stiffener deriving 
fourth order differential equations. They have 
considered variational principle with natural boundary 
conditions.  Fujikubo et al. [3] have developed a new 
simplified model for collapse analysis of stiffened 
plates. Their proposed stiffened plate model consists 
of ISUM plate elements and beam-column elements. 
The formulation of the plate element is performed by 
introducing accurate shape functions to simulate the 
buckling/plastic collapse behaviour of plate panels. 
Combining plate and beam-column elements allows 
for both local buckling of the plate panel and overall 
buckling of the stiffener. Sadek and Tawfik [4] have 
presented a refined higher-order displacement model 
for the studying the behaviour of concentrically and 
eccentrically stiffened laminated plates based on C0 
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finite element discretization. The nine-noded 
isoparametric plate element with seven degrees of 
freedom at each node is used for the analysis. The 
stiffener element is a three noded isoparametric beam 
element with four degrees of freedom at each node. 
They have considered only rectangular stiffener. Ray 
and Satsangi [6] have developed a new generalized 
approach for the laminated composite plates with 
arbitrarily oriented stiffeners with various stiffener 
cross sections viz. rectangular, T, box and hat shapes 
using first order shear deformation theory. Barik and 
Mukhopadhyay [7] have developed a new stiffened 
plate model for arbitrary plates. A four noded stiffened 
plate element has been developed an isoparametric 
element for modelling arbitrary shaped plates. They 
have used a higher order element considering only 
usual degrees of freedom. Their study also includes 
only open section stiffeners. Qing et al. [8] have 
developed a mathematical model based on semi 
analytical solution of the state vector theory for the 
free vibration analysis of laminated stiffened plates 
with rectangular stiffener by separate consideration of 
plates and stiffeners. They have considered the first 
order shear deformation theory.  
 
Several research works have already been reported on 
stiffened plates. However the investigation on the 
stress behaviour of hollow stiffened panel under 
sinusoidal loading is not reported in the literature.  
The study on the stress distribution in the stiffened 
panel is indispensable for the marine structures. The 
detailed stress analysis using higher order shear 
deformation theory of hollow stiffened laminated 
panel applicable to marine structures with closely 
spaced stiffeners with box configuration has not been 
reported till date. The detailed stress analysis (bending 
and shear) through the thickness of laminate can be 
obtained by considering higher order shear 
deformation theory. 
 
Furthermore, application of GFRP-CFRP hybrid 
laminate to the stiffened plate panel developed in the 
present investigation is not reported earlier. 
 
The objective of the present paper is to predict the 
stress distribution throughout the thickness of the 
stiffened plate and improvement in the stress 
behaviour due to hybridization. A hollow stiffened 
panel with closely spaced multiple stiffeners has been 
introduced in this purpose. The study has been carried 
out under the sinusoidal load causing compression in 
the plate and tension at the bottom of the stiffener. 
The hollow stiffened plates made of glass-epoxy 
(GFRP), carbon-epoxy (CFRP) and glass-carbon 
hybrid laminates have been studied here. The 
outermost layers of the stiffeners are made of carbon-
epoxy material and the inner layers of the plate and 
the stiffener are with glass-epoxy material in case of 
hybrid laminate. This hybridization technique is a 

better choice of lamination scheme to strengthen 
GFRP laminates. 
 
 
2. PRESENT FINITE ELEMENT 

FORMULATION FOR STIFFENED 
LAMINATED PANEL 

 
The panel has been modeled as a plate stiffened with 
closely placed hollow multiple box stiffeners as shown in 
Figure 1.  
 

 
 
Figure 1: A Plate stiffened with closely spaced box 
stiffeners  
 
The plate has been modeled as an eight noded 
isoparametric plate bending element with seven degrees 
of freedom per node viz. three translations (u, v, w) and 
two rotations (θx and θy) and the corresponding higher 
order terms in Taylor’s series (ζx and ζy). The higher 
order shear deformation theory has been applied based 
on C0 finite element model. The box sections have been 
modeled as the three noded beam elements with same 
number of degrees of freedom per node as in the plate 
element. The middle surface of the plate element has 
been considered as the reference plane and the rigidity of 
the stiffeners have been transferred to the middle surface 
of the plate. 
 
