
Trans RINA, Vol 156, Part A3, Intl J Maritime Eng, Jul-Sep 2014 

©2014: The Royal Institution if Naval Architects                   A-243 

A SIMPLE APPROACH TO THE STUDY OF WAVE PATTERNS 
(DOI No: 10.3940/rina.ijme.2014.a3.295) 
 
I W Dand, Consultant to BMT Isis Ltd, UK 
 
SUMMARY 
 
The paper revisits some pioneering work of Sir Thomas Havelock on wave patterns with particular attention focussed on 
his graphical method of analysis.  Motivated by a desire to explore this method further using numerical methods, it is 
extended in a simple manner to give three-dimensional illustrations of the wave patterns of a point disturbance in deep 
and shallow water.  All results are confined to the sub- and trans-critical regimes with some obtained very close to the 
critical Depth Froude Number.  Some conclusions are drawn on the wave types produced when operating close to the 
critical speed and their decay with distance off.   
 
NOMENCLATURE 
 
a wave amplitude  
c wave celerity  
g gravitational acceleration  
h water depth  
k wave number 
n wave decay index  
T wave period 
 
ß wave train azimuth angle 
γ  wave decay constant 
ζ local wave amplitude  
λ wavelength 
ξ wave decay distance  
ω angular wave frequency  
 
 
1.  INTRODUCTION 
 
The motivation for the work described in this paper was 
born out of curiosity stemming from the papers of a 
pioneer in the study of ship wave theory, Sir Thomas 
Havelock.  
 
In 1934, he placed a paper before this Institution [1] 
aimed at helping practicing naval architects understand 
the mathematics of ship wave patterns and wave 
resistance.  Early in the paper, Havelock introduced a 
simple graphical method, based on Kelvin’s work with 
superposition of plane wave trains, which he showed 
could be used to generate the well-known Kelvin wave 
pattern.  However, Havelock did not show the full 
development diagram for the method because “…there is 
too much detail for reproduction on a small scale, but it 
is interesting to see the picture of a familiar wave pattern 
emerging  [1]”  
 
It was Havelock’s missing development diagram that 
provided the starting point for this paper.  In addition, 
this simple graphical method lends itself to exploration 
on a computer, and could perhaps be used as an 
introduction to the fundamentals of vessel wave patterns 
in both deep and shallow water.  Of particular interest is 
the behaviour of wave systems near the critical speed, 
itself of interest in the investigation of wash nuisance. 

2.  DISPERSIVE WAVES 
 
It is assumed throughout this paper that the waves 
concerned are dispersive.  This means that the velocity of 
a wave front depends on the wave 
frequency/period/length.  The key equation linking wave 
speed and frequency is called the linear dispersive 
relationship and is given by: 
 
ω2 = 2πg.tanh(2πh/λ)/λ    (1) 
 
in water of depth h, which reduces to  
 
ω2 = gk      (2) 
 
in deep water.  Angular wave frequency is given by ω, 
wavelength by λ and “wave number” by k which is 
related to wave length by: 
 
k = 2π/λ      (3) 
 
These equations are fundamental to the understanding of 
ship wave patterns.  For example, the tanh() function in 
the dispersive relationship tends to unity as water depth h 
increases to infinity, resulting in the well-known relation 
for the deep water wave celerity, c: 
 
c = (gλ/2π)½     (4) 
 
because, in this case  
 
c = λ/T = ω/k     (5) 
 
Equations (1) to (5) will be very familiar to naval 
architects dealing with matters related to wave patterns 
(or “wave wash”) and the nuisance these may cause in 
certain circumstances.  These equations lie at the heart of 
what now follows.  
 
3. WAVE PATTERNS 
 
When a ship moves at a steady speed in calm deep water, 
the normal pressures over the hull are greatest over the 
upper part of the underwater body and result in a 
distinctive and well-known pattern of waves on the water 
surface [2]. 
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At the stem of a conventional hull with no wave-
cancelling device such as a bulb, the bow wave system 
starts with a crest and develops into two systems: the 
transverse and diverging systems.  The transverse system 
has crests and troughs roughly normal to the direction of 
motion of the hull which move astern along the hull.  
Once a steady state has been reached, the wavelength of 
this system has been shown, using model measurements 
[2], to agree well with equation (4) for wave speed.  As 
this is equal to ship speed, the dispersive nature of the 
transverse wave system is confirmed experimentally. 
   
