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SUMMARY  
 
The paper describes the supervised method approach to identifying vessel anomaly behaviour. The vessel anomaly behaviour 
is determined by learning from self-reporting maritime systems based on the Automatic Identification System (AIS). The AIS 
is a real world vessel reporting data system, which has been recently made compulsory by the International Convention for the 
Safety of Life and Sea (SOLAS) for vessels over 300 gross tons and most commercial vessels such as cargo ships, passenger 
vessels, tankers, etc. In this paper, we describe the use of Bayesian networks (BNs) approach to identify the behaviour of the 
vessel of interest. The BNs is a machine learning technique based on probabilistic theory that represents a set of random 
variables and their conditional independencies via directed acyclic graph (DAG). Previous studies showed that the BNs have 
important advantages compared to other machine learning techniques. Among them are that expert knowledge can be included 
in the BNs model, and that humans can understand and interpret the BNs model more readily. This work proves that the BNs 
technique is applicable to the identification of vessel anomaly behaviour.   
 
1. INTRODUCTION 
 
The number of threats facing vessels at sea, and the 
security of coastal countries, increases daily in the form 
of collision, illegal fishing, smuggling, pollution, and 
piracy. Some of these problems are caused by human 
actions and some arise from natural causes. For example, 
in the Straits of Malacca and Singapore, more than 150 
vessels a day (over 70,000 vessels annually) transit this 
strategic and important international waterway. Thus, the 
International Chamber of Shipping (ICS) believes in 
placing safety and security as its priority for all nations 
across the globe [1]. 
 
With the advancement of technology in surveillance and 
the immediate need for better protection of the 
environment, automated solutions have become an 
important issue. Such solutions can be applied for 
detecting anomaly behaviour in moving objects, such as 
road vehicles, planes and vessels. 
 
Anomaly detection of a massive moving object is one of  
many techniques for improving environment security, 
especially in surveillance [2-4]. The pattern of the 
moving object can become very complex which makes 
the work more challenging. 
 
One of the sources of vessel movement information is 
data from the Automatic Identification System (AIS). 
Maritime surveillance authorities used AIS data to reveal 
threats to security, for instance, smuggling, illegal 
trafficking, illegal fishing or other risks. With the amount 
of information retrieved, the need for an automated 
system to analyze the vessel behaviour increases. 
 
Some previous work was devoted to research and 
development in the area of anomaly detection. In 2011, 
Etienne Martineau [5] determined that the purposes of 

anomaly detection are: for manpower optimization, 
support in the decision making process, prediction and 
early notification, and maintaining a complete and 
continuous surface picture. 
 
 
1.1 MANPOWER OPTIMIZATION 
 
The number of vessels at sea grows every year. Aligned 
with this, the increasing number of pirate attacks has 
raised the performance expectations for security systems. 
It becomes more of an issue as countries reduce the 
number of coastal security staff. 
 
To overcome this issue, it is desirable to combine the 
strengths of humans and computers. Human reasoning is 
superior to that of the machine but machines can process 
massive amount of data in a short period. Therefore, the 
proposed approach is to let the machine carry out routine 
and simple tasks leaving the complex problems to be 
solved by the operator (human) [6, 7]. The combination 
of human and machine can thus, improve overall 
performance. 
 
 
1.2  SUPPORT OF DECISION PROCESSES 
 
The computer is used to support the operator while 
monitoring the maritime traffic and reduce the operator’s 
cognitive load. This is to improve the performance of 
operators, not to fully replace them. The surveillance of 
large sea areas typically involves the analysis of vast 
amount of data, and this cannot be managed and 
interpreted solely by humans [8].  
 
For this reason, when the operator needs to make 
decisions, the system will aid the decision process by 
helping operators interpret the data [9].  
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1.3 PREDICTIONS AND EARLY 
NOTIFICATION 

 
One of the aims of the anomaly detection process is to 
detect a threatening situation as it develops. This helps 
the operator to prevent such a situation from occurring 
or, if that can’t be done, to prepare a response to it. 
 
