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SUMMARY 
 
Due to the novel hull form design, at present no standard series or full-scale data is publicly available to predict Tri-
SWACH resistance during the preliminary ship design process. This work investigates the viability of using an Artificial 
Neural Network (ANN) to quickly predict total resistance for preliminary Tri-SWACH design. 
 
An ANN was trained using total resistance experimental data obtained from model tests, which varied side hull 
arrangements. The results highlight strong correlation for model resistance prediction. A Tri-SWACH case study was 
then developed which had side hull geometric properties different to any previously used to train the ANN. The results, 
validated against CFD predictions, mimicked the resistance pattern generated by other model experimental data, 
providing confidence in the ANN’s ability to function as a resistance prediction tool. 
 
This work demonstrates the viability of ANN to assess Tri-SWACH resistance as part of a preliminary design process. 
These results suggest that ANNs can be effective tools for assessing performance given relevant training data.  
 
NOMENCLATURE 
 

CAA Air or wind resistance coefficient 
CAP Appendage resistance coefficient 
ANN Artificial neural network 
CF Frictional resistance coefficient of a body 

CF0 
Frictional resistance coefficient of a 
corresponding plate 

Fr Froude number 

CA Incremental resistance coefficient for model 
ship correlation 

ν Kinematic viscosity (Nm/s2) 
XCB Longitudinal centre of buoyancy (m) 
MAE Mean absolute error 
MSE Mean square error 
b Neuron bias 
p Neuron input parameter 
a Neuron output parameter 
w Neuron weight 
CR Residuary resistance coefficient 
ΔC Resistance interference effects coefficient 
Re Reynolds number 
RMSE Root mean squared error 
RTM Total model resistance (N) 
CT Total resistance coefficient 
Tri-
SWACH 

Trimaran-Small Waterplane Area Centre 
Hull 

CV Viscous resistance coefficient 
CW Wave-making resistance coefficient 

 
1. INTRODUCTION 
 
1.1 BACKGROUND 
 
Hull resistance calculations for Trimaran-Small 
Waterplane Area Centre Hull (Tri-SWACH) hull forms 
require a novel approach due to a lack of full-scale ship 

data and standard series data sets. Artificial Neural 
Networks (ANNs) have been previously used in a wide 
variety of naval architectural applications generating very 
positive results [1]. However, the complex wave 
interactions and interference effects exhibited by multi-
hulled vessels pose a challenge for all prediction methods. 
 
Previous work has been conducted into ANNs’ applicability 
as prediction tools for multi-hull resistance. Of specific 
interest to this project, ANNs were developed and shown to 
provide a successful alternative to more traditional statistical 
regression models for both catamaran [2] and trimaran [3] 
hull forms. These two reports provide fidelity in the ANN’s 
ability to successfully map the complex resistance patterns 
associated with multi-hulled vessels. 
 
1.2 Tri-SWACH HULLFORMS 
 
The Tri-SWACH combines the concepts of a trimaran and 
Small Waterplane Area Twin Hull (SWATH) hull forms. 
Tri-SWACH hull forms have slender side hulls outboard a 
single small waterplane centre hull. The side hulls provide 
stability while the centre hull has a minimal water plane 
area to reduce wave excitation and hence motions. 
Compared to a similar displacement monohull the Tri-
SWACH hull form has increased wetted area (and hence 
frictional resistance) however the very slender waterplane 
significantly reduces residuary resistance. The Tri-
SWACH allows the designer to maximise deck space and 
enhance seakeeping performance while minimizing any 
negative resistive effects. Figure 1 highlights the main 
features of a Tri-SWACH hull form. 
 
While few examples have been built, significant interest 
in the Tri-SWACH hull form currently exists for specific 
niche roles. The hull form has been identified as a 
promising alternative for the offshore wind turbine 
industry due to the potential seakeeping benefits. 
Offshore wind farm efficiencies are decreased by turbine 
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downtime due to failure or maintenance. Therefore the 
importance of the accessibility for personnel is 
significant. Ship-to-turbine personnel transfer operations 
pose significant risk to maintenance staff; reductions to 
relative motions between the turbine platform and the 
support vessel are highly desirable. However this must be 
balanced against vessel deployment speed and range. 
Austal has developed a line of offshore wind turbine 
support vessels, the Wind Express Tri-SWATH series 
[4], and the Norwegian shipbuilder Fjellstrand has 
developed a similar concept, the Wind Server series, 
which again are wind farm support vessels [5].  
 