In concert with the transverse wave system is the 
diverging wave system which radiates out from the bow.  
This produces a series of quite short wave crests which 
follow the dispersive relationship and move along a 
mean line at an angle to the sailing line.  The lines of 
transverse wave crests bend round as they spread out 
until they match direction, and coalesce to form cusps, 
with the diverging waves at the cusp line.  Figure 1, from 
[2], shows this in diagrammatic form: 
 
 
      

 
 
Figure 1: Schematic Diagram of Bow and Stern Wave 
Systems       
 
 
Also shown in Figure 1 is the stern wave system which 
mimics that from the bow, although, in a real situation, 
this system will be affected by viscous wake and 
propulsor effects. It may also be noted in passing that a 
study of wave patterns, more detailed than the  
simple approach presented here, reveals a phase shift  
of 90o between transverse and diverging waves at the 
cusp point. 
 
Other wave systems arise from features of the hull design 
such as shoulders, or, more generally, from the rate of 
longitudinal and vertical changes of curvature of the hull 
geometry between bow and stern. 
 
Shallow water, defined as water bounded in depth but 
laterally unbounded, also changes the wave pattern and 
this will be discussed in more detail below.  Suffice it to 
say at this point that in shallow water wave amplitudes 
increase, as do the angles of the diverging waves to the 
sailing line. 
 
 

4. HAVELOCK’S GRAPHICAL METHOD 
 
Havelock’s graphical method in [1] shows that a Kelvin 
Wave Pattern can be obtained for a point impulse, or 
disturbance, by the superposition of a number of plane 
wave systems rotated in azimuth in the (x,y) plane, as 
indicated in his Figures 1 and 2 in [1], reproduced here as 
Figure 2.  
 
 

 
Figure 2: Havelock’s Graphics from Reference 1 
 
 
Trains of waves are shown by lines indicating crests and 
troughs in the upper part of Figure 2.  They are assumed 
to be moving freely, each one at wave celerity c, derived 
from equation (1): 
 
c = gλ.tanh(2πh/λ)/(2π))½    (6) 
 
 
In shallow water, as 2πh/λ reduces to a small value, 
tanh(2πh/λ) tends to 2πh/λ and wave celerity, c, tends to: 
 
c = (gh)½     (7) 
 
 
This is an important result for wash studies in shallow 
water because it defines the critical wave celerity for a 
given depth of water, h.  From this comes the critical 
Depth Froude Number, defined as Fnh = V/(gh)½ = 1.0.  
Values of Fnh less than this are termed sub-critical while 
those greater than this are termed super-critical.  The so-
called trans-critical region extends over the approximate 
range 0.8 ≤ Fnh ≤ 1.2. 
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Havelock’s graphical approach may seem counter-
intuitive as an introduction to the forced waves of the 
Kelvin wave pattern, but Havelock assumed that the 
waves, travelling at an azimuth angle ß, had a velocity in 
the direction of travel of c.cosß with wavelengths 
adjusted accordingly.  Considering all wave trains over a 
range of azimuth angles ß, he showed that this gave a 
pattern of waves all moving parallel to the x-axis at a 
speed c.  He also asserted that, from this, patterns of 
waves of constant phase emerge – the Kelvin wave 
pattern.       
 
As mentioned above, he indicated the method in the 
paper, but does not show the complete superposition of 
all wave trains in the construction and, furthermore, did 
not extend this graphical method to shallow water and 
trans-critical conditions. 
 
To remedy this, a short computer program was written 
for this paper to carry out the superposition in deep and 
shallow water with the aim of taking the Depth Froude 
Number of the motion as close to unity as possible while 
still, of course, retaining the dispersive relationship.  
Similar work of more limited range is described in [3]. 
  
The software solved the dispersion equation (Equation 
(6)) for all Fnh < 1.0, using the Newton-Raphson method 
to determine the appropriate value of wave number k 
which was then used to deduce wavelength.  Trains of 
plane wave crests and troughs with this wavelength, 
resolved into the direction of motion, were then plotted 
over a range of azimuth angles in the (x,y) plane from -ßo 
to ßo in increments of δß.   
 