 
2.1 FORMULATION OF PLATE ELEMENT 
 
The stress resultants of the composite laminate are 
defined as: 
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The nodal displacements at any node ‘r’ of the plate 
element can be expressed as: 
 
^ ` ^ ` T

r r r r xr yr xr yru v wG T ] ]T   (5) 
 
The displacements at any point within the plate element 
can be expressed in terms of the nodal displacements as: 

^ ` > @> @^ `
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where [Nr] is the shape function matrix. The element 
stiffness matrix for the plate element is given by 
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   T
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2.2 FORMULATION OF STIFFENER ELEMENT 
 
The stiffener cross section has been considered as a box 
section with equal top and bottom width as shown in 
Figure 3. The nodes of the stiffener element need not 
merge with the nodes of the plate element. The stiffener 
element has been developed by considering an arbitrarily 
oriented box shaped stiffener as shown in Figure 2. The 
stiffener is modeled as three noded beam element in 
which modulus-weighted centroid is assumed to be at the 
centre line of the section. 
 

 
1, 2, 3…. 8    plate nodes 
1ʹ, 2ʹ, 3ʹ          stiffener nodes 
 
Figure 2: Nodes and axis system of plate and stiffener 
elements 
 
The coordinates of the beam element can be expressed 

as:
3
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where,  Ni's  are the shape functions of the stiffener 
element can be written as: 
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The nodal displacements at any node ‘i’ of the three 
noded beam element can be expressed as: 
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The displacements at any point of the stiffener element 
can be expressed in terms of the nodal displacements as: 
 

> @> @
3

3
1

' '
' '
' '
'  '
' '
' '
' '

i

i

x i xi
i

x xi

i

y yi

y yi

v v
w w

N I

u u

T T
T T

] ]
] ]

 

­ ½ ­ ½
° ° ° °
° ° ° °
° ° ° °
° ° ° °

 ® ¾ ® ¾
° ° ° °
° ° ° °
° ° ° °
° ° ° °
¯ ¿ ¯ ¿

¦                       (11) 

 
The displacements at any point of the stiffener element in 
terms of the displacements of the plate with respect to 
plate axis system are given by: 
 

'   u u cos v sinD D �   
' 0v usin vcosD D � �   
'w w                    (12) 
'

x x ycos sinT T D T D �   
'    y x ysin cosT T D T D � �   
'   x x ycos sin] ] D ] D �  
'    y x ysin cos] ] D ] D � �  

 
where, α is the angle between x axis of the plate and x' 
axis of the stiffener as shown in Figure 2.  
 
The Eqn. (12) can be re-written as: 
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where,  c = cosα and s = sinα . 
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The displacement field at any point within the stiffener 
placed along x' direction is given by: 
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where u' and w' are the displacements and θx'  and θy' the 
rotations of the normal to the undeformed midplane of 
the plate parallel to the local axis system of the stiffener. 
 
The strain components at any point within the stiffener is 
given by: 
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The strain components developed in the stiffener element 
with respect to the reference axis system of the stiffener 
element are 
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The strain-displacement relationship of the stiffener 
element is given by 
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The nodes of the stiffener element exist within the plate 
element. The nodal displacements of the stiffener 
element in terms of the nodal displacements of the plate 
element can be expressed as: 
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The matrix form of the transformation [T] is written as: 
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where, Nir is the shape function at the rth node of the plate 
element corresponding to the ith node of the stiffener 
element. 
 
The stiffness matrix of the three noded beam element is 
calculated as: 
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2.3 RIGIDITY MATRIX OF STIFFENER 

ELEMENT 
 
In the present investigation, box shaped stiffeners are 
considered. The stress resultants of the stiffener of any 
general shape are given by: 
 
^ ` ^ `T
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Figure 3: The box stiffener with two vertical and one 
horizontal section 
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For a box shaped stiffener, the stress resultants are given by: 
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Where, Nh is the force resultant, Mh is the moment 
resultant, Qh is the shear force resultant and Ph and Rh are 
the higher order stress resultant of the stiffener element. 
Th is the stress resultant related to torsional rigidity. 
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2.3 (a) Torsional rigidity of the box stiffener 
 
The box stiffener induces a considerable amount of 
torsional rigidity due to its closed attachment with the 
plate. The box stiffener is considered as a hollow section 
to compute the torsional rigidity accurately. The torsional 
rigidity is calculated in the following manner, 
 
Jh = (Jh of the section with outer profile of the box 
stiffener - Jh of the inner profile of the box stiffener) 
 
 
3.  FORMULATION OF ELEMENT LOAD 

VECTOR 
 
The sinusoidal load is considered as acting perpendicular 
to the plane of the plate over the surface. The load 
induces compression on the plate surface and tension at 
the stiffener bottom. 
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4.  COMPUTATION OF STRESS 
 
The linear static analysis has been carried out under 
sinusoidal loading. The stress analysis through the 
thickness of the laminate has been carried out for the 
stiffened plate model considering higher order shear 
deformation theory. The stresses have been computed at 
the gauss points of the elements. The nodal stresses have 
been computed by the 3D polynomial curve fitting 
technique [8, 9] to obtain accuracy and consistency in the 
stress value. 
 