The prediction must be made as early as possible to give 
time for the operator to process the related information. 
For example, travelling at high speed in the wrong 
direction in a waterway may lead to a collision and the 
warning alert should be raised as soon as the situation is 
detected. 
 
1.4 MAINTAINING A COMPLETE AND 

CONTINUOUS SURFACE PICTURE 
 
The limitations of the human brain have been proven to 
have a significant impact for humans operating in 
dynamic environments with large quantities of 
information available [10, 11]. It is difficult for a human 
to maintain and monitor the surveillance system at all 
times. This kind of task can be done better by machines. 
The reasoning of a computer is deterministic and it has 
an exact memory with a large capacity. Machines can 
process data to maintain a constant and complete 
monitoring picture and notify the operator when an 
anomaly is detected. 
 
Here, we used the BNs approach to identify the anomaly 
behaviour by developing a model that represents the 
normal situation. In this case, the extent of the anomaly 
situation is defined by the degree to which a vessel 
deviates from the normal situation.  
 
In this paper, we focus on the vessel anomaly behaviour 
based on speed data. With an appropriate speed limit, a 
vessel can take effective action to avoid collision. The 
speed limit will also reduce emissions by up to 70% [12]. 
 
This paper is organized as follows. Sec. II is a literature 
review on anomaly detection. Sec. III is an overview of 
our approach with the theory of BNs, while Sec. IV 
presents the BNs based approaches to anomaly detection. 
Sec. V describes the simulation process. Sec. VI 
describes data used for the simulation process. Sec. VII 
presents the experimental results with discussion, and 
Sec. VIII presents the conclusions. 
 
2.  LITERATURE REVIEW ON ANOMALY 

DETECTION 
 
In computer science, anomaly detection has been an 
active research topic for a long time. The advancement of 
research in this area provides a variety of practical 
examples and studies concerning classifications of 
techniques and research challenges. Even if anomaly 
detection is an immature field of research in other 
domains, we believe that this body of knowledge, at least 

at its core, can be used and applied in many areas, 
including maritime surveillance. 
 
Anomaly detection is extensively studied in areas such as 
network security, road surveillance, video surveillance, 
and military surveillance [13]. The non-consistent pattern 
is given various names such as anomaly, outliers, 
exceptions, etc. [2]. In the case of the maritime 
surveillance domain, the diverged patterns are referred to 
as anomaly.  
 
According to Kazemi (2013), the anomaly detection 
techniques can be divided into two groups, namely the 
data-driven techniques and knowledge-driven techniques 
[2]. Data-driven techniques determine the normal 
situation using machine learning or statistic algorithm to 
analyze the historical data [14]. Meanwhile, knowledge-
driven techniques encode the expert knowledge into the 
system [15, 16]. 
 
2.1 DATA-DRIVEN TECHNIQUE 
 
The data-driven technique is based on a classification 
that learns a normal situation using unsupervised or 
supervised learning. Data are considered as anomalous 
when they do not match the model. The data-driven 
technique is divided into two kinds of approach: the 
machine learning and statistical approaches. 
 
2.1 (a) Machine Learning 
 
The machine learning approach makes decisions based 
on the learning process from data. In the case of maritime 
surveillance, after the learning process, the machine 
learning model can be used to classify the normal and 
anomaly situation. 
 
Some popular techniques belonging to this field include 
clustering, neural networks (NNs), support vector 
machines (SVMs), Bayesian Networks (BNs), etc. 
 
x Clustering 
 
A study done by Dahlbom and Niklasson (2007) [17] 
used the trajectory clustering technique for anomaly 
detection. In this case, the anomaly is determined by 
looking at the probability that the path that does not match 
the normal trajectory. 

 
x Neural Networks (NNs) 
 
The NNs use a learning algorithm inspired by the 
structure and function of the neuron. They are often 
referred to as black boxes. Some previous studies have 
used anomaly detection using NNs in the maritime 
domain [18-22]. The NNs predict the behaviour of 
various phenomena through the learning process.  
 