 
 

 
 
Figure 3: Wave Pattern in Deep Water  
 
 
Deep water results for a point disturbance, including all 
construction lines, are shown in Figure 3; crests and 
troughs are shown, ß was set to 70o to improve clarity 
and, initially, δß to 2o.  
 

The appearance of the familiar Kelvin wave pattern is 
apparent, and several points of interest may be noted in 
the plot: 
 
x Transverse and diverging crest/trough lines are 

evident as the plane waves combine to form the 
familiar pattern. 

x The angle of the cusp line is around 20o as is to 
be expected from Kelvin’s early work and many 
experiment measurements made since. 

x The Kelvin wave pattern for a point pressure 
disturbance is symmetrical about x = 0.  This is 
a feature of the algebraic results obtained by the 
pioneers of this work which they might remove 
by superimposing a dummy wave system to 
cancel out the offending waves, or use a 
fictitious friction factor set to zero on 
completion of the analysis. 

x In the “circle” of construction lines there is a 
welter of crests and troughs implying, as 
Havelock suggests, that a good deal of wave 
cancelling may occur in this and other areas of 
the (x,y) plane.  This remains to be 
demonstrated, however. 

x The lines of equal phase which constitute the 
Kelvin pattern are in effect a series of 
hypocycloid curves, each having the same apex 
passing through a common point. 

 
Although the plot in Figure 3 gives a recognisable 
representation of a ship wave system in deep water, it is 
only valid for a point disturbance.   As already 
mentioned, in reality there would be a system such as this 
from the bow, a similar system from the stern and two or 
more from the curved part of the hull in between.  It is 
the resolution of the mathematical or numerical 
difficulties in representing these hull shape effects on the 
wave pattern that demanded a great deal of work by 
pioneers prior to, and after, the coming of the digital 
computer.  Modern numerical methods can now deal 
with these problems more readily, but accurate 
representation of shallow water effects, especially in the 
trans-critical region, is still difficult to deal with both 
analytically and numerically with some CFD techniques.  
However, the purpose of this paper is one of illustration 
and illumination, rather than prediction so the results for 
a point disturbance are adequate for what follows. 
 
5. HAVELOCK’S METHOD EXTENDED 
 
Although Havelock’s graphical method shows ship-like 
wave systems forming from the superposition of plane 
wave trains, it has its limitations.  These are: 
 
x Only the crest and trough locations are given, 

with no information about wave shape between 
crest and trough. There is also no information in 
the third, vertical, dimension, the dimension in 
which wave amplitude is observed. 
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x Wave cancellation is assumed, but not 
demonstrated. 

x No information on wave decay with distance off 
is given. 

 
To overcome these shortcomings, the method was 
extended.  In Havelock’s day, the production, by hand, of 
plots such as those shown above would have been 
extremely time-consuming.  Havelock had no modern 
computers at his disposal for the work described in [1] 
and was therefore unlikely to explore his graphical 
method further.  It had served its purpose as a 
demonstration. 
 
However, on a computer, it is a simple extension to the 
method to superimpose a square grid of points over a plot 
such as that shown in Figure 3 and compute the wave 
amplitude at each grid point for each wave train, 
summing these for each ß value.   
 
Local wave amplitude, ζ, at each grid point, for each 
wave train at each ß can be computed from the well-
known expression: 
 
ζ(x,y) = a sin(k cos(ß).x + k sin(ß).y)  (8) 
 
where time-dependency and phase angle have been 
ignored as irrelevant in this case.  In Equation (8) “a” is 
the arbitrary amplitude for all wave trains and k is the 
wave number appropriate to the Depth Froude Number 
and ß value. 
 
Accordingly, the original computer program was 
modified to extend the Havelock method in this way and 
three-dimensional perspective views of the resultant 
wave system were obtained.  
 

