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SUMMARY 
 
The paper deals with strength of a grillage loaded by lateral load and in-plane compression load (in one direction). It 
consists of a system of prismatic girders crossing under 90°. The compression load is taken by the longitudinal girders 
that are elastically fixed on rigid supports. The system of aggregated differential equations is derived for solution of the 
problem using the Lagrange method. It allows for replacement of the system of aggregated differential equations by a 
system of independent differential equations. These equations for the case of simultaneous action of lateral and 
longitudinal compression load have the form of differential equations for bending of prismatic girders laying on elastic 
foundation and loaded with lateral and longitudinal compression forces. When only lateral load exists, the form of these 
equations coincides with the form of differential equations for bending of girders laying on elastic foundation and loaded 
with lateral load alone. When only longitudinal compression load exists, the form of these equations coincides with the 
form of differential equations for buckling of girders laying on elastic foundation. 
 
Solutions are given for bending of a grillage (the first two problems). Formulas are derived for calculation of the 
parameters of longitudinal girders’ bending when girders’ end sections are elastically fixed. Also, formulas are derived 
for calculation of the reaction forces at cross-points of transverse and longitudinal girders. When only longitudinal 
compression load exists (third problem), a solution is given for the connection between the coefficient of elastic 
foundation’s rigidity and the Euler force. Results obtained by using the proposed method are compared with FEA 
simulations. 
 
NOMENCLATURE 
 
a  distance between transverse girders 
b  distance between longitudinal girders 
E modulus of elasticity 
f girder’s cross-sectional area 
i0 moment of inertia of transverse girder 
J or J0 moment of inertia of longitudinal girder 
km    coefficient of rigidity of the elastic foundation 
L   length of longitudinal girder 
l   length of transverse girder 
n number of longitudinal girders 
Pm(x) main deflection function 
Q lateral load on a transverse girder 
q distributed lateral load on the grillage 
qm distributed lateral load on longitudinal girder 

0
mq  partial solution of the differential equation of 

longitudinal girder’s bending 
R   reaction force 
T in-plane compression force acting on a 

longitudinal girder 
TE Euler force 
wi(x) longitudinal girder’s deflection curve 
Ei coefficient representing the influence of the load 

Q(x) on the deflection of ith joint of the 
transverse girder 

Jij coefficient representing the influence of the 
reaction force of jth longitudinal on the 
deflection of ith joint of the transverse girder 

j mν   forms of the main deflection 
D  coefficient of pliability of elastic fixity 

Km� parameter depending on T and km 
Om  parameter depending on km 
 
 
1. INTRODUCTION 
 
The object of this study is the strength of a grillage built 
with orthogonally crossing prismatic beams covered by 
plating. The beams parallel to axis OX (Figure 1) have 
the same moments of inertia and the same boundary 
conditions (the boundary conditions can be any). They 
are labeled “longitudinals” loaded with a compressive 
force. The beams transverse to longitudinals (labeled 
“transverses”) also have the same moments of inertia and 
the same boundary conditions (the boundary conditions 
can be any). The paper deals with grillages with a large 
number of equally distant transverses (sometimes they 
are labeled “main direction beams”).  
 
The theory of grillages with longitudinals having 
different moments of inertia loaded only with lateral load 
was developed first by Bubnov I G (1912). He derived a 
system of differential equations for bending of such types 
of grillages and proposed a method for solution of these 
equations. The calculations following his method were 
complicated and the method was not used in practice. 
The following assumptions are basis of these differential 
equations: 
x The lateral load is carried only by the transverses. 
x The direction of the reaction force Rj in the crossing 

points of longitudinals and transverses is 
perpendicular to the grillage plane. 
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x The reaction force Rj acting on longitudinals 
(resulting from the interaction between any transverse 
and jth longitudinal) can be replaced by evenly 
distributed load rj, i.e., 

� �
� �j

j

R x
r x

a
                                                           (1) 

where a = distance between forces Rj(x). 
 
The possibility of using the above-mentioned 
assumptions is analyzed by Papkovich (1947). 
 
 
2. DERIVATION OF THE DIFFERENTIAL 

EQUATIONS FOR BENDING OF A 
GRILLAGE 

 
The derivation of the differential equations for bending 
of a grillage first requires determination of the deflection 
of the transverses at the crossing point with the ith 
longitudinal, i.e., 
 

� � � �
� �

3

10 0

3

i j
j

n

i i j
Q xw x β R γxE i Ei

l l
 

 � ¦                   (2) 

 
where  
wi(x)  = deflection of any transverse at section of 

crossing with ith longitudinal;  
Q(x)  = load on a transverse located at a distance x 

from the origin of the coordinate system (Figure 
1);  

i0  = moment of inertia of the transverse;  
l  = length of the transverse;  
Rj(x)  = reaction force resulting from the interaction 

between any transverse and jth longitudinal;  
Jij  = coefficient representing the influence of the 

reaction force of jth longitudinal on the 
deflection of ith joint of the transverse;  

Ei  = coefficient representing the influence of the 
load Q(x) on the deflection of ith joint of the 
transverse;  

n  = number of longitudinals. 
 
The assumption in Eq. 2 is that the longitudinals support 
the transverses. It can be written for each longitudinal. 
The deflection of jth longitudinal at a cross section with 
any transverse is equal to the deflection of the transverse 
at the same section. For a large number of transverses, 
one can consider the deflection wj as a continuous 
function of x. Then, 
 

� � � �IV
j j ja E J w R xx                                               (3) 

where Jj = moment of inertia of jth longitudinal. 
 
By substituting Rj from Eq. (3) in equality (2), one can 
find 

� � � �
� �

j = 1

3
IV
j

0 0

3 n

i i j i j
Q axw x β E J w γxEi E i

l l
 � ¦  (4) 

The system of differential equations (4) was derived by 
Bubnov I G (1912). A simple solution of system (4) was 
proposed by Papkovich P F (1947). The proposed 
method was labeled “method of main deflections”. The 
essence of the method is in the possibility of replacing 
the system of differential equations (4) by independent 
differential equations. Several quadratic polynomials are 
included in the method which makes the method too 
cumbersome. Korotkin, Lokshin and Sivers (1953) 
proposed an even simpler method which is used in this 
paper for calculation of the strength of a grillage loaded 
by in-plane and lateral loads. 
 
The system of differential equations for a grillage with 
equal longitudinals loaded by the two loads can be 
derived if in Eq. (2) the following equation is used 
(instead of Eq. (3): 
 

� � � � � �IV II
j j jE J w Twa R xx xª º�  ¬ ¼  (5) 

 
where T = in-plane compressive force acting on a 
longitudinal; J = moment of inertia of longitudinals. 
 
As a result, the following system of equations is 
obtained: 
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IV
j
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II
j

3 3 n

i
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i i j
Q ax E J ww x β γ x

E i E i

T w x

l l
 

½
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For solution of Eq. (6), Lagrange substitution is used, 
which leads to the following formula for the case with 
equal longitudinals. 
 

� � � �0
j

m 1

n
mjm

J
w x ν P xJ  

 ¦                               (7) 

 
where J0 = any constant with dimensions for moment of 
inertia; Qjm = yet unknown coefficients; Pm(x) = also yet 
unknown function. 
 
By substituting Equality (7) in Eq. (6) for J0 = J, one can 
obtain: 

� �
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0

0
0

3n

m 1
3 n n

m m j m
m 1j 1

mi m i

i j

Q xν P βx E i
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l

l

 

  

½
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°
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 (8) 

 
 
Since the function Pm(x) is unknown, one can consider it 
as the solution of the differential equation of beams 
subjected to in-plane and lateral load laying on elastic 
foundation, i.e., 
 

� � � �IV I I
m0 m m m mE J P T P k P (x) q (x)x x�  � �  (9) 
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where  
km =  coefficient of rigidity of the elastic foundation 

to be determined;  
qm(x) =  distributed lateral load to be determined as 

well. 
The functions Pm(x) were labeled by Papkovich (1947) 
“main deflections” and the coefficients Qjm – “forms of 
main deflections”. 
 