According to Patcha and Park (2007) [22], the main 
advantage of NNs is the inclusion of tolerance when it 
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comes to imprecise data and uncertain information [22]. 
NNs can perform with non linear data, it is learns and 
does not need to be reprogrammed. NNs also has 
disadvantages, such as the high processing time and 
needs training before we operate the network. 
 
x Support Vector Machines (SVMs) 
 
SVMs are supervised learning methods using the binary 
classification that needs some pre-knowledge before 
classification. SVMs map the training data, which is 
consist of nonlinear data through the kernel function 
[23]. The role of kernel function is to induce such a 
feature space by implicity mapping the training data into 
higher dimensional space where the data is linear 
separable. 
 
Similar to the NNs, the SVMs methods are capable of 
learning arbitrary complex regions in the input feature 
space. A key parameter of the SVMs is the kernel 
function, such as polynomial or Gaussian, which maps 
input data to high dimensional feature space where data 
can be perfectly or close to linear separated. A study 
done by Li et.al., [3] implemented SVMs to analyze 
vessel behaviour at a higher level of abstraction.  
 
x Bayesian Networks (BNs) 
 
The BNs is a machine learning technique based on the 
probability that represents a set of random variables and 
their conditional independencies via directed acyclic 
graph (DAG). 
 
Previous studies have been done using the BNs, in which 
it is applied for anomaly detection on maritime domain 
and some other domains [7, 24, 25, 31]. Helldin and 
Riveiro (2009) [31] use the BNs in an anomaly detection 
research study. The AIS is used as the input data. The 
study focuses on how reasoning capabilities of the BNs 
can assist the operator in the control room. 
 
A study done by Mascaro et. al. (2013) [26] defined the 
advantages of BNs and disadvantages of both the NNs 
and SVMs approaches. The BNs potentially have two 
substantial advantages: (1) The models are easy to 
understand by lay people (including the operator in the 
control room or other domain experts) and (2) They can 
include knowledge from the experts as input to the BNs 
model [26]. On the other hand, the NNs and SVMs do 
not present a transparent model to the user. Therefore, it 
is complicated for users like the operator in the control 
room to understand, interact and explore the model. 
 
2.1 (b) Statistical Methods 
 
Some studies using the statistical or probabilistic approach 
model have been done, e.g. the hidden Markov model 
(HMM) [32], Gaussian mixture model (GMM) [14, 33], and 
adaptive kernel density estimator (KDE) [14, 34]. 
 

Statistical techniques are simple to implement. However, 
their capability is limited to specific problems. Vessel 
speed is a good example of a variable in which these 
techniques are effective because of their extreme values. 
In cases where anomalies are uniformly dispersed in the 
sample, these techniques are ineffective.  
 
There are two types of statistical technique, parametric 
and non-parametric. In parametric techniques, when the 
data correspond to a particular statistical model, anomaly 
can be detected rapidly and without supervision. With the 
non- parametric techniques, no assumption is made about 
the underlying distribution of data. Although more 
resources are required to develop them, these methods 
are effective for automated anomaly detection. 
 
2.2 KNOWLEDGE-DRIVEN TECHNIQUE 
 
In order to partially replace domain experts with the 
computer system, one must emulate the expert’s 
capabilities. The knowledge-driven approach should be 
constructed to provide computer systems that can reason, 
communicate and interact. The more complete the 
knowledge support, the greater the ability to understand 
the situation and provide support for the process of 
anomaly detection.  
 
There are several studies on knowledge-driven 
techniques for anomaly detection systems with different 
techniques such as rule based and description logic [15, 
16]. However, in a previous study [7, 24] the hybrid 
approach was proposed where the expert’s knowledge 
together with a data-driven approach are combined. 
 