 
Figure 4: Computed Wave Pattern: Deep Water  
 
Scanning from -80o to 80o and using a δß of 0.1o, the plot 
in Figure 4 resulted.  This is for deep water and 
corresponds to the two-dimensional case in Figure 3.  
Only the first quadrant is shown, the line of symmetry 

being on the left with its origin at the top; the viewpoint 
chosen is from directly above the wave system.  The 
extent of the grid in the x and y directions was limited to 
four deep water wavelengths and this scale was 
maintained for all subsequent plots for ease of 
comparison.  The vertical scale was entirely arbitrary.  
For all plots the computation time for all amplitudes was 
around one second.  Computation time for the 
perspective plot was a few seconds, so the production of 
the wave pattern plots was very rapid.   
 
In Figure 4, it is seen that, as Havelock predicted, a good 
deal of wave cancellation does in fact take place, 
although there is some noise on the “calm” water brought 
about, no doubt, by matters of numerical resolution.  
Transverse and diverging waves can be seen in the wave 
system, wave height decay with distance off is clear and 
intermediate wave contours are reasonably well 
represented. 
 
If speed is kept constant and water depth reduced, 
shallow water effects may be explored, defined in what 
follows by the Depth Froude Number, Fnh. 
 
Results at a Depth Froude Number in the sub-critical 
region of 0.46 are shown in Figure 5. 
 

 
Figure 5: Computed Wave Pattern: Depth Froude 
Number = 0.46  
 
 
In this Figure, the following points are apparent: 
 
x The cusp line angle is slightly greater than the 

value of around 20o obtained in deep water 
(Figure 4). 

x The transverse wavelengths are similar to, but 
slightly greater than, those in deep water 

x The shape, typical of the Kelvin wave pattern, 
is, however, still clear and very similar to that 
obtained in deep water.  
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If now the Froude Number is increased to a value of 
0.84, near the start of the trans-critical region, the results 
in Figure 6 are obtained. 
 

 
Figure 6: Computed Wave Pattern: Depth Froude 
Number = 0.84 
 
It is immediately seen that: 
 
x The transverse wavelengths have increased 
x The angle between the sailing line and the cusp 

line has increased noticeably beyond the deep 
water value around 20o. 

x Bow wave height has increased. 
 
 
Increasing the Depth Froude Number closer to the 
critical value, the resultant changes are shown in Figures 
7 and 8.  

 
Figure 7: Computed Wave Pattern: Depth Froude 
Number = 0.99 

Figure 7 corresponds to a sketch of two wave crests given 
by Havelock in Figure 9 of [4].  It is clear that when the 
Depth Froude Number is so close to unity, the transverse 
wavelength increases significantly to such an extent that 
transverse waves and the cusp line are, to all intents and 
purposes, disappearing, or have disappeared, from the area 
of interest.  Diverging waves now dominate the scene with 
their crests convex to the sailing line at a very large angle.  
The first wave is dominant and may appear to be a precursor 
to a solitary wave or soliton.  That this is not such a wave is 
discussed further below. 
 
Increasing Depth Froude Number to 0.999 gives the 
results shown in Figure 8. 

 
Figure 8: Computed Wave Pattern: Depth Froude 
Number = 0.999 
 
Here it is seen that the transverse waves have effectively 
disappeared due to their extreme length.  Information on 
wavelengths, resolved into the direction of motion for all ß 
has been extracted from the computer program and is shown 
in Figure 9 for Depth Froude Numbers of 0.46 and 0.9999.  
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Figure 9: Wavelength Distribution; Effect near Critical 
Conditions 
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Figure 10: Wavelength Distribution up to Transcritical 
Conditions  
 
 
The extreme length of the transverse wave on the 
sailing line (ß = 0o) may be noted and confirms that, for 
this case, the transverse wave system has effectively 
disappeared.  A further comparison is shown in Figure 
10 for lower Depth Froude Numbers which confirms 
the trend and shows the lesser contributions to 
transverse waves at higher ß values in shallow water 
compared to deep. 
 
6. WAVE HEIGHT DECAY 
 
Wave height decay with lateral distance from the sailing 
line (either along the Kelvin cusp line or perpendicular to 
the sailing line) was explored by Havelock in [4] and has 
been used by others as a means of deducing wave 
amplitudes (see [5] for example).  While Havelock, in 
[4], gives information for the decay exponent in deep 
water, he does not do so for shallow water.  As wave 
wash is more pronounced in shallow water, it is not 
without interest to explore wave decay as predicted by 
the extended numerical Havelock method described 
above. 
 
