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SUMMARY 
 
An approximate method for calculation in probabilistic terms of the buckling strength of a grillage under unidirectional 
in-plane compression is proposed. The geometric properties of longitudinals and transverses and the mechanical 
properties (yield stress and modulus of elasticity) of the material they are built from are treated as random parameters 
that may change over ship’s service life. The cumulative distribution function of the grillage’s critical buckling strength 
is calculated by using an analytical formula for multitude sets of input parameters while all of them having the same 
level of certainty. The assumption is that the critical buckling strength has the same (or very similar) level of certainty as 
that of the input parameters. 
 
The accuracy of the proposed approximate method is relatively high (the maximal error is around 2%). It is 
recommended for use when specialized computer programs for application of Monte Carlo simulation method are not 
available. The method does not require a complicated specialized computer program and can be run on EXCEL 
computer program.  
 
1.  INTRODUCTION 
 
The reliability of ship’s hull structure depends on many 
parameters the majority of them being of a random 
nature. Each of these parameters has its own probabilistic 
distribution. So, the question may arise as to what is the 
probabilistic distribution of the end result of the 
calculations. The end result might be the reliability 
determined by several failure modes (e.g., buckling, 
ultimate strength, fatigue strength, etc.). If the end result 
can be expressed in an analytical closed-form format, the 
Monte Carlo simulation method can be used to calculate 
the probabilistic distribution of the end result 
corresponding to the applied failure criterion. The 
calculations require availability of a specialized 
computer program which is not always the case. In such 
a situation, an approximate method for probabilistic 
presentation of the end result is proposed here. It is 
applied to buckling strength calculations of grillages 
loaded by in-plane compression.  
 
Many works have been published on buckling (or 
ultimate) strength estimation of grillages (gross panels). 
A very comprehensive review of these publications was 
done in [3]. To avoid repetition, one should only note 
that all publications treat the strength of grillages in a 
deterministic format. Its probabilistic treatment can be 
done by applying the Monte Carlo simulation method 
provided an analytical procedure for calculation of the 
buckling (or ultimate) strength of grillages exists. The 
method itself is well established and used in many 
industries. However, there are still cases when the 
engineer does not have a computer program for its 
application. Therefore, an approximate simple method 
was developed for such situations.  
 

The method is based on the idea defined in [6] the very 
essence of which is: If all input parameters of the 
calculations have exactly the same probability of 
exceedance (POE), the result of the calculations will 
have POE very close to that of the input parameters. This 
approximate method was applied in [2] for calculation of 
the buckling strength of a grillage in probabilistic terms, 
considering the effect of corrosion over ship’s service 
life. Here, comparison between the results obtained by 
Monte Carlo simulation and the proposed approximate 
method is given in order to clarify the error occurred in 
the calculations by the approximate method.  
 
2. CALCULATION OF GRILLAGES’ 

BUCKLING STRENGTH UNDER 
COMPRESSION IN DETERMINISTIC 
FORMAT 

 
Detail explanation of the analytical method developed for 
assessment of the buckling strength of different types of 
grillages (in a deterministic format) can be found in [2]. 
Here, the calculations in a probabilistic format are 
applied to grillage configuration shown in Figure 1. The 
unknown critical buckling stress of each longitudinal can 
be calculated by the quadratic equation derived in [2]:  
 

2
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where: 
 
σcr = critical buckling stress of each longitudinal 
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AM, BM, CM = coefficients depending on the yield stress. 
In the example, they refer to shipbuilding high tensile 
steel with yield stress of 39.2 KN/cm2. The data are taken 
from [2]. 
f = longitudinals’ cross sectional area including the 

attached plate. The width of the attached plate is 
determined following the Classification Societies 
Rules (e.g. [1]). Buckling of attached plate and 
flanges is not considered;  

a = spacing of transverses;  
E = modulus of elasticity;  
i = moment of inertia of longitudinals; 
n = number of transverses;  
b = spacing of longitudinals;  
L = length of transverses;     
J = moment of inertia of transverses 
j = number of half-waves when deck longitudinals buckle 
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D   coefficient of pliability at transverses’ ends (10) 

l1 = length of side frame 
J1 = moment of inertia of side frame including attached 

plate 
δ ≈ 0.29 (coefficient depending on the boundary 

conditions at transverses’ ends). Its upper boundary 
is 1/3 and the lower one –1/4. Here, the average 
value of 0.29 is used in the calculations. 

 
Applying an iterative procedure, one should solve Eq. (1) 
for each Aj (i.e. for each j which represents the number of 
half-waves when deck longitudinals buckle) and find out 
the minimal root with physical meaning, i.e. 
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Based on authors’ experience, one could recommend the 
upper limit of j as j = 6. 
 