 
3. OVERVIEW OF OUR APPROACH 
 
According to [23], the BNs is a directed acyclic graph 
(DAG) comprising a set of nodes and edges which 
represent the probabilistic dependencies among 
variables. The nodes with direct edges to other nodes are 
called the “parent” nodes. However, the nodes with edge 
pointing into them are known as the “child” nodes. A 
good example is found in the probabilistic relation 
between season and temperature. Given the temperature, 
the network can be used to compute the probabilities of 
various seasons. 
 
3.1 BAYES’ THEOREM 
 
The BNs characterizes a problem domain consisting of a 
set of variables (attributes) E = {E1, E2, … En}. In the 
Bayesian terms, E is considered as the “evidence”, H is 
considered as the hypothesis, and data E belongs to a 
specific class C. For the classification problems, our goal 
is to determine ܲሺܧ|ܪሻ, i.e. we are searching for the 
probability that sample E belongs to class C, given that 
we know the attribute and description of E.      
 



Trans RINA, Vol 157, Part A3, Intl J Maritime Eng, Jul-Sep 2015 

A-148                      ©2015: The Royal Institution of Naval Architects 

ܲሺܧ|ܪሻ ൌ 	ܲሺܪ|ܧሻܲሺܪሻܲሺܧሻ  (1) 

 

ܲሺܪሻ ൌ   Prior probability of hypothesis H 

ܲሺܧሻ ൌ   Prior probability of training data E 

ܲሺܧ|ܪሻ ൌ	 Probability of H given E 

ܲሺܪ|ܧሻ ൌ	 Probability of E given H 

 

 

3.2  NAÏVE BAYESIAN CLASSIFIER 

 

The naïve Bayesian classifier works as follows: 

 

1. Let E be a training set of samples, each with class 

labels. There are k classes, C1, C2, …, Ck. Each 

sample is represented by an n-dimensional vector, E 

= {E1, E2, … En}, depicting n measured values of the 

n attributes, A1, A2, …, An, respectively. 

2. Given a sample E, the classifier will predict that E 

belongs to the class that has the highest posteriori 

probability, conditioned on E. E is predicted to 

belong to class Ci if and only if   

	
ܲሺܥ|ܧሻ  ܲ൫ܥหܧ൯	݂ݎ	1  ݆  ݇, ݅ ് ݆ 
 

Thus, we find the class that maximizes P(Ci|E). The class 

Ci for which P(Ci|E) is maximized is called as the 

maximum posteriori hypothesis. By the Bayes’ theorem 

 

ܲሺܥ|ܧሻ ൌ 	
ܲሺܥ|ܧሻܲሺܥሻ

ܲሺܧሻ  (2) 

 

3. Maximize P(E|Ci)P(Ci) as P(E) is constant 

 

4. In order to reduce the computational process in 

evaluating P(E|Ci)P(Ci), the naïve assumption of 

class conditional independence is made. This 

presumes that the values of the attributes are 

conditionally independent of one another, given the 

class label of the sample. Mathematically, this means 

that 

 

ܲሺܥ|ܧሻ ൎ 	ෑܲሺܧ


ୀଵ
 ሻ (3)ܥ|

 

The probabilities P(E1|Ci), P(E2|Ci), …, P(En|Ci) can be 

easily estimated from the training set.  

 

 

3.2 BNS-BASED APPROACHES TO ANOMALY 

DETECTION 

 

According to [7], the BNs can be learnt from: 

 

1) Domain experts’ knowledge;  

2) Data set; or  

3) Combination of the two.  

 

In this paper, we focus on learning the BNs from data 

without the support of human knowledge. The AIS 

reporting data are used for the purpose of our research. 

When learning the BNs from data, an assumption has to 

be made so that there is a fundamental process that 

follows a probability distribution. Hence, it is possible to 

represent the fundamental probability distribution with 

the BNs. 

 

4. SIMULATION 
 

As illustrated in Figure 1, the simulation begins with the 

cleaning of the AIS raw data and the assigning of each 

record to separate tracks based on the Maritime Mobile 

Service Identity (MMSI). The next step is the 

interpolation process which will improve the accuracy of 

the anomaly detection. This process interpolates each 

row’s value into the nearest three minutes interval and 

eliminates duplicated data.  