Taking into consideration Equality (9), the system of 
differential equations (8) will take the following form:  
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0
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m m m
m 1j 1
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i j jm
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l
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or 
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m
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n
mi m i j jm

n

i i j jm

a k
ν γ ν P xE i

Q ax= β γ ν q xE i E i

n l

l l
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Since the coefficients Qjm are unknown, one can 
determine them in such a way that for each index m the 
following equality is fulfilled  
 

0

3 n

j 1

m
i m i j jm

a k
ν γ ν 0

E i
l

 
�  ¦  (12) 

 
The following parameters are introduced: 

0 0
m m3 3

m m

E i E i
λ k

a k a λl l
   (13) 

Then 

j=1

n

mim i j j mν λ γ ν ¦  (14) 

 
The system of equations (14) can be presented in the 
following way:  
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Equations (15) represent a system of linear homogeneous 
algebraic equations. It may have a non-trivial solution if 
the determinant is equal to zero, i.e.,  
 

11 12 13 1

21 22 23 2

n nn1 n 2 n3

m

m n

m

nγ λ γ γ ...... γ

γ γ λ γ ...... γ
0

............................................................
γ γ γ γ λ

�

�
 

�

 (16) 

 
The coefficients Jij satisfy the equality 
 

i j j iγ γ  (17) 

 
The determinant (16) has “n” real roots, i.e., “n” real 
values of the coefficient Om and, consequently, “n” 
values of the coefficient of rigidity of the elastic 
foundation km which are calculated by Eq. (13). 
 
The forms of main deflections Qjm can be calculated with 
accuracy up to an arbitrary co-multiplier. They satisfy the 
condition called “orthogonally condition” (Korotkin, 
Lokshin, Sivers, 1953). For equal longitudinal girders, 
this condition is: 
 

2
ir

1 1

n n

i m i r
i i

ν ν 0 for r m ν 0
  

 z z¦ ¦  (18) 

 
Next is the determination of the lateral distributed load 
qm(x) in Eq. (10). Using Eq. (11) and considering 
Equalities (10) and (14), one can derive the following 
equality: 
 

� �
� �

� �

m 1 j 1

m m
m 1

n n
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To determine function qm(x), the two sides of Eq. (19) 
are multiplied by i rν  and the results for each i are 

summed up. Thus, 
 

� �
� � m

m 1i 1 i 1

n n n
mi i r im i r

Q xβ ν q λ  ν νxa    
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Based on orthogonallity condition (18) and assuming 
r = m, one can obtain: 
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To solve the differential equation (9), one should 
determine the boundary conditions of the function Pm(x). 
Using the Equality (7), one can represent the function 
Pm(x) by using the function wj(x). This is done by 
multiplication of the two sides of Equality (7) with 

i rν and by summation of the results for all values of the 

index  j, i.e.,  
 

� � � �m j m
m 1j 1 j 1

n n n

j j r j rw ν P ν νx x
   

 ¦ ¦ ¦  (22) 

 
Bearing in mind that the forms of main deflections 
satisfy the condition of orthogonallity (18), one can 
obtain ( for r = m and j = i) the following equation: 
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Differentiating Eq. (23), one can obtain:  
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Particular cases: 
 
a) All longitudinals are freely supported by rigid 
supports at x = 0 and x = l (See Figure 1). In this case: 
 

wj(0) = wj(l) = 0;  � � � �II II
j jw w 00 l                  (25) 

 
Hence, 

Pm(0) = Pm(l) = 0;  � � � �I I I I
m mP P 00 l                 (26) 

 
b) All longitudinals are elastically fixed and 
supported by rigid supports at x = 0 and x = l . In this 
case: 
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Hence, 
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where a  and 1a  are coefficients of pliability of the 
elastic fixity. 
 
 
3. INTEGRATION OF THE 

HOMOGENEOUS EQUATIONS 
 
It follows from the above-given equations that the 
calculation of longitudinals’ deflection wj(x) requires 
finding the function Pm(x) that satisfies differential 
equation (9). The integral of this equation is equal to the 
sum of the solutions of a homogeneous equation (when 
qm(x) = 0) and a partial solution which depends on the 
type of function qm(x).  
 
The integral of the homogeneous equation can be found 
by Euler’s method, i.e., 
 
Assume that 

� � mS
m m

xP A ex                                      (29) 
 
where Am is a constant. By substituting the functions 
Pm(x) in Eq. (9) with Eq. (29) and putting q(x) = 0, one 
can find the following characteristic equation which 
determines the parameters Sm: 
 

0 0

m4 2
m m

kTS S 0
E J E J

� �   (30) 

 
The four roots of Eq. (30) are: 

0

0

m
2m

4 k E JTS 1 1
2 E J T

 r � r �          (31) 

 
By introducing the notations  

0

0

m
m 2
2 4 k E J Tand γ

2 E JT
η                  (32) 

 
One can represent Eq. (31) in the following form: 

2
m mS γ 1 1 η r � r �                               (33) 
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Thus, the general integral of the homogeneous equation 
can be rewritten in the following form: 

� � � � j
mP A ex

4 j
m m

j 1

S x
§ ·
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© ¹

 
 
¦  (34) 

 
The roots of the characteristic equation and, 
consequently, the type of the function Pm(x) depend on 
the parameter 2

mη . Several cases are possible: 
 
a) 2

mη = 1. 
 
In this case, all four roots of the characteristic equation 
will be imaginary and equal to  
 

� �1, 2
mS i γ r                                                           (35) 

 
Using the equations 
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2
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¾
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                                    (36) 

 
the general integral of the homogeneous equation will 
have the following form: 
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b) 2

mη < 1.  
 
The roots are imaginary and different: 
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m m1 2S i S iD D r  r                      (38) 
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The general integral of the homogeneous equation will 
have the following form: 
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c) 2

mη > 1.  
 
In this case the roots will be complex ones 
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mS j 1, 2, 3, 4i βD r  �                   (41) 
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The general integral of the homogeneous equation can be 
presented in the following way: 
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0
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1 2
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3

mP C ch cosα x β xx
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°°
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°
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       (43) 

 
The general integral of Eq. (9) depends on the type of the 
lateral load qm(x). In the case when the lateral load on 
each transverse girder is the same (i.e., Q(x) = Q), Eq. 
(21) can be represented in the following form: 
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m im
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Further, considering Eq. (13), one can rewrite Eq. (44) in 
the following form: 
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2
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4. PARTIAL SOLUTION OF THE EQUATION 

FOR BENDING OF A BEAM LOADED BY 
IN-PLANE COMPRESSION AND LATERAL 
LOAD   

 
When the lateral load is determined by Eq. (45), the 
partial solution of Eq. (9) has the following form: 
 

0

3
i 10 m

m
2m

im
i 1

n

i im
n

β ν
q Qq
k Ei ν

l  

 

  
¦

¦
                          (46) 

 
This partial solution should be added to the solutions of 
the homogeneous equations, determined by Equalities 
(37), (40), (43). 
 
 
5. DETERMINATION OF THE MAIN 

DEFLECTIONS 
 
Let us determine the main deflections (i.e., functions 
Pm(x)) for a beam elastically fixed at rigid supports when 

2
mη < 1. In this case, the function Pm(x) can be rewritten 

in the following form: 
 

� � � � � �
� � � �
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/
2 23

m
/ o
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When the lateral load is evenly distributed, the function 
Pm(x) is symmetrical relative to the middle section. 
Assume the origin of the coordinate system at this middle 
section (Figure 2). For symmetric bending, the 
coefficients of the odd functions in Equality (47) should 
be equal to zero. Then, the function Pm(x) is 
 

� � � � � �/
1 20

/ o
m m2x xP C cos C cos qx D D � �          (48) 

 
For this case, the boundary conditions can be presented 
in the following form: 
 

0
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where a  is the coefficient of pliability of the elastic 
fixity. The following coefficient is introduced: 

0

1
2 E J

1
L

]
D

 
�

                                                    (50) 

 
Thus, 
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0

1 ζL
2 E J ζ

D
�

                                            (51) 

 
Then, the second boundary condition in Eq. (49) takes 
the following form:  
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By applying boundary conditions (52) to Equality (48) 
one can obtain the following system of equations  
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The solution of this system is: 
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Similar calculations can be carried out for 2

mη > 1. 
 