To obtain the critical buckling force, one should multiply 
critical buckling stress of one longitudinal, σcr, by the 
cross section area of all longitudinals. 

Eq.(1) was derived using the linear stability theory of a 
grillage consisting of plating, longitudinal and transverse 
beams. According to the applied beam theory, the plating 
is replaced with equivalent plates attached to the 
longitudinals and transverse beams. This allowed for 
application of the beam theory to the entire grillage 
structure. Also, a correction factor was introduced to 
account for deviation from Hooke’s law due to plasticity. 
Thus, it became possible to calculate the critical buckling 
stresses when the Euler theoretical buckling stresses are 
known. The subject was investigated in [2] where the 
relationship between the material’s yield stress, critical 
buckling stress and Euler theoretical buckling stress was 
given based on experimental data for different 
shipbuilding steel. 
 
Results obtained from the beam theory (without the 
plasticity correction) have been verified by applying 
FEM simulation of a 3-D grillage elastic structure. The 
focus of the study was to find Euler theoretical buckling 
stress and critical moment of inertia of the deck 
transverses for a particular configuration of a deck 
grillage (Critical moment of inertia is a value above 
which grillage’s buckling stress does not increase.) The 
FEM model has been assumed as linear in terms of 
material properties, geometry and loads. Systematic FEM 
simulations showed that in situations when the moment 
of inertia of transverses was lower than the critical value 
(which is desirable in grillage design) grillages buckled 
in “overall” mode, consistent with Euler instability 
modes typical for plates supported by beams. 
 
3. INPUT PARAMETERS 
 
The input parameters used here are very close to those 
used in [2]. The location of each girder and its length are 
treated as deterministic values. The geometric properties 
of longitudinals and transverses and the mechanical 
properties of the steel are treated as random variables 
which follow Gaussian distribution. In the example, the 
calculations are performed for as-built and 20 year old 
sample ship. 
 
Parameters treated as random variables with mean values 
and standard deviations of Gaussian distribution: 
 
For as-built-ship 

 
Mean  St. deviation 

J      48807 cm4  640.6 cm4 
i       598 cm4  8.7 cm4 
σy    41.50 KN/cm2 2.41 KN/cm2 
E      20600 KN/cm2 1235 KN/cm2 
f      35.4 cm2  0.47 cm2 
J1      2700 cm4  39.3 cm4 

 
For year 20 

 
Mean  St. deviation 

J       41401 cm4  1905.6 cm4 
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i        511 cm4  18.3 cm4 
σy     39.425 KN/cm2 2.29 KN/cm2 
E      19570 KN/cm2 1235 KN/cm2 
f       30.0 cm2  1.38 cm2 
J1      2308 cm4  82.7 cm4 
 
Parameters treated as deterministic values (see 
Figure 1): 
   
L = 1050 cm  a = 215 cm 
l = 1505 cm  b = 35 cm 
l1 = 250 cm  n = 6 
AM = - 0.059   BM = 1.474 
CM = 0.853 
 
 
The probability density functions (PDF) of the input 
parameters treated as random variables are shown in 
Figure 2 – Figure 7.  
 
Data for the reduction due to corrosion of the yield and 
tensile stress over ship structures’ life are given in [4]. 
Depending on the type of steel, the yield stress could be 
reduced by 16 - 40%. 
 
Data for the reduction due to corrosion of material’s 
modulus of elasticity over ship structure’s life are given 
in [5]. These data show reduction of the modulus of 
elasticity in the order of 40 – 50% (relative to nominal 
values). 
 
In the example, 5% reduction of the modulus of elasticity 
and the yield stress is envisaged as the first attempt to 
evaluate the sensitivity of the critical buckling stress to 
changes of the input data.  
 
 
4. CALCULATIONS OF THE 

PROBABILISTIC DISTRIBUTIONS OF 
THE CRITICAL BUCKLING STRESS OF 
ONE LONGITUDINAL BY THE 
APPROAXIMATE METHOD 

 
 
The critical buckling stress of each longitudinal was 
calculated by Eq. (11) using input parameters with 
multitude of levels of certainty (LOC) such as, e.g., 0.01, 
0.05, 0.10, 0.20, etc. Thus, the cumulative distribution 
function (CDF) of σcr was built. Numerical results of the 
calculations are given in Table 1, Table 2 for j = 3 which 
determines the root of Eq. (1) with physical meaning 
(The results refer to 20 year old sample ship).  
 
Differentiating the so derived CDF, one can calculate the 
corresponding PDF of σcr. 
 