5.  FINITE ELEMENT FORMULATION 

USING ANSYS 
 
The SHELL281 element available in the ANSYS 14 
software package has been used for 2D model 
considering the first order shear deformation theory to 
model the hollow panel. 
 
5.1 MODELING AND ANALYSIS OF HOLLOW 

STIFFEND PLATES 
 
The stiffened panel has been developed by considering one 
plate at top and another plate at bottom with six vertical 
blade stiffeners placed between two plates as shown in 
Figure 4. Two edges parallel to X axis of the plate is simply 
supported (one end pinned and other end roller supported) 
and other two edges are free. The modeling of the hollow 
stiffened plates using ANSYS is shown in Figure 4. 

6. RESULTS AND DISCUSSIONS 
 
6.1 SIMPLY SUPPORTED CROSS PLY SQUARE 

LAMINATED PLATE UNDER SINUSOIDAL 
LOAD 

 
A simply supported square symmetric cross ply 
[0°/90°/90°/0°]  laminated plate subjected to a sinusoidal 
load  P=q sin(πx/a) sin(πx/b) has been studied here. 
Length to thickness ratio of the laminate is a/h=10. The 
material properties of each GFRP lamina are: E1/E2=25; 
G12=G13=0.5E2; G23=0.2E2; ν12=0.25. Thai et al. (10) 
have solved the same problem using node-based 
smoothing discrete shear gap method with higher order 
shear deformation plate theory. They have used four 
noded rectangular element. The stresses obtained from 
the present finite element formulation have been 
compared with those available in the published literature 
to validate the same. The normalized stresses for the 
symmetric cross ply square plate is defined as: 
 
ത௫ߪ ൌ ௛మ

௤௔మ ത௬ߪ ௫ andߪ ൌ ௛మ
௤௔మ  ௬ߪ

 
The normalized stresses through the thickness of the 
laminated plates are compared and presented in Figure 5. 
The variation of stresses through the thickness of the 
plate obtained from the present higher order shear 
deformation theory and those obtained from Thai et al. 
[10] tally very well. 
 
 

 
(a) Top and bottom plate of the panel                (b) The incomplete panel  model with 3stiffeners 

 
(c) The stiffened laminated panel                 (d) Mesh division of the stiffened plate 

 
Figure 4: Modeling of stiffened panel using ANSYS 14.0 
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6.2 HOLLOW STIFFENED GFRP LAMINATED 
PLATE UNDER SINUSOIDAL LOAD 

 
A hollow stiffened laminated plate panel of 
dimension 500mm × 500mm and made of E-
Glass/Epoxy cross-ply laminates of thickness 50 mm 
has been considered for this analysis. The width of 
the hollow stiffener is 100mm and depth is 125mm. 
The plate and the stiffener laminates consist of four 
layers of equal thickness. The studies have been 
carried out for various fibre contents. The material 
properties of the GFRP ply are considered as: E1=41 
GPa; E2=12 GPa; G12=5.5 GPa; G23=3.5 GPa; 
ν12=0.28; ν23=0.4. The material properties of the 
CFRP ply are considered as:  E1=138 GPa; E2= 11 
GPa; G12=5.5 GPa; G23=3.93 GPa; ν12=0.278; 
ν23=0.4. A single sinusoidal load is applied across 
the stiffener. The boundary conditions for the 
stiffened panel has been taken as two shorter edges 
simply supported (one end pinned and roller support 
on another end) and other two edges are free. The 
maximum deflections for GFRP, CFRP and hybrid 
(carbon and glass fibres) laminates are computed by 
the present formulation and the results are compared 
with those obtained in ANSYS. The deflections 
obtained from present higher order shear 
deformation theory have been compared with those 
obtained from ANSYS (FSDT) to predict the effect 
of HSDT in the formulation. The maximum 
deflections for all types of laminates are presented in 
Table 1 and Table 2.  
 