 

 
 

Figure 1 Example of a Tri-SWACH hull with common 
nomenclature 

 

 
 

(a) Austal Wind Express Series Tri-SWATH [4] 
 

 
 

(b) Fjellstrand’s Wind Server Series Tri-SWACH [5] 
 
Figure 2 Tri-SWACH Based Offshore wind turbine/farm 

support vessel 
 

The advantages afforded by the Tri-SWACH design may 
also represent an alternative for some naval and 
commercial applications. Reduced motions and 
resistance could benefit the ferry and cruise industry by 
offering more comfortable journeys and reduced fuel 
costs. The gains in upper deck space, reduced resistance 
and increased seakeeping performance could improve 

profit margins for commercial companies by cutting fuel 
costs while expanding payload size. Military applications 
would gain from the increased upper deck space and 
enhanced seakeeping performance by broadening the 
operational envelopes for small boat, helicopter and 
unmanned aerial vehicle (UAV) operations. 
 
1.3 ACCESS PROGRAMME EXPERIMENTAL 

DATA 
 
The Atlantic Centre for the Innovative Design and Control 
of Small Ships (ACCeSS) has an ongoing research 
programme exploring Tri-SWACH performance and 
design. ACCeSS was founded in 2002 and is focused on 
establishing an environment where engineering disciplines 
associated with hull design and ship automation can be 
brought together within the context of the total ship system 
architecture. A recent joint programme (involving 
University College London (UCL), the Stevens Institute of 
Technology (SIT), the Webb Institute, and the United 
States Naval Academy (USNA)) has conducted a series of 
Tri-SWACH model tests to investigate Tri-SWACH 
resistance and the effect of various side hull 
configurations. This built on work previously conducted at 
Webb Institute [6] on the resistance effects of side hull 
locations for trimaran hull forms.  
 
The Tri-SWACH hull resistance experimental data was 
obtained through various model towing tank tests 
conducted across the ACCeSS consortium. The 
experimental data was obtained by testing a single model 
built at Webb Institute, shown in Figure 3. The model’s 
key characteristics are listed in Table 1. 
  

 
Figure 3 Towing tank Tri-SWACH model used to collect 

experimental model resistance data [7] 
 
 

Table 1 Tri-SWACH model characteristics [7] 
 Centre Hull Side Hull 
Length 2.134 m 0.613 m 
Beam (Waterline) 0.064 m 0.031 m 
Draught 0.171 m 0.057 m 
Displacement 0.391 m3 0.012 m3 
Wetted Surface Area 0.577 m2 0.058 m2 
LCB 1.014 m 0.306 m 

 
 
The experimental series investigated changes to side 
hull locations and orientation. All three institutions used 
an identical experimental method to conduct tank tests 
on the Tri-SWACH model [8]. Table 2 indicates the 
side hull configurations tested and Figure 4 shows the 
side hull location relative to the forward perpendicular 
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and centreline of the central hull. These configurations 
are denoted by the sidehull’s longitudinal and lateral 
locations, e.g. “fwd-outboard”. The USNA also 
performed tests using three different side hull splay 
angles (canted the side hulls outwards at angles of 0°, 
0.5° and 1.5° from the centreline). The experiments 
resulted in a data set of 507 distinct configurations and 
speeds that could be employed for ANN training, 
validation, and testing. 

Figure 5 illustrates experimental results for the mid 
inboard Tri-SWACH configuration as indicated in Figure 
4. The data points indicate experimental results obtained 
from model tests at USNA, SIT and Webb. The lines 
indicate CFD results for an identical geometry obtained 
from two numerical resistance prediction codes: Michlet 
[9], which employs thin ship theory; and AEGIR [10], a 
higher order potential flow theory code. The results show 
distinctive humps arising from the interaction of the main 

 

Table 2 Test matrix for ACCeSS programme towing tank tests [8] 
 

Lateral Position Inboard Mid Outboard 
Longitudinal Position Fwd Mid Aft Fwd Mid Aft Fwd Mid Aft 
Webb Institute x x x x x x x x x 
SIT  x  x  x  x  
USNA  x    x    

 

 
Figure 4 Tri-SWACH model side hull locations for towing tank tests 

 
Figure 5 Comparison of experimental data to computational fluid dynamics simulation performed by the ACCeSS 

consortium [8] 
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hull and side hull wave systems at different vessel 
speeds. These were present in all tested model 
configurations, however the magnitude and speed at 
which they occurred differed as the side hull arrangement 
was changed. With regard to the CFD code results, 
AEGIR predictions are close to experimental data while 
the Michlet values demonstrate a slight under prediction; 
in particular, the numerical codes seem to under-predict 
performance in the  “hump region” (corresponding to 
Froude numbers of 0.25-0.30) and also appear to 
incorrectly identify the Froude number corresponding to 
the hump. Again, similar observations were made for all 
tested model configurations. 
 