To evaluate the error resulting from application of the 
proposed approximate method, parallel calculations were 
performed by Monte Carlo simulation method. The 
results are illustrated in Figure 8. One can observe the 

fact that the PDFs and CDFs derived by the two methods 
are very close. To be more precise in evaluating the error 
implemented in the proposed approximate method, Table 
3 provides data for the error all over the CDF of σcr. The 
maximal error for as-built ship is 1.13% and 2.27% for 
20 year old sample ship. Such accuracy is acceptable for 
practical application of the proposed approximate 
method. Nevertheless, caution is required because this 
relatively high accuracy is typical only for cases when 
any change of any random parameter causes change of 
the final result in the same direction. Naturally, one 
should have an analytical procedure for calculation of the 
targeted result (e.g., buckling stress as in this example) 
and use it to perform sensitivity analysis before applying 
the proposed approximate method. Fortunately, there are 
many engineering problems that are very similar to the 
problem under consideration here which expands the area 
of its application beyond the problem under 
consideration here. 
 
Once the accuracy of the proposed approximate method 
was confirmed, the PDFs and CDFs of σcr were built for 
as-built ship and 20 year old sample ship (see Figure 9). 
These functions allows for calculating the probability of 
exceedance or non-exceedance (PONE) of any given 
value of σcr. As an example, the probability of σcr being 
smaller than 95% of the nominal value of σcr was 
calculated. It was found that the probability of σcr being 
smaller than 95% of its nominal value (i.e. for the design 
or as-built value) calculated by the approximate method 
is 9.0% and by the Monte Carlo simulation – 11.9%. 
 
The so derived CDFs of σcr can be of help in case when 
the input parameters in the calculations have different 
LOC. Thus, the question arises as to what is the LOC of 
the final result? Such a situation is quite typical in 
engineering calculations not only in the case under 
consideration here. Figure 10 illustrates how the LOC in 
such situations could be determined. In the example, the 
crossing point of the two arrows (one for the calculated 
Pcr and the other one – for given year of the ship’s 
service life) determines the corresponding LOC of the 
calculated Pcr.  
 
 
5. CONCLUSION 
 
An approximate method for calculation in probabilistic 
terms of the buckling strength of a grillage under 
unidirectional in-plane compression is proposed. The 
geometric properties of longitudinals and transverses and 
the mechanical properties (yield stress and modulus of 
elasticity) of the material they are built from are treated as 
random parameters. Any change of each of them causes 
change of grillage’s buckling in the same direction. Under 
these conditions, the accuracy of the proposed approximate 
method is relatively high, i.e., the maximal error is around 
2%. It can be recommended for use when specialized 
computer programs for application of the Monte Carlo 
simulation method are not available. The method does not 
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require a complicated specialized computer program and 
can be run on EXCEL computer program.  
 
The basic idea of the proposed approximate method is 
building the CDF of the final result assuming that the level 
of its certainty is the same (or very similar) to that of the 
input parameters while all of them have the same LOC.  
 
It is also concluded that the method could be applied for 
solving other engineering problems if any change of any 
input parameter causes change in the same direction of 
the final result. Major requirement for its application is 
the availability of an analytical method for calculation of 
the corresponding physical characteristic.  
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Figure 1: Grillage configuration used in the calculations 
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Figure 2: Probability Density Function of J (moment of inertia of transverses) 
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Figure 3: Probability Density Function of i (moment of inertia of longitudinals) 
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Figure 4: Probability Density Function of σy (yield stress) 
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Figure 5: Probability Density Function of E (modulus of elasticity) 
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Figure 6: Probability Density Function of f (cross sectional area of a longitudinal) 
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Figure 7: Probability Density Function of J1 (moment of inertia of the side frame) 
 

 
 
 
 
 
Table 1: Numerical results for calculated CDF and PDF of σcr (for CDF = 0.01 – 0.50) 
 

Parameter Dimensions 
CDF of σcr [ - ] 
0.01 0.05 0.10 0.20 0.30 0.40 0.50 

J [cm4] 36967.9 38266.6 38958.9 39797.2 40401.7 40918.2 41401.0 

i [cm4] 468.4 480.9 487.5 495.6 501.4 506.4 511.0 

σ y [KN/cm2] 32.55 34.56 35.64 36.94 37.87 38.68 39.43 

E [KN/cm2] 16383 17317 17814 18417 18852 19223 19570 

f [cm2] 26.8 27.7 28.2 28.8 29.3 29.7 30.0 

J1 [cm4] 2115.6 2172.0 2202.0 2238.4 2264.6 2287.0 2308.0 

α 1/(cm.KN) 2.09E-06 1.93E-06 1.85E-06 1.76E-06 1.70E-06 1.65E-06 1.61E-06 
ζ [ - ] 0.4532 0.4512 0.4501 0.4489 0.4481 0.4474 0.4467 