For these values of 2

mη , the functions Pm(x) (taking into 
consideration the symmetric bending of the beam), will 
be equal to 
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It follows that 
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2ν ν ch x cos β x

D

D

½ � �°
¾
°� ¿

                (62) 

 

1 2
L Lν ν β
2 2
D       (63) 

 
Using boundary conditions (27) and (28), one can derive 
the following system of equations determining the two 
coefficients / /

0C  and / /
2C   

 

� � � � � � � �/ / / / 0
m0 21 2 1 2

/ / / /
0 21 1

C ch cos C s h sin qν ν ν ν

1 ζ L 1 ζ LC a f C b g 0
ζ 2 ζ 2

½�  �
°
¾ª º ª º� �§ · § ·� � �  °¨ ¸ ¨ ¸« » « »

© ¹ © ¹¬ ¼ ¬ ¼ ¿

  (64) 

 
where 

1 1 1 2 2 1 2

1 1 1 2 2 1 2

a ν s h ν cos ν ν c h ν sin ν

b ν c h ν sin ν ν s h ν cos ν

½ � °
¾

 � °¿
                   (65) 
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� �
� �

1 2 1 2 1 2

1 2 1 2 1 2

2 2

2 2

1 2

1 2

Lf ν ν chν cos ν 2ν ν shν sinν
2
Lg ν ν shν sin ν 2ν ν chν cosν
2

½§ ·  � �¨ ¸ °© ¹ °
¾

§ · ° � �¨ ¸ °© ¹ ¿

(66) 

 
 
The solution of the system of equations leads to 
 

/ /
0

1
o
m

2

1 ζ Lb
ζ 2C q

g� § ·� ¨ ¸
© ¹ �

'
                           (67) 

/ /
2

1
o
m

2

1 ζ La f
ζ 2C q

� § ·� ¨ ¸
© ¹ 

'
                             (68) 

 

� � � �2 2

1 2 2 2 1 1

1 2 1 2 1 2

2 ν sinν cos ν ν chν shν

1 ζ 2ν ν chν cosν shν sinν
ζ

½'  � �
°
¾� ª º� � °« »¬ ¼¿

     (69) 

 
Substituting the values of the constants  / /

0C  and / /
2C  in 

Eq. (58) and Eq. (60), one can derive the following 
formulas: 
 

� � ^ � � � � � � � �

� � � � � � � �

1m
o
m

2

o
m

1
1P q b ch x cos β x a sh x sin β xx Δ

1 ζ L L+ g ch x cos β x f sh x sin β x q
ζ 2 2

D D

D D

 � � �

½� ª º§ · § ·� �¾¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼¿
(70) 

 

� � ^ � � � �

� � � �

12
// o
m m 1

2

4 1P q b f x a g xx ΔL

1 ζ L L+ g f x f g x
ζ 2 2

 � � �

½� ª º§ · § ·� ¾¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼¿

       (71) 

 
 
 
6. SOLUTIONS FOR EVEN NUMBER OF 

LONGITUDINAL GIRDERS 
 
The calculation of the buckling strength is simplified 
when the longitudinals are located symmetrically relative 
to the C.L. and the boundary conditions at transverses’ 
ends for y = 0 and y = l are identical. For such a 
symmetrically bending grillage, the calculation of 
longitudinals’ elastic deflection curves is substantially 
simplified since it becomes possible to consider only one 
half of the grillage (relative to C.L.) which reduces the 
number of differential equations that determine the 
beams’ elastic deflection curves. 
 
For the even number of the longitudinals, the number of 
the corresponding equations is reduced twofold.  

For the even number of longitudinals, the calculation of 
the coefficients of influence Jij can be done by using the 
formula for determination of a transverse’s deflection 
resulting from the action of two symmetrically located 
forces at section y = c and y = l – c (index j) and find the 
deflection at section y (index i), see Figure 3. 
 
For a freely supported transverse, the elastic deflection 
curve due to the effect of bending moments (caused by a 
lateral force P) is determined by the formula: 
 
 

� �

� �

P P
� �

3
0

2

23

3

c c

y c yc3
Pν y

6 E i y c y c
l

l
l lll

l
l l�

½ª º§ ·� § · � °« »�¨ ¸¨ ¸
© ¹ °© ¹« »° ¾« »

� °�§ ·« »§ ·��¨ ¸ ¨ ¸ °« »© ¹ © ¹ °¬ ¼¿

    (72) 

 
For fixed transverse’s ends, the elastic deflection curve 
due to the effect of bending moments is determined by 
the formula: 
 

� �

� �

P P
� �

2

3
0

23

3

c c

c yy c3
Pν y

6 E i y c y c
l

l
ll ll

l
l l�

½ª º§ ·§ · � �� °« »¨ ¸ ¨ ¸© ¹ © ¹ °« »
 ¾« »

� �§ · § · °�« »�¨ ¸ ¨ ¸ °« »© ¹ © ¹¬ ¼¿

    (73) 

 
The term after the first vertical lines should be used only 
for calculations of ( )ν y �in sections y > c. When the 
calculations are carried out for sections y > l – c, one 
should also use the term after the second vertical lines. 
 
 
7. SOLUTION FOR ODD NUMBER OF 

LONGITUDINAL GIRDERS 
 
The calculation of the buckling strength in this case is 
more complicated than for an even number of 
longitudinals. Since there is a longitudinal at C.L., one 
cannot use only half of the grillage in the calculations but 
the whole of it. This increases the calculations’ 
complexity and time. However, with present computer 
technology this is not a problem. 
 
The procedure for calculating the strength of a grillage is 
given in Appendix I. 
 
 
8. CONCLUSION 
 
The paper deals with strength of a grillage loaded in the 
following way: 1) by lateral load and in-plane 
compression load (in longitudinal direction); 2) only by 
lateral load, 3) only by in-plane compression. It consists 
of a system of prismatic girders crossing under 900. The 
compression load is taken by the longitudinal girders that 
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are elastically fixed on rigid supports (transverse 
girders). A system of aggregated differential equations is 
derived for solution of the problems using the Lagrange 
method. It allows for replacement of the system of 
aggregated differential equations by a system of 
independent differential equations. These equations for 
the case of simultaneous action of lateral and 
longitudinal compression load (first problem) have the 
form of differential equations for bending of prismatic 
girders under lateral and longitudinal compression load 
laying on elastic foundation. When only lateral load 
exists (second problem), the form of these equations 
coincides with the form of differential equations for 
bending of girders laying on elastic foundation and 
loaded with lateral load alone. When only longitudinal 
compression load exists (third problem), the form of 
these equations coincides with the form of differential 
equations for buckling of girders laying on elastic 
foundation. 
 
Solutions are given for bending of a grillage (the first 
two problems). Formulas are derived for calculation of 
the parameters of longitudinal girders’ bending when 
girders’ end sections are elastically fixed. Also, formulas 
are derived for calculation of the reaction forces at cross-
points of transverse and longitudinal girders. When only 
longitudinal compression load exists (third problem), a 
solution is given for the connection between the 
coefficient of elastic foundation’s rigidity and the Euler 
force. 
 
The numerical examples given in the Appendices show 
very close results obtained by the proposed method and 
the FEM calculations. The maximal error is within 4 – 
9% which allows for its application in engineering work, 
especially when FEM calculations are not available. It is 
worth noting that the proposed closed-form solution 
provides a conservative estimate relative to FEM.  
 
Another potential application is in the early design stage 
of the ship’s hull girder structure. One can run numerous 
calculations changing some of the geometric and material 
properties of the grillage under consideration and 
optimize its design. 
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APPENDIX I 
 
Calculation of the coefficients of influence Jij, 
coefficients of the form of main deflections imν , and 
coefficients of rigidity of the elastic foundation km 
 
An example is given for a grillage with six equidistantly 
located longitudinal girders. The longitudinal girders are 
elastically fixed at rigid supports (e.g., transverse 
bulkheads) with the same coefficients of pliability. The 
transverse girders are freely supported at rigid supports. 
 