 
1.4 ARTIFICIAL NEURAL NETWORKS 
 
ANN technology provides an appealing alternative to 
traditional modelling techniques for complex, non-linear 
relationships. They are in essence a sophisticated 
mapping tool that develops a relationship between input 
parameters and target output values. Figure 6 shows two 
indicative neural networks.  
 

 
(a) One layer network 

 
(b) Two layer network 

 
Figure 6 Examples of basic neural network topology [11] 
 
Neurons are connected together in several layers, 
interconnected by inputs and outputs. The output of the 
overall ANN is computed from the collective outputs of 
each individual neuron on the many layers. Therefore, 
the power of an ANN comes from its collective 
behaviour as a network of interconnected neurons.  
 
An individual neuron’s output is a function of the sum of 
the neuron’s inputs, p1,2,3…R , multiplied by weighting, 
w1,2,3…R, plus a bias value, b. A transfer function, f, 
converts this into the neuron’s output, a  [12]. The basic 
mathematical relationship established within a neuron is 
of the form as illustrated in Figure 7: 

ܽ ൌ ݂ሺݓଵଵ  ଶଶݓ  ଷଷݓ  ⋯ ோோݓ  ܾሻ 
 

 
Figure 7 Schematic diagram of an artificial neuron [12] 

 
The transfer function, or activation function, controls the 
amplitude of a neuron’s output. Typically, the output is 
either between the range of 0 to 1 or -1 to 1. Commonly 
used activation functions are shown in Figure 8. 

 

(a) Hard-Limit transfer 
function 

(b) Symmetric hard-limit 
transfer function 

(c) Tan-Sigmoid transfer 
function 

(d) Log-Sigmoid transfer 
function 

 
(e) Linear transfer function 

 

Figure 8 Common activation functions used in neural 
networks [15] 

 
The number of hidden layers and number of neurons per 
layer are governed by the complexity of the non-linear 
relationship that is being modelled; the more complex the 
relationship, typically, the more layers and more neurons 
required. However, it is prudent to avoid over-complex 
ANNs because they have a tendency to “overfit” the 
data, i.e. rather than acquire the relationship between 
input and target values, the ANN “memorizes” the data, 
and its performance rapidly decreases when introduced to 
new test data. The activation function has little effect on 
the performance of the ANN [12]. 
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1.5 LEARNING AND GENERALIZATION 
 
Arguably, the most remarkable attribute of an ANN is its 
ability to learn. Similar to the metabolic change in 
biological synapses within the brain, a learning process is 
applied to the neurons within an ANN, allowing it to 
adapt and “learn” through interaction with its 
environment or exposure to an information source. 
“Learning in a neural network is normally accomplished 
through an adaptive procedure, known as a learning rule 
or algorithm, whereby the weights of the network are 
incrementally adjusted so as to improve a predefined 
performance measure over time” [13]. 
 
Through a process of computation and feedback, the 
individual weights are adjusted to reduce the error in 
each training pair; where each iteration is defined as an 
epoch. As the ANN moves through each epoch, weights 
should begin to converge to a set of values, which 
adequately maps the inputs to the output. For all training 
patterns, when the errors have been reduced to an 
acceptable level, “learning” has been achieved [14]. 
Essentially, the ANN develops an algorithm to map the 
inputs to an output by adjusting its weights through the 
process of error reduction.  
 
In this work the Levensberg-Marquardt method has been 
adopted as a training algorithm. While numerous other 
training algorithms are possible, the Levensberg-
Marquardt method is commonly employed due to its 
rapid convergence. It has been reported to perform well 
on function-fitting problems with a low number of 
weights (but requires large amounts of memory and 
computation time), so is well suited to this study [15].  
 

 
 

Figure 9 Concept of generalization bounds for ANN 
learning [14] 
 
ANNs work on the basis of generalization, which is 
defined as the “act or process whereby a learned response 
is made to a stimulus similar to but not identical with the 

conditioned stimulus” [16]. So, although trained using 
known data points, neural networks are capable of 
accurately interpolating to predict values bounded by the 
training data. This is achieved by the neural networks 
ability to learn. Rather than making broad 
generalizations, the more data the ANN is trained on, the 
better it understands the relationship between the input 
and target values. Outside of the bounded area, the neural 
network has little understanding of the input-target 
relationship, and hence its ability to predict values 
decreases markedly [14], as shown in Figure 9. 
 
1.6 FEED FORWARD NETWORKS 
 
Throughout this work, the basic feed forward ANNs are 
used because of their excellent mapping characteristics; 
they are the most common form of ANNs due to the wide 
range of applications afforded by their architecture. Feed 
forward networks are designated as such because the 
signal is only permitted to pass from an input node to an 
output node in the forward direction; signals do not 
propagate in the lateral or backward direction between 
neurons in a network. 
 