(μ /π )4 [ - ] 1.3108 1.3083 1.3070 1.3055 1.3044 1.3035 1.3027 

∆ [ - ] 0.0296 0.0298 0.0299 0.0300 0.0301 0.0301 0.0302 

A j [ - ] 0.1837 0.1837 0.1837 0.1837 0.1837 0.1837 0.1837 

ε 104cm2/KN 0.0163 0.0156 0.0152 0.0148 0.0145 0.0143 0.0141 

r2 [KN/cm2]2 1.8501 2.0995 2.2392 2.4147 2.5456 2.6603 2.7699 

r1 [KN/cm2] 2.3942 2.5464 2.6276 2.7260 2.7971 2.8578 2.9146 

r0 [ - ] -0.1265 -0.1278 -0.1284 -0.1292 -0.1297 -0.1301 -0.1305 

σ c r [KN/cm2] 19.67 20.72 21.28 21.96 22.44 22.86 23.24 

PDF of σcr [cm2 / KN] 0.016055 0.065472 0.113437 0.183566 0.229342 0.255517 0.264050 
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Table 2: Numerical results for calculated CDF and PDF of σcr (for CDF = 0.5 – 1.00) 
 

Parameter Dimensions 
CDF [ - ] 
0.50 0.60 0.70 0.80 0.90 0.95 0.99 

J [cm4] 41401.0 41883.8 42400.3 43004.8 43843.1 44535.4 45834.1 

i [cm4] 511.0 515.6 520.6 526.4 534.5 541.1 553.6 

σ y [KN/cm2] 39.43 40.17 40.98 41.91 43.21 44.29 46.30 

E [KN/cm2] 19570 19917 20288 20723 21326 21823 22757 

f [cm2] 30.0 30.3 30.7 31.2 31.8 32.3 33.2 

J1 [cm4] 2308.0 2329.0 2351.4 2377.6 2414.0 2444.0 2500.4 

α 1/(cm.KN) 1.61E-06 1.56E-06 1.52E-06 1.47E-06 1.41E-06 1.36E-06 1.27E-06 
ζ [ - ] 0.4467 0.4461 0.4454 0.4447 0.4436 0.4428 0.4414 

(μ /π )4 [ - ] 1.3027 1.3020 1.3011 1.3002 1.2990 1.2980 1.2962 

∆ [ - ] 0.0302 0.0303 0.0303 0.0304 0.0305 0.0306 0.0307 

A j [ - ] 0.1837 0.1837 0.1837 0.1837 0.1837 0.1837 0.1837 

ε 104cm2/KN 0.0141 0.0138 0.0136 0.0134 0.0131 0.0128 0.0123 

r2 [KN/cm2]2 2.7699 2.8818 3.0042 3.1507 3.3599 3.5380 3.8851 

r1 [KN/cm2] 2.9146 2.9715 3.0323 3.1036 3.2025 3.2843 3.4378 

r0 [ - ] -0.1305 -0.1309 -0.1313 -0.1318 -0.1324 -0.1329 -0.1338 

σ c r [KN/cm2] 23.24 23.63 24.04 24.53 25.20 25.75 26.78 

PDF of σcr [cm2 / KN] 0.264050 0.248365 0.218656 0.168701 0.090652 0.062294 0.013749 
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Figure 8: Probability Density and Cumulative Distribution Functions of critical buckling stress σcr of one longitudinal 
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Table 3: Error resulting from application of the approximate method for calculation of the CDF of σcr against results 
obtained by the Monte Carlo simulation method 
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Figure 9: Probability Density and Cumulative Distribution Functions of σcr for as-built and 20 year old ship 

 
 

  20 year old ship   as-built ship  

CDF of σcr 
Monte 
Carlo  Approximation error [%] Monte 

Carlo  Approximation error [%] 

0.01 19.29 19.73 2.27 21.35 20.96 -1.82 
0.05 20.44 20.76 1.58 22.25 21.96 -1.29 
0.10 21.05 21.31 1.24 22.72 22.49 -1.02 
0.20 21.79 21.97 0.86 23.30 23.13 -0.71 
0.30 22.32 22.45 0.59 23.71 23.59 -0.50 
0.40 22.77 22.86 0.38 24.07 23.99 -0.32 
0.50 23.20 23.24 0.19 24.40 24.36 -0.16 
0.60 23.63 23.63 0.00 24.73 24.73 -0.01 
0.70 24.08 24.04 -0.19 25.09 25.13 0.15 
0.80 24.61 24.52 -0.40 25.50 25.59 0.34 
0.90 25.35 25.18 -0.68 26.08 26.23 0.58 
0.95 25.96 25.73 -0.90 26.55 26.76 0.78 
0.99 27.11 26.76 -1.29 27.45 27.76 1.13 
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Figure 10: Application of the proposed approximate method for calculation of the level of certainty (LOC) of the final 
result when the input parameters have different LOC 