 
Table 1: Maximum deflection (in mm) of the laminated 
stiffened panels subjected to sinusoidal load for 
symmetric cross ply laminates 
 GFRP CFRP Hybrid 
FSDT 0.0435 0.0098 0.0153 
ANSYS 0.0482 0.0091 0.0168 
HSDT 0.0593 0.0129 0.0201 
 
 
Table 2: Maximum deflection (in mm) of the laminated 
stiffened panel subjected to sinusoidal load for anti-
symmetric cross ply 
 GFRP CFRP Hybrid 
FSDT 0.0725 0.0192 0.0358 
ANSYS 0.0772 0.0200 0.0390 
HSDT 0.0819 0.0221 0.0431 
 
 
The results presented in Table 1 and Table 2 reflect 
that the first order shear deformation theory 
underestimates the deflection. The comparisons of 
deflection for various laminates presented in Table 1 
and Table 2 show that the hybridization technique by 
replacing the outermost layers with carbon laminae 
can reduce the displacement around 65% in case of 

symmetric cross ply and 49% in case of 
antisymmetric cross ply laminates. 
 
The normal and shear stresses in normalized term have 
been computed for various lamination schemes and are 
presented in Figure 6 and Figure 7. The study using 
ANSYS has been carried out considering first order 
shear deformation theory. No study is reported in the 
published literature on the stress behaviour of 
laminated stiffened plate using the higher order shear 
deformation theory. 
 
The normal and shear stress distributions in the 
symmetric cross ply stiffened laminates across the 
thickness of laminated plate have been presented in 
Figure 6. It is observed from the Figure 6 that the 
stress behaviour can also be improved significantly 
by wrapping the GFRP laminate with CFRP laminae 
at top and bottom surfaces of the stiffened plate 
instead of using only CFRP which is too costly. The 
stress distributions of the anti-symmetric cross ply 
laminates presented in Figure 7 also show the same 
trend of improvement in the stress behaviour with 
hybrid laminates. The effect of hybridization on the 
shear stress τyz for antisymmetric cross ply stiffened 
laminate is less significant. It is also found that 
hybridization makes more significant change in the 
normal stresses at the outer layers than the middle 
layers of the laminates whereas the change in shear 
stresses is more prominant at the middle part of  
the laminate. 
 
 
7. CONCLUSIONS 
 
The hollow stiffened hybrid laminated panels for 
the marine structures have been studied under the 
sinusoidal loading. The parametric studies on the 
stiffened laminated plates show that wrapping of 
glass-epoxy laminates with carbon-epoxy lamina 
improves the behaviour of the stiffened panel under 
sinusoidal loading condition significantly. The cost 
reduction of the high performance marine structure 
can be achieved by using the efficient hybridization 
technique developed in the present study instead of 
using fully carbon fibres in a laminate. The present 
study shows that use of carbon fabric may reduce 
77% displacement with reference to glass fabric. 
Whereas CFRP-GFRP hybrid laminate developed in 
the present formulation can reduce the deflection by 
65% in case of symmetric cross ply and 49% in 
case of antisymmetric cross ply laminates. The cost 
of hybrid laminate is only about 1.75 times more 
than that of the glass fabric. Whereas carbon fibre 
is much more costlier than glass fibres. Henceforth, 
the hybridization technique used for the stiffened 
panels is considerably cost effective and beneficial 
from the point of view of strengthening effect. 
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(a) Normal stress in x-direction (sx)                           (b) Normal stress in y-direction (sy) 

 
(c)   Transverse shear stress (τxz)                      (d) Transverse shear stress (τyz) 

Figure 5:  The distribution of stresses through the thickness of plate under sinusoidal load 
 

 
(a) Normal stress in x-direction (sx)                           (b) Normal stress in y-direction (sy) 

 
(c)   Transverse shear stress (τxz)                      (d) Transverse shear stress (τyz) 

Figure 6:  The stress distribution through the thickness of plate for symmetric cross ply stiffened laminate 
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(a)  Normal stress in x-direction (sx)                           (b) Normal stress in y-direction (sy) 

 

 
(c)   Transverse shear stress (τxz)                      (d) Transverse shear stress (τyz) 

Figure 7:  The stress distribution through the thickness of plate for anti-symmetric cross ply stiffened laminate 
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