Calculation of the coefficients Jij and Ei  
 
Numbers 1, 2, and 3 are attached to longitudinals as 
shown in Figure 4 (symmetric girders have the same 
numbers.) To determine the coefficient Jij , one can use 
Eq. (72) in the following way: 
 

� �

P P
� �

3i j

2

2

3

c c

y c yc3
1γ
6 y c y c

l

l
l ll

l
l l�

½ª º§ ·� § · � °« »�¨ ¸¨ ¸
© ¹ °© ¹« »° ¾« »

� °�§ ·« »§ ·��¨ ¸ ¨ ¸ °« »© ¹ © ¹ °¬ ¼¿

           (74) 

 
In the example (see also Figure 4), Eq. (74) takes the 
form  

� �
i j

2

2
y c ycγ 36

l
l ll

½§ ·°� § · �¨ ¸¾¨ ¸
© ¹ °© ¹¿

                             (75) 

 
By substituting in formula (75) the values of: 
y = c = 3l / 7, one can find J11 = 27/686 
y = c = 2l / 7, one can find J22 = 26/1029 
y = c = 1l / 7, one can find J33 = 17/2058 
c = 3l / 7 and y = 2l/7, one can find J21 = 32/1029 
c = 3l / 7 and y = 1l/7, one can find J31 = 5/294 
c = 2l / 7 and y = 1l/7, one can find J32 = 29/2058 
Note: Jij = Jji 
 
When a beam is loaded with evenly distributed load, the 
deflection curve of freely supported beam due to the 
effect of bending moments will be 

� �
0

3 43Q y y yν 2y
24E i

l
l l l

ª º§ · § · � �« »¨ ¸ ¨ ¸
© ¹ © ¹¬ ¼

                         (76) 

 
To determine the coefficient Ei one can use Eq. (76) in 
the following way: 

i

3 41 y y yβ 2
24 l l l

ª º§ · § · � �« »¨ ¸ ¨ ¸
© ¹ © ¹¬ ¼

                              (77) 

 
By substituting in Eq.(77) the values of: 
y = 3l/7, one can find E1 = 183/14406 
y = 2l/7, one can find E2 = 295/28812 
y = 1l/7, one can find E3 = 165/28812 

Calculation of the coefficients of rigidity of the elastic 
foundation Km 
 
The determination of these coefficients requires finding 
the roots of the determinant of formula (16) in which the 
calculated coefficients Jij should be inputted. Thus, the 
determinant (16) will have the following form:   
 

m

m

m

27 32 5λ
686 1029 294

32 26 29 0λ
1029 1029 2058

5 29 17 λ
294 2058 2058

�

 �

�

 (78) 

 
For this numerical example, formula (78) leads to the 
following cubic equation:  
 

3 2 2 5 9. . .10 10 10λ 7.2886 λ 7.3429 λ 8.1456 0� � �� � �  
 (79) 
 
The three real roots of Eq. (79) are  
 

1 2

3

λ 7.1866E 02 λ 8.9329E 04

λ 1.2688E 04

 �  � ½°
¾ � °¿

 (80) 

The existence of three real positive differing roots of O 
means that the coefficients of rigidity km (determined by 
Eq. (13)) will have three real positive differing values. 
 
Calculation of the main deflections’ forms i mν  
 
Once the values of O1, O2, and O3 are calculated, the forms 
of the main deflections i mν can be determined with 
accuracy up to any arbitrary co-multiplier based on the 
system of equations (15) which takes the following form 
for the grillage under consideration: 
 

m 1m 2m 3m

m1m 2m 3m

m1m 2m 3m

32 527 ν ν ν 0λ
1029 294686

32 2926ν ν ν 0λ
1029 20581029

5 29 17ν ν ν 0λ
294 2058 2058

½§ · � �  �¨ ¸ °© ¹ °
°§ ·� �  � ¾¨ ¸

© ¹ °
°§ ·� �  � °¨ ¸

© ¹ ¿

 (81) 

 
Sequentially substituting in this system of equations the 
values of O1, O2, and O3 and grant values to i mν as 1 1ν = 

2 2ν = 3 3ν = 1, one can find the values of the remaining 
forms of the main deflections. This is done in the 
following way: 
 
x when O� = 7.1866E-02 

11ν  is assumed as 11ν  = 1. Then, one can use the 
second and third equation in formula (81) to obtain 
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the following system of two equations:  
 

21 311

21 311

29 3226 ν νλ
2058 10291029

29 517ν νλ
2058 2942058

½§ · �  ��¨ ¸ °© ¹ °
¾

§ · °�  ��¨ ¸ °© ¹ ¿

       (82) 

The solution of the system of two equations 
is 21ν 0.80194 ; 31ν  = 0.44504  
 

x when O� = 8.9329E-04 

22ν  is assumed as 22ν  = 1. Then, one can use the 
first and second equation in formula (81) to obtain 
the following system of two equations:  

13 233

13 233

32 527 ν νλ
1029 294686

32 2926ν νλ
1029 20581029

½§ · �  ��¨ ¸ °© ¹ °
¾

§ · °�  ��¨ ¸ °© ¹ ¿

      (83) 

The solution of the system of two equations is 12ν  
= -1.80194; 3 2ν  = 2.24698 

 
x when O� = 1.2688E-04  

33ν  is assumed as 33ν  = 1. Then, one can use the 
first and third equation in formula (81) to obtain the 
following system of two equations:  

12 322

12 322

5 3227 ν νλ
294 1029686

5 2917ν νλ
294 20582058

½§ · �  ��¨ ¸ °© ¹ °
¾

§ · °�  ��¨ ¸ °© ¹ ¿

       (84) 

 
The solution of the system of two equations is 13ν  
= 0.55496; 23ν  = - 1.24698 

 
The forms of main deflections should satisfy the 
condition of orthogonality (18) which can be rewritten in 
the following form: 

� �
� �
� �

11 12 21 2 2 31 32

11 13 21 23 31 33

12 13 2 2 23 32 33

ν ν ν ν ν ν 0 m 1, r 2

ν ν ν ν ν ν 0 m 1, r 3

ν ν ν ν ν ν 0 m 2, r 3

½� �    
°°� �    ¾
°

� �    °¿

 (85) 

 
The accuracy of the calculations was checked by 
substituting i jν with the corresponding values given 
above. The maximal error in the calculations by formula 
(85) is 4.62E-06 (instead of zero) in the third equation in 
formula (85). 
 
Once the forms of the main deflections are calculated, 
one can determine the intensity of the lateral pressure on 
longitudinal girders using formula (21). For the grillage 
under consideration, this formula has the following form:  

i 1
m

m 2

i 1

3

i i m

3

im

q

β ν
Q

a λ
ν

 

 

 
¦

¦
 (86) 

 
Taking into consideration formula (13), one can derive 
the following formula for qm:  
 

0

3
m i 1

2
i m

i 1

3

i i m
m 3

β ν
Q k

q Q q a
E i

ν

l
l 

 

  
¦

¦
 (87) 

q = evenly distributed lateral load acting on the grillage. 
 
The derived intensity of lateral load qm and the 
coefficients of rigidity of the elastic foundation given 
above allow for finding the solution of the differential 
equation (9) that determines the main deflections Pm(x). 
Further, using formula (7) for J0 = J , one can find the 
deflection curve of each longitudinal girder. 
 
APPENDIX II  
 
Bending strength of a grillage loaded only with lateral 
load 
 
The grillage in the previous example is taken into 
consideration. In such a case, the main deflections should 
satisfy the differential equation for bending of a beam on 
elastic foundation loaded by lateral load, i.e., 
 

� � � �IV
0 m m m mE J P x k P x q�   (88) 

 
The solution of the homogeneous Eq. (88) is searched in 
the following form:  
 

� � � � � �
� � � �

m m0 0 1 1

m m2 2 3 3

mP x D V δ x D V δ x

D V δ x D V δ x

 � �½°
¾

� � °¿
 (89) 

Di = constants 
 
Vi (Gmx) = linearly independent partial solutions of Eq. 