 

The data are categorized into normal and anomaly tracks 

data. Each group of tracking data will be randomized and 

divided into two groups using hold-out process. Hold-out 

is the process in which data is divided into two parts; the 

first part is reserved for the testing process, and the 

second is reserved for the training process. The last step 

is the BNs classification. 

 

 
Figure 1. Flowchart of the simulation process 

 

In this paper, we use the visual analysis method for the 

detection of vessels anomaly behaviour. For small data 

sets, the visual analysis approach will produce a very 

good result. However, when the data set is too large to be 

captured by human analysis, the result will fail [35]. The 

design process of the overall anomaly detection process 

can be organized into the following step: 

 

1. Categorize data, separate and label into two sets, 

normal tracks and anomaly tracks data 

2. Randomized normal tracks data 
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3. Randomized anomaly tracks data 
4. Divide normal tracks data into two groups using 

hold-out methods 
5. Divide anomaly tracks data into two groups using 

hold-out methods 
6. Combine first group of normal tracks data and first 

group anomaly tracks data, and randomized it for 
training process 

7. BNs classification, get the accuracy of training data 
(memory test) 

8. Combine second group of normal tracks data and 
second group anomaly tracks data, and randomize it  
for testing process 

9. BNs Classification, get the accuracy of testing data 
(blind test) 

 
The flowchart of the above design process is presented 
once again in Figure 2. 
 

 
Figure 2. Scenario of vessel anomaly behavior with 
normal route 
 

5. THE DATA 
 
We use the AIS raw data of Port Klang from July to 
September 2013. The AIS raw data consist of 9,845 rows 
of data, including the vessel’s MMSI, status, speed, 
longitude, latitude, course, heading and timestamp (see 
Table 1). All information is obtained from the public 
website, marinetrafic.com.  
 
Below is an example of seven different vessel 
movements’ data from the original AIS data. To retain 
the anonymity, some details are removed. 
 
The AIS data were cleaned and separated into ‘tracks’ 
based on the MMSI. The above data consist of 367 tracks 
with 7 unique MMSI averaging at 1,400 rows each.  
 
The vessel record data contains 8 variables, including the 
MMSI, status, speed, longitude, latitude, course, heading 
and timestamp.  
 
6.  RESULTS AND DISCUSSION  
 
Figure 3 displays the scenario of vessel anomaly 
behavior with the normal route of the Straits of  Malacca 
with the longitude from 101.50 to 1020, and latitude from 
2.250 to 2.750. As shown, the yellow circle indicates the 
normal speed of the vessel.  
 
Here, we present the example of the vessel anomaly 
behavior in a speeding scenario. The variables that we 
used for training the model include the MMSI, speed, 
course, longitude and latitude. The spatial variable is also 
important in detecting the vessel anomaly behavior. For 
example, if the vessel moves with low speed and the 
location is near the port, it is considered as a normal 
behaviour. However, if the location is far from the port, it 
has the potential to be an anomaly behavior. On the other 
hand, the vessel also has the potential to be anomalous 
when moving on the waterway with speed exceeding the 
maximum speed. 

 
Table 1. An example of Seven different vessel data from the original AIS data 

MMSI Status Speed LON LAT Course Heading TIMESTAMP 
(UTC) 

47724**** 5 0 101.3038 2.951465 246 210 7/10/2013 
9:20:00 PM 

52501**** 9 222 101.3763 2.997293 269 511 7/31/2013 
5:15:00 AM 

53301**** 0 76 101.9443 2.274085 304 511 8/23/2013 
9:22:00 AM 

53301**** 0 96 101.1952 2.9433303 29 511 8/5/2013 
5:03:00 PM 

53301**** 0 106 101.3227 2.981503 46 47 7/12/2013 
8:26:00 AM 

53313**** 5 0 101.3039 2.951412 227 30 7/18/2013 
6:32:00 AM 

53386**** 1 36 102.1907 2.185028 164 308 7/31/2013 
9:44:00 PM 
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Figure 4 shows the vessel anomaly behavior in the 
speedy scenario. As shown in the figure, the yellow 
circle denotes the normal behavior, while the red square 
indicates the anomaly behavior of the vessel. In this 
scenario, the vessel is moving with the speed of more 
than the maximum speed of the vessel. 
 