It is usual to express wave decay (see [5] for example) by 
the simple expression: 
 
ζ(ξ)  = γ. ξ n     (8) 
 
where the distance ξ is usually along the wave crest, the 
cusp line or the sailing line or perpendicular to the sailing 
line.   
 
For deep water, and for transverse waves along the 
sailing line, the exponent, n, from the numerical method 
is about -0.41, compared to Havelock’s value of -0.5.  
For a Depth Froude Number of 0.9999, the decay 
exponent, along the crest of the first wave, was found to 
be -0.48. It should be stressed, however, that 
measurement of wave decay from the numerical results 
in these two cases was rather crude.   
 

In passing, it may be mentioned that, in the trans-critical 
region, it has been shown experimentally by others that 
unsteady effects are likely to play a significant part.  
They arise from the fact that, as the critical Depth Froude 
Number is approached, the time required for the long 
transverse wave to be established approaches infinity, so 
steady conditions are not, for all practical purposes, 
achieved.  This behaviour, and the possible generation of 
solitary waves at the same time (see below), will affect 
wave decay in the trans-critical region. 
 
7. DISCUSSION 
 
In this paper, the extended Havelock method, being 
numerically-based and hence more computer-friendly, 
has introduced a third dimension – wave amplitude – into 
the discussion and this, with the resulting graphics, has 
illuminated the changes in wave pattern as the critical 
Depth Froude Number is approached. 
 
Perhaps of most interest is the effect on the transverse 
wave system.  It is well-known, and indeed explained by 
Havelock in [4], that the transverse wave system can no 
longer exist in supercritical shallow water conditions.  
What is of interest in the present study is that, for all 
practical purposes, the transverse system plays no real 
part in the shallow water wave pattern slightly before the 
critical Depth Froude Number is reached.  This may 
perhaps help to explain why “critical” conditions are 
sometimes found to exist - in measurements of resistance 
for example - before a Depth Froude Number of unity is 
reached. 
 
It has also been shown that the diverging wave system, 
which dominates the wave pattern in the trans-critical 
phase, is characterised by a large-amplitude, substantial, 
leading wave which could be confused with the 
development of a solitary wave or “soliton”.  While this is 
an understandable confusion, it should be remembered that 
solitons are non-dispersive and therefore do not satisfy 
equation (1).  They can therefore play no part in the sub-
critical wave patterns discussed here.  Solitons are high 
energy waves, tend to be characterised by a constant 
height crest with no trough, and can run for great distances 
without significant decay; their formation is not always 
guaranteed in shallow water, and depends, among other 
things, on water depth as well as speed (see [6]). 
 
Finally, it is of interest to speculate on how the extended, 
numerical, method could be further developed.  All the 
results presented in this paper have been for a single 
pressure disturbance moving in a straight line at a steady 
speed.  It would be possible, presumably, to introduce 
further pressure points to form a distribution which, 
assuming the “hull” surface condition was satisfied, 
might give some idea of a body moving through the 
water.  However, whether such an exercise would give 
more by way of illustration and understanding than the 
simple examples given here is open to question.   
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8. CONCLUSIONS 
 
As a result of the study described above, the following 
conclusions may be drawn: 
 
x Havelock’s graphical method can be extended 

using numerical techniques to include the third 
dimension. 

x The transverse wave system tends to play an 
increasingly minor, and ultimately negligible, 
role in the wave pattern as the critical Depth 
Froude Number is approached. 

x Wave decay, as predicted by the numerical 
method, roughly conforms to Havelock’s 
prediction. 

x The numerical method provides a quick and 
convenient method of exploring vessel wave 
pattern characteristics in shallow water. 

x Wave amplitude increases as Depth Froude 
Number approaches unity. 

x Near the critical Depth Froude Number the 
wave pattern is dominated by a large initial 
wave crest which could be confused with a 
solitary wave.  As a solitary wave is non-
dispersive, this cannot be the case, although 
such waves may form independently.   
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