(88) for qm = 0. These functions were 
determined by Puzirevsky N. P. [3] in the 
following way: 

 
� � � �

� � � � � � � �

� � � �

� � � � � � � �

m m

m m m m

m m

m m m m

m

m

m

m

0

1

2

3

δ x δ x

ch δ x sin δ x sh δ x cos δ x

δ x δ x

ch δ x sin δ x sh δ x cos δ x

V (δ x) ch cos
1V (δ x)
2

V (δ x) sh sin
1V (δ x)
2

½
°
°�ª º¬ ¼°°
¾
°
°
°�ª º¬ ¼ °¿

 

 

 

 

 (90) 
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0

m4m
k

δ
4E J

  (91) 

 
The functions of Puzirevsky change over each other 
when subjected to differentiation relative to x in the 
following way: 

 

0 1

2 3

/ /
1 2
/ /
3 0

2 δ 2 δ

2 δ 2 δ

V (δx) V (δx) V (δx) V (δx)

V (δx) V (δx) V (δx) V (δx)

½°
¾
°¿

  

  �
 

(92) 
 
Then, using the function of Puzirevsky, the integral of 
Eq. (88) can be rewritten in the following form: 
 

� � 0 1

2 3

m 0 1
o
m2 3

P x D D

+ D D

V (δx) V (δx)

V (δx) V (δx) q

 ½°
¾
°¿

� �

� �
 (93) 

 

0 0

3

i i , m3 3
i 1o m

m m3
2m
i ,m

i 1

β ν
q Q Qq σ
k E i E i

ν

l l 

 

   
¦

¦
 (94) 

 
3

i i , m
i 1

m 3
2
i ,m

i 1

β ν
σ

ν

 

 

 
¦

¦
 (95) 

 
Let us determine the function Pm(x) for a beam on rigid 
supports and elastically fixed with the same coefficients 
of pliability. Take the origin of the coordinate system in 
the middle of the beam’s length. Since, in this case, the 
functions Pm(x) will be symmetric relative to the origin 
of the coordinate system, the constants Di for odd 
functions in Eq. (93) are equal to zero. Then,  
 

� � � � � � 0
m0 0 2 2mP x D V δ x D V δ x q � �  (96) 

 
The unknown constants D0 and D2 can be determined 
using the following boundary conditions: 
 

0

m

/ / /
m m

L Lwhen x   P   0
2 2

L LP E J P
2 2

D

½§ ·  ¨ ¸ °© ¹ °
¾

§ · § · ° �¨ ¸ ¨ ¸ °© ¹ © ¹ ¿

 (97) 

 
On the basis of Eq. (50) and Eq. (51), one can present the 
boundary conditions in the following way: 
 

/ / /
m m m

L L 1 ζ L LP   0 P P
2 2 ζ 2 2

�§ · § · § ·  �¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹

 (98) 

 

On the basis of Eq. (92) and Eq. (96) 
  

� � � � � �m m m0
/
m 3 2 1P D V δ x D V δ x δ 2x ª º � �¬ ¼  (99) 

 
� � � � � � 2

m m m0
//
m 2 2 0P D V δ x D V δ x 2 δx ª º � �¬ ¼  (100) 

 
Also, taking into consideration the boundary conditions, 
one can obtain the following system of equations: 
 

� � � �
� � � �

� � � �

0
m0

0

m0

0 2 2

3 2 1

2 2 0

D V u D V u q

D V u D V u

L 1 ζ D V u D V u δ 2
2 ζ

½�  �
°

� �  °
¾
°§ ·� ª º � � � °¨ ¸ ¬ ¼© ¹ ¿

   (101) 

 
Or 
 

� � � �

� � � �

� � � �

0
m0

0

2

0 2 2

2 3

0 1

D V u D V u q

1 ζD 2 u V u V u
ζ

1 ζD 2 u V u V u 0
ζ

½�  �
°
°ª º�

� � � °« » ¾¬ ¼
°

ª º� °� �  « » °¬ ¼ ¿

 (102) 

 

m
Lu δ
2

  (103) 

 
It follows that 

� � � �
0
m2

2 3
1 ζ 2 u V u V u
ζD q

�
�

 �
:

 (104) 

 

� � � �
0
m0

0 1
1 ζ 2 u V u V u
ζD q

�
�

 �
:

 (105) 

 

� � � �
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2 2
0 2

1 0 3 2

1 ζ 2 u V u V u +
ζ

+ V u V u V u V u

� ½ª º:  � °¬ ¼ ¾
°� ¿

               (106) 

 
 
By substituting constants D0 and D2 in Equality (96), one 
can obtain:  
 

� �

>
0

m m

m
3

m

1 0 3 2

P x

Q σ 1
E i

C V (u)V (δ x) V (u)V (δ x)

l

½
° °
°
° � ¾
°
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               (107) 
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� � � �

� � � �

m

m

0 0

2 2

1 ζC 2 u V u V δ x
ζ

V u V δ x

� ½ª �¬ °
¾
°º� ¼ ¿

 (108) 

 
The maximal value of the function Pm(x) is for x = 0, i.e., 
 

� � � �
0

3

m m
QP 0 σ 1 φ u
Ei

l
 �ª º¬ ¼  (109) 

 

� �
� � � �0 1

1 ζ 2 u V u +V u
ζφ u

�

 
:

 (110) 

 
The second derivative of the function Pm(x) is 
 

� �//

m

0

m

m
3

2 1 2
m

3 0

P x

H V (u)V (δ x)Q σ 2δ
E i

V (u)V (δ x)

l

½
° °
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� � � �

0 2

2 0

1 ζH 2 u V u V δ x
ζ

V u V δ x

� ½ª �¬ °
¾
°º� ¼ ¿

 (112) 

 
Thus, 
 

� �//

2
m

0

m

3 2 3

m

P 0

1 ζ 2 u V (u) V (u)
Q ζσ 2δ
E i

l

½ 
°
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� ¾
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 (113) 
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0

m

3
2 1 2 3 2

m m

LP
2

V (u) V (u) V (u)V (u)Q σ 2δ
Ei

l

½§ ·  ¨ ¸ °© ¹ °
¾� °
°: ¿

 (114) 

 
Formulas (113) and (114) provide the basis for the 
following formulas: 
 

� � � �// 0
0 2

3
2

m m 0
0

8Q J
P 0 E J u σ ψ u

i L
l

  (115) 

 

� �// 0
0 2

3
2

m m 1
0

8Q JLP E J u σ ψ u
2 i L

l§ ·  ¨ ¸
© ¹

 (116) 

 
 

Formulas (115) and (116) provide the basis for the 
following formulas: 
 

� �
2 3

0

1 ζ 2 u V (u) V (u)
ζψ u

�
�

 �
:

 (117) 

 

� � 1 2 3 0
1

V (u)V (u) V (u)V (u)
ψ u

�
 �

:
                (118) 

 
Taking into consideration formula (7), when J0 = J, the 
elements of bending of longitudinal girders would be 
determined by the following equalities:  
 
Deflection at mid-length of the longitudinals 
 

� � � �
3

mj
m 10

n

jm
Qw 0 σ ν 1 φ u
E i

l
 

 �ª º¬ ¼¦  (119) 

 
Bending moment at mid-length of the longitudinals 
 

� � � �2
20

0

3
//

m0 j
m 10

n
= 0 jmx

8Q J
M E J w 0 u σ ν ψ u

L i
l

 
  ¦  

 (120) 
 
Bending moment at the ends of the longitudinals 

� �2
20

1

3
//

mL 0 jx m 102

n

jm
8Q JLM E J w u σ ν ψ u

2 L i
l

  

§ ·  ¨ ¸
© ¹

¦  

(121) 
 

To determine the reaction forces at cross-points of the 
girders in both directions, Rj(x), formula (5) is used 
where the function wj(x) is substituted using formula (7). 
Thus, 