The anomaly behaviour can include many cases; e.g. 
vessels with random movement in the middle of water, 
vessels with unexpected stops, vessels with a close track 
in the middle of water, vessels with very short tracks, 
vessel tracks with many interactions, vessel tracks with 
many loops, travel over land, deviations from standard 
routes, speeding, traffic direction violation, etc. [26, 33].  
 

 
Figure 3. Scenario of vessel anomaly behavior (speedy 
route) 
 
A model to describe normality is constructed using a 
training data set. The testing data set will be compared to 
the training data set to classify them into two categories: 
normal or anomaly. In the experiments, we use the 
holdout method. The holdout method partitions data into 
two subsets called as the training set and testing set [23, 
36]. It will give significantly different results depending 
on how the training and testing data are distributed. 
 
Here, we perform two types of testing, the memory test 
and blind test. Memory test is the prediction accuracy on 
training data set. However, blind test is prediction 
accuracy on testing data. For the classification process, 
we select four types of experiments: 
 
(i)  50% of the data is used for training, and 50% of data 

for testing (50-50). 
(ii)  60% of the data is used for training, and 40% of data 

for testing (60-40). 
(iii)  70% of the data is used for training, and 30% of data 

for testing (70-30). 
(iv)  80% of the data is used for training, and 20% of data 

for testing (80-20). 

The result is presented in Table 2. As illustrated, the best 
accuracy result appears from dividing the raw data into 
80% for training and 20% for testing. In Figure 5, we can 
view the line chart of the experimental results. The blue 
line with the diamond marker shows the memory test 
result, whereas the red line with the square marker 
presents the blind test result. 
 
Table 2. The Experimental Result from four Types of 
Partition Data 

 
Type of Experiments 

50-50 60-40 70-30 80-20 

Memory 
Test 94.78% 95% 94.05% 94.58% 

Blind 
Test 94% 93.46% 95.19% 94.72% 

 

 
Figure 4. Line chart from experimental result 
 
From the figure we can see that that the lowest 
percentage appears in the (70-30) point which is 94.05%. 
The memory test result obtains the best accuracy in the 
(60-40) point which is 95%. From the blind test result, 
we can see that that the lowest percentage appears in the 
(60-40) point which is 93.47%. The blind test result gets 
the best accuracy in the (70-30) point which is 95.19%. 
 
By performing experiment on the AIS data, we are able 
to identify the anomaly such as vessels with speed 
deviating from the normal behavior. Not only speed, here 
we combined the speed and spatial data to define the 
vessel anomaly behavior. However, the relation between 
objects (e.g. distance to closest vessel) has not been 
considered. 
 
7.  CONCLUSION 
 
In this paper, we have explored vessel anomaly 
behaviour with visual analysis and vessel tracking data 
using the BNs approach in the speed scenario. 
 
From our experiment, we found that the BNs method can 
be used for vessel anomaly detection. As for the holdout 
method, it is shown that the partitions 60% for training 
and 40% for testing from the data yield the best result for 
memory test (95%). For the blind test accuracy, the best 
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result is 95.19% for partitioning, 70% for training and 
30% for testing set. 
 
One of the advantages of the BNs approach is that it is 
possible to include human knowledge in the model, and 
that human can validate the model. However, how this 
should be implemented requires further investigation. 
This advantage has not been explored in our experiment. 
 
Further work is also needed to evaluate other machine 
learning approaches on the AIS data to identify vessel 
anomaly behaviour. The use of another machine learning 
approach, e.g. the SVMs and NNs as comparison, and 
extending the experiment with additional variables are 
suggested for future works. 
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