� � � � � �IV II
0

3
m mj j m

m =1
R x a ν E J P x T P xª º �¬ ¼¦  (122) 

 
Taking into consideration equality (9), one can obtain:  
 

� � � �m

3
mj j m

m =1
R x a ν q k P xª º �¬ ¼¦  (123) 

 
Then, by substituting qm(x) from formula (45) and using 
formula (109), one can obtain  
 

� � � �m

3 3
mj j m

m =10

QR 0 a ν k σ φ u
Ei

l
 ¦  (124) 

 
The formulas for M(u), \�(u),�and�M1(u) are given below 
for the case of freely supported girders ends (] = 0) and 
for the case of fixed girders ends (] = 1): 
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When ] = 0 

� � � �
� � � �

� � � �
� � � �

� �

0

0 2

2
0

0 2

1

2 2

2 2

V u
φ u

V u V u

V u
ψ u

V u V u

ψ u 0

½
 °

°�ª º ª º¬ ¼ ¬ ¼ °°
¾ °

�ª º ª º °¬ ¼ ¬ ¼
°

 °¿

 (125) 

 
 
When ] = 1 

� � � �
� � � � � � � �

� � � �
� � � � � � � �

� �
� � � � � � � �
� � � � � � � �

1

3
0

1

1 0 3 2

1 0 3 2

1 2 3 0

1 0 3 2

V u
φ u

V u V u V u V u

V u
ψ u

V u V u V u V u

V u V u V u V u
ψ u

V u V u V u V u

½
 °� °

°
° ¾� °
°� ° 
°� ¿

           (126) 

 
 
APPENDIX III 
 
Bending of grillage under combined evenly 
distributed lateral and in-plane compression load 
 
The calculations are related to integration of the 
differential equation (9). The formulas of functions Pm(x) 
satisfying this equation in case of symmetric bending can 
be given in the form of Eq. (48) when    2

mη  < 1 or in the 

form of Eq. (58) when 2
mη  > 1. The components of 

bending for these two cases are: 
 
 
When 2

mη  < 1 

The coefficients /
0C  and /

2C  in Equality (48) become 
equal to 

2
2 2 2 2

/
0

1

o
m

1 ζν sin ν ν cos ν
ζC q

�
�

 �
'

 (127) 

 
2

1 1 1 1
/
2

1

o
m

1 ζν sin ν ν cos ν
ζC q

�
�

 
'

                        (128) 

 

� �
1 2 1 2 1 2 1

2 1
2 2
2 1

ν cos ν sin ν ν cos ν sin ν

1 ζ+ ν ν cos ν cos ν
ζ

'  � �½
°

� ¾
°
¿

�
 (129) 

 
 
Substituting the coefficients in Equality (48), one can 
obtain  

� �
� � � �

� � � �� �

2 2 1 1 1 2

2 1 1 2

m

0
m

1

2 2
2 1

1

P x

ν sin ν cos α x ν sin ν cos α x
= q 1

1 ζ ν ν cos α x ν ν cos α x
ζ

cos cos

 ½
°

ª � °
� �« °' °«¬ ¾

°� º� °»
°»�

' °»¼¿

(130) 

 
The second derivative of function Pm(x) will be 

� �
� � � �

� � � �� �

1

/ /
m

2 2
2 1 2 2 1 2 10

m2
1

2 2
1 2 1 2 2 1

1

P x

ν ν sin ν cos α x ν ν sin ν cos α x4= q
L

1 ζ ν ν ν cos α x ν cos α x
ζ

cos cos

½ 
°

ª °�
� �« °

' °«¬ ¾
°� º� °»
°»�
°' »¼ ¿

(131) 
 
The functions Pm(x) for x = 0 and � �/ /

mP x  for x = 0 and x 
= L/2 that are needed for calculation of the maximal 
deflection and bending moments of longitudinal girders 
will be: 

� � � �

� � � �

� �

0
1 20m m

0
m 1 202

0
1 212

/ /
m

/ /
m m

ν ,ν1 φP 0 q

4 ν ,νP 0 q χ
L

L 4 ν ,νP q χ
2 L

½
°ª º� ¬ ¼ °
° � ¾
°
°§ ·  � °¨ ¸

© ¹ ¿

                        (132) 

 
where 

� �

� �2 1

2 2 1 1
0 1 2

1

2 2
2 1

1

ν sin ν ν sin ν
φ ν ,ν

1 ζ ν ν ν ν
ζ

cos cos

� ½ �°' °°
� ¾� °

°�
' °¿

                   (133) 

 

� �

� �

2 2
1 2 1 2 1 2

0 1 2
1

2 2
1 2 1 2

1

ν ν sin ν ν ν sin ν
χ ν ,ν

1 ζ ν ν ν ν
ζ

cos cos

½�
 �°' °°

¾�
� °

°�
' °¿

 (134) 

 

� �
2 2

1 2 1 2 2 1 2 1
1 1 2

1

ν ν sin ν cos ν ν ν sin ν cos ν
χ ν ,ν

�
 

'
(135) 

 
Thus, the above-given components of bending of 
longitudinal girders will be: 
 
x Deflection of longitudinal girder at its mid-length 

(see formulas (7) and (46) 
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� �
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i

0
m 0

1 20
0

3 3

m 1 2i m j m
m = 1 m = 1

3 3
m im
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2

i 1 i 1

3 3
m i i m i m

w 0

ν ,νν P ν q 1 φ0
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l

  

 ½
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°ª º �  ¬ ¼ °
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¾ª º �¬ ¼ °
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 °
°¿

¦ ¦

¦
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 (136) 
 
x Bending moment in “ith” girder 

 

� �

� �

� �0

/ / / /
m0 0i

0 0 1 22

0 1 22
0

3

i m
m = 1

3
0
mi m

m = 1
3 3

i m
m = 1

x = 0

m

M E J w E J ν P 0

4= E J ν q χ ν ,ν
L

Q J4 ν σ χ ν ,ν
iL
l

½
   °

°
°°�  ¾
°
°
° �
°¿

¦

¦
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 (137) 

 
x Bending moment at the fixed end of “ith” girder 

 

� �

� �0

/ /
mL 0

2

0 1 1 22

1 1 22
0

3

i m
m = 1

3
0
mi m

m = 1
3 3

i m
m = 1

x =

m

LM E J ν P
2

4= E J ν q χ ν ,ν
L

Q J4 ν σ χ ν ,ν
iL
l

½§ ·  ¨ ¸ °© ¹ °
°°�  ¾
°
°
° �
°¿

¦

¦

¦

 (138) 

 
 
Based on Eqs. (5) and (7), one can find the reaction 
forces at crossing points of longitudinal and transverse 
girders when J0 = J, i.e., 
 

� � � � � �0
IV II

j

3
m mj m

m =1
a ν E J P x T P x R xª º�  ¬ ¼¦  (139) 

 
 
Taking into consideration Equality (9), the following 
formula for calculation of the reaction forces is derived: 
 

� � � �m

3
m mj j m

m =1
R x = a ν q k P xª º�¬ ¼¦  (140) 

 
Substituting in Eq. (140) the formula for Pm(0) given 
above, one can find the reaction force at the crossing 
point of longitudinal girders and the transverse girder 
located in the middle of the grillage. 
 

� � � �� �0
m 0

3
m m 1 2j j m

m =1
R 0 = a ν q k q 1 φ ν , νª º� �« »¬ ¼¦ (141) 

 

Using Eq. (46), one can derive the following formula for 
Rj(0): 

� � � �

� �

0
0

0
0

3
m m 1 2j j m

m =1
3 3

m m 1 2j m
m =1

R 0 = a ν k q φ ν , ν

Q ν k σ φ ν , ν
Ei

l

½
 °
°
¾
° °
¿

¦

¦
 (142) 

 
The values of � �0 1 2φ ν , ν , � �0 1 2χ ν , ν , and 

� �1 1 2χ ν , ν for freely supported girder and fixed end 

girder are given below: 
 
For freely supported girder: 

� � � �

� � � �
� �

� �

2

1 2

1

1 2

2 2
2 1 1

0 1 2 2 2
2 1

2 2
1 2 2
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ν ν ν ν

ν ν ν cos ν
χ ν ,ν

ν ν ν ν

χ ν ,ν 0
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cos cos
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cos cos

½�
 °

� °
°� ¾ °� °
° ¿

 (143) 

 
For girder with fixed end 
 

� �
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2

1 2 2

1 2

1 2 2

1 2 2

1 2 2

2 1 1
0 1 2
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1 2 1 2
0 1 2

2 1 1
2 2

1 2 1 2 1
1 1 2

2 1 1

ν ν ν sin ν
φ ν ,ν

ν ν ν ν cos ν sin ν

ν ν ν ν ν sin ν
χ ν ,ν

ν ν ν ν cos ν sin ν
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cos sin
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cos sin
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cos sin
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 °� °
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� °

°� ° 
� °¿

(144) 

 
When 2

mη  > 1 
 
The functions Pm(x) for x = 0 and ( )/ /

mP x  for x = 0 and x 
= L/2 in Eqs. (58), (60), (67), and (68) become equal to 
 

� � o
m m 1

2

1 1 ζ LP 0 q 1 b g
ζ 2

ª º§ ·� § · � �« »¨ ¸¨ ¸' © ¹« »© ¹¬ ¼
 (145) 

 

� � � � � �^

� � � �

/ /
m

0
m 1 12

2

4P q b f 0 a g 00
L

1 ζ L Lg f 0 f g 0
ζ 2 2

½ � � �°' °
¾

½� ª º§ · § · °� � ¾¨ ¸ ¨ ¸« » °© ¹ © ¹¬ ¼¿ ¿

             (146) 

 
 

where a1 and b1 are determined by Eq. (65) and       2'  - 
by formula (69). 
 

� � � �1 2 1 2
2 2

g 0 2 ν ν f 0 ν ν  �  (147) 
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/ /
m

0
m 1 12

2

4P q b f a g
2 22 L
L LL ª º§ · § ·§ ·  � �¨ ¸ ¨ ¸ ¨ ¸« »© ¹ ' © ¹ © ¹¬ ¼

 (148) 

 
Substituting in Eqs. (146) and (15) the values of a1, b1, 
g(L/2), and f(L/2) (see Eqs. (65) and (66)), one can 
obtain: 
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� ��
�
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2
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L 4 cosν sin νP q ν ν2 L Δ

chν shν
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        (150) 
 
The components of bending of longitudinal girders for 

2
mη > 1 are: 

 
x Deflection of longitudinal girder at mid-length (see 

formulas (7) and (46) 
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(151) 
 
 

x Bending Moment in “ith” girder 
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x Bending Moment at the fixed end of “ith” girder 
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x Reaction force 
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The values of � �1 1 2φ ν , ν , � �0 1 2θ ν , ν , and � �1 1 2θ ν , ν  for 

simply supported girder and a girder with fixed ends are: 
 
 
For simply supported girder: 
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(157) 
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For a girder with fixed ends: 
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 (158) 

 
 
The in-plane compression force T in the above-given 
formulas should be smaller than the Euler force TE for 
the grillage under consideration. The Euler force (see Eq. 
(169)) for a beam lying on an elastic foundation can be 
determined for different boundary conditions by using 
data from Table 1 (see also Appendix IV).  
 
When working with computers, it is more convenient to 
present Table 1 with equations. This can be done in the 
following way: 
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                                        (159) 

 
2

2 4

6 8

2 4

6 8

2 4

6 8

3

6

3

8

1.520 0.528ζ
θ

1 0.533ζ

12.543 4.347 ζ 0.981ζ
γ 10

27.654ζ 27.534ζ

1.186 0.746ζ 0.00507ζ
ε 10

5.516ζ 5.287 ζ

1.687 0.938ζ 0.792ζ
β 10

3.410ζ 3.875ζ

6.78
χ 10

�

�

�

�

�§ ·
 ¨ ¸�© ¹

§ ·� � �
 ¨ ¸¨ ¸� �© ¹

§ ·� � �
 ¨ ¸¨ ¸� �© ¹

§ ·� � �
 ¨ ¸¨ ¸� �© ¹

 
2 4

6 8

2 4
13

6 8

5 4.590ζ 0.191ζ

34.853ζ 33.266ζ

1.132 0.852ζ 0.208ζ
ψ 10

7.712ζ 7.169ζ
�

½
°
°
°
°
°
°
°
°
°°
¾
°
°
°
°§ ·� � � °¨ ¸¨ ¸ °� �© ¹ °

§ ·°� � � �
 ¨ ¸°¨ ¸� � °© ¹¿

         (160) 

 
The maximal error in calculating the parameter “u” by 
formulas (159) and (160) is between +4.0% and - 8.9%. 
These formulas provide the opportunity for calculating 
the parameter “u” for any value of P and ] with minor 
error which is an advantage relative to calculations using 
data in a table format. 

APPENDIX IV 
 
 
Buckling strength of a grillage under in-plane load 
alone 
 
The derived formulas in the paper allow for 
calculating the buckling strength of a grillage for any 
boundary conditions for the longitudinal and 
transverse girders. The boundary conditions for 
transverse girders are taken into consideration when 
calculating the coefficients of influence Jij and Ei. 
Formulas (72) and (73) can be used to calculate the 
coefficients Jij for freely supported or fixed ends 
transverse girders loaded by concentrated forces. The 
coefficients Ei. can be calculated by the corresponding 
formulas determining the deflection of girders under 
uniformly distributed load. When the coefficients of 
influence Jij and Ei are calculated, one can determine 
the maximal value of the parameter Om (using the 
determinant (16)) and the corresponding coefficient of 
rigidity of the elastic foundation. 
 
The determination of Euler force TE is related to 
integrating the differential equation (9) for q(x) = 0: 
 

� � � � � �IV I I
0 mm m mminkE J P T P P (x) 0x x� �   (161) 

 
For girders supported by absolutely rigid supports the 
condition K2 < 1 is fulfilled. This allows for presentation 
of the function Pm(x) in the following way: 
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/ /
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/ /
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C cos x C sin x

D D

D D
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¾
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 (162) 

 
where D1 and D2 are determined by Eq. (39). 
 
 
When both ends of the girders have the same elastic 
fixity, the boundary conditions are: 
 

� � � � � �
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/ / /
m m m

/ / /
m m m

1 ζWhen x 0 P 0 ; P L P0 0 0
ζ
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 (163) 
 
 
The parameter ] is related to the coefficient of pliability 
D as shown in Eq. (50).  
 
By substituting the function Pm(x) in conditions (163), 
one can obtain a system of linear homogeneous 
equations. The equality of its determinant to zero leads to 
a transcendent equation. Its minimal root determines the 
Euler force for the grillage. 
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A solution for simply supported girder (i.e., ] = 0) is 
given below: 
 
When ] = 0, the system of homogeneous equations has 
the following form: 
 

� � � �
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1 3

/ /
1 3

1 2

2 2
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Hence, 
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2 1 1 2sin L sin L 0D D D D�   (165) 

 
It follows that  

� �1 1sin L 0 ; L = j πD D                           (166) 

 
where j = integer 
 
 
By substituting the value of D1 in (166), one can obtain 
the following formula 
 

� �0

0

42 m2 min
2 4 2

k Lπ E J μT j ; μ
E JL π j

§ ·
 �  ¨ ¸¨ ¸

© ¹
 (167) 

 
The integer j that provides the minimal value of the Euler 
force TE can be calculated from the inequality 
 

� � � �2 22 2
4
μj j 1 j j 1
π

� d d �  (168) 

 
When girders’ ends are elastically fixed (i.e., ] ≠ 0), the 
magnitude of the in-plane compression force T can be 
determined with data for the parameter “u” in Table 1. 
Once the parameter “u” is calculated, one can determine 
the Euler force TE by the following equation: 
 

0
E

2

2
2 u E J

T
L

  (169) 

 
The Euler stress is 

2
E 0

E E 2

T 2u E J
σ or σ

f f L
                        (170) 

where f = longitudinal girder’s cross-sectional area 
 
Formula (170) can be used when the Euler stresses VE are 
smaller than the proportional limit. When VE is greater 
than the proportionality limit, one should take into 
consideration the effect of the deviation from the Hook’s 
law in order to more accurately determine the stresses 
that cause buckling of the grillage. (The buckling stress 
calculated considering the effect of deviation from 
Hook’s law is called critical buckling stress and is 
marked as Vcr).  

The effect of deviation from Hook’s law is taken into 
consideration by introducing the coefficient M by �which the 
modulus of elasticity is multiplied. This coefficient can be 
calculated with the formulas given in Lokshin et al (2013). 
When the ratio KE = VE/VY is known (VY is material yield 
stress), the ratio Kcr = Vcr/VY  can be  calculated by the 
formulas in Lokshin et al (2013) in the following way: 
 
 
When VY = 2400 kg/cm2 = 23.54 KN/cm2 

Y

Y

Y

E

cr
cr

E

σ0.044 1.437σ σ
η

σσ 1 1.043
σ

� �
  

�
                            (171) 

 
 

When VY = 3000 kg/cm2 = 29.42 KN/cm2 

Y

Y

Y

E

cr
cr

E

σ0.081 1.614σ σ
η

σσ 1 0.945
σ

� �
  

�
                           (172) 

 
 

When VY = 4000 kg/cm2 = 39.23 KN/cm2 

Y

Y

Y

E

cr
cr

E

σ0.059 1.474σ σ
η

σσ 1 0.853
σ

� �
  

�
                            (173) 

 
 

As an example, the critical buckling stress is calculated 
for a grillage with the following dimensions: 
 
Length L = 14 [m] 
Width l = 3.5 [m] 
Spacing of transverse girders a = 2.0 [m] 
Number of transverse girders n = 6  
Moment of inertia of transverse girders i0 = 960 [cm4] 
Spacing of longitudinals b = 0.50 [m] 
Moment of inertia of longitudinals J0 = 600 [cm4],  
Cross-sectional area of longitudinals f = 35.5 [cm2] 
Longitudinals’ ends are fixed at their supports [] = 1]  
Transverses are freely supported at their ends [] = 0]  
Modulus of elasticity E = 20600 [KN/cm2] 
Yield stress VY = 29.42 [KN/cm2] 
 
 
x Determine the minimal value of the coefficient of 

rigidity of the elastic foundation km . It follows from 
Appendix I that the maximal value of the parameter 
O1 = 7.186E-02. Hence, the minimal value of the 
coefficient km can be calculated by  Eq. (13) 
 

0
m, min 3

1

E i
k

a λl
 = 23.06E-04 [KN/cm2]      (174)  
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x Calculate 
4 4

0

0 0

m, min
3

1

k L i L
μ

E J J a λl
  = 9974.95 (see 

Eq.(167)) 
 

x From Table 1 for P = 9974.95 and ] = 1 one can find 
u = 10.80 

x Calculate the Euler stress 0
E

2

2
2u E J

σ
f L

 = 41.46 

[KN/cm2] 
x Calculate KE = VE / VY = 1.409 
x Calculate Kc r = 0.941 (see Eq. (170)) 
x Calculate the coefficient M� �Kc r���K(� ������� 
x Calculate the critical buckling stress Vcr = 27.68 

[KN/cm2] 
 

 
Comparison between the calculated grillage deflections 
derived by the proposed method and FEM is given in 
Appendix V. 
 
 
APPENDIX V  
 
Comparison between the proposed theory and FEA 
simulations based on calculated grillage’s deflection 
 
The results presented here have been calculated for the 
grillage with the following dimensions: 
 

Length L = 18.15 [m] 
Width l = 17.85 [m] 
Spacing of transverse girders a = 1.65 [m] 
Number of transverse girders n = 10 
Moment of inertia of transverse girders i0 = 4,795,400 
[cm4] 

Spacing of longitudinals b = 2.55 [m] 
Number of longitudinals = 6 
Moment of inertia of longitudinals J0 = 7,787,349 [cm4] 
Transverses and longitudinals are freely supported at 
their ends. 
Modulus of elasticity E = 20600 [kN/cm2] 
Lateral load q = 9 [t/m2] 
Longitudinal compressive load per one longitudinal  
T = 2.5 106 [N] 
 
FEA simulations have been done using the software 
package SolidWorks. The FEA model is shown in 
Figure 5. Meshing was chosen based on convergence 
of results and was equal to 210,000. The results for 
deflection of the stringers Nos. 1, 2, and 3 are shown 
in Figure 6, Figure 7, and Figure 8, respectively, and 
also in Table 2. It can be seen that the difference 
between the proposed solution and FEA simulation is 
between 4% and 10%, with the FEA maximal 
deflections being smaller. The probable cause of the 
discrepancy is a 3-D effect of beam joints that is not 
taken into account in the proposed model. Agreement 
could be considered reasonable within engineering 
accuracy. Also, it is worth noting that the proposed 
closed-form solution provides a conservative estimate. 
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Figure 1  Components of a grillage (gross panel) 
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Figure 2   Coordinate system used in the calculations 
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Figure 3   Drawing used in calculations of the coefficients of influence Jij 
 
 

 
Figure 4   Numeration of longitudinal girders 

 
 
 
 

Table 1   Values of the parameter u as a function of P and ] 
P� ] = 0 ] = 0.2 ] = 0.4 ] = 0.6 ] = 0.8 ] = 1.0 

0.1 2.2226 2.4271 2.6980 3.0762 3.6358 4.4433 
0.3 2.2249 2.4292 2.6998 3.0778 3.6371 4.4442 
1 2.2328 2.4365 2.7064 3.0835 3.6416 4.4472 
3 2.2554 2.4572 2.7249 3.0996 3.6546 4.4557 

10 2.3327 2.5283 2.7890 3.1553 3.6997 4.4854 
30 2.5406 2.7212 2.9644 3.3093 3.8253 4.5690 
100 3.1624 3.3088 3.5096 3.7987 4.2335 4.8480 
300 4.4870 4.5902 4.7311 4.9293 5.2077 5.5492 

1000 5.6925 5.7761 5.8988 6.0944 6.4439 7.2591 
3000 7.5983 7.6603 7.7484 7.8808 8.0876 8.3819 

10000 10.0351 10.0826 10.1522 10.2629 10.4577 10.8117 
30000 13.1888 13.2250 13.2784 13.3641 13.5180 13.8127 
100000 17.8431 17.8700 17.9099 17.9752 18.0982 18.2884 
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Table 2  Deflections of longitudinal girders (stringers) 

 Deflection [cm] at dimensionless abscissa x  

stringer Method 
used 

x [-] = 
-1 

x [-] = 
- 0.8 

x [-] = 
- 0.6 

x [-] = 
- 0.4 

x [-] = 
�- 0.2 

x [-] = 
 0 

1st  
stringer 

Proposed 
theory 0 0.384 0.724 0.988 1.154 1.211 

FEA 0 0.396 0.704 0.924 1.056 1.100 
2nd 

stringer 
Proposed 

theory 0 0.312 0.588 0.800 0.934 0.979 

FEA 0 0.331 0.589 0.773 0.883 0.920 
3rd  

stringer 
Proposed 

theory 0 0.177 0.333 0.451 0.525 0.551 

FEA 0 0.191 0.339 0.445 0.509 0.530 

Note: The dimensionless abscissa x  is calculated as 2 xx
l

  (see Figure 2) 

 

 
Figure 5   FEA model used in the calculations 
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Figure 6   Deflection of the first stringer vs. coordinate x. 
Solid line – proposed model; Solid dots – FEA. 

 

Figure 7    Deflection of the second stringer vs. coordinate x.  
Solid line – proposed model; Solid dots – FEA. 
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Figure 8   Deflection of the third stringer vs. coordinate x.  

Solid line – proposed model; Solid dots – FEA. 