2. Tri-SWACH RESISTANCE 
 
Due to the novel design, the resistance effects of a Tri-
SWACH hull form are relatively unknown. Although 
Austal and Fjellstrand have undoubtedly conducted their 
own research into Tri-SWACH resistance for their 
respective designs, this information is not publicly 
available. Furthermore, no standard series data have been 
developed for Tri-SWACH hull forms.  
 
The International Towing Tank Conference Performance 
Committee provided general recommendations on how to 
examine the total resistance of multi-hull vessels [17]. 
Their recommendations highlight that traditional 
frictional component decomposition approaches are 
applicable for multi-hulls if interaction effects are 
accounted for. Allowing a total resistance coefficient CT 
to be developed from frictional CF0, residual CR and 
wave CW components plus an additional coefficient  ∆ܥ 
containing other resistance elements (e.g. ship-model 
correlation, aerodynamic and appendage resistance), 
hence: 
 

்ܥ ൌ ிܥ  ோܥ  ௐܥ   ܥ∆
 
Other authors assert that simple theoretical models (i.e. 
thin ship theory) cannot solely be used to accurately 
predict total ship resistance for multi-hull vessels due to 
the complexity of the flow patterns around the hulls [18]. 
Model testing remains one of the more effective methods 
of accurately determining the total resistance of multi-
hulled ships. These tests can allow the quantification of 
both vessel total resistance and interaction effect between 
the hull forms; although scaling can introduce 
uncertainties.  
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Both approaches take considerable time and effort to 
develop suitable results. This study explores applying an 
ANN to rapidly determine total resistance from a limited 
range of inputs.  
 
2.1 PRINCIPAL PARAMETERS AFFECTING 

Tri-SWACH RESISTANCE  
 
Investigation of multi-hulled vessel resistance patterns 
emphasised the significant effect the central hull had on 
the resistance of the outriggers (depending upon their 
lengthwise position). Conversely, it was noted that the 
outriggers are less influential on the wave-making 
resistance of the central hull, although a dependency on 
outrigger lengthwise position was observed [18]. This 
suggests that, like trimarans, the configuration of the side 
hulls plays a role in the total resistance characteristics of 
the Tri-SWACH. Additionally, it was noted, “the 
interference effects between hulls directly influences the 
wave-making resistance. High length-to-beam ratios and 
beam-to-draught ratios greatly reduce the disturbances 
generated by the hulls” [18]. Table 3 lists the important 
parameters that have a direct influence on resistance 
behaviour of a Tri-SWACH. 
 
Table 3 Principal Proponents of Tri-SWACH Resistance 
Parameters Symbol 
Length centre hull LCH 
Length side hulls LSH 
Beam overall BOA 
Strut thickness ThStrut 
Longitudinal centre of buoyancy XCB 
Centre hull wetted surface area  SCH 
Side hull wetted surface area SSH 
Total displacement ்௧ 
Centre hull trim tCH 
Side hull trim tSH 
Froude number Fr 
Length-to-beam ratio of centre hull λCH 
Length-to-beam ratio of side hulls λSH 
Length-to-beam ratio of overall Tri-SWACH λTot 
Side hull slenderness ratio  Lp/Dp 
Ratio of the transverse spacing of the side 
hulls relative the central hull 

%Trans 

Ratio of the longitudinal spacing of the side 
hulls relative the central hull 

%Long 

Side hull angles of attack αSH 
Side hull splay angle SA 
 
3. METHOD 
 
The following method was adopted to develop the ANN: 
 
x Experimental data was collected and the principal 

parameters which directly influence total Tri-
SWACH resistance were identified; 

x The experimental data was divided into a Training 
Data Set and a Test Data Set, where the Test Data 
Set was randomly selected and represents 10% of 
available data; 

x The experimental data was processed to improve the 
training speed of ANN; 

x The number of weights, hidden layers, and activation 
functions were selected; 

x The ANN was trained using the Training Data Set;  
x Once trained, the ANN performance was tested 

using the Test Data Set; and 
x The Test Data Set outputs were analysed using Mean 

Absolute Error (MAE) and Mean Absolute 
Percentage Error (MAPE), as defined in Annex A, to 
verify the ANN performance.  

 
The best performing ANN (lowest MAE) was selected. 
The developed ANN was validated using a case study 
model and compared against Michlet CFD code results. 
This permitted the ANN’s ability to interpolate results to 
be examined, and hence validate its capacity to function 
as a resistance prediction tool.  
 
3.1 KEY PARAMETERS SELECTION 
 
Earlier, the principal parameters that influence Tri-
SWACH resistance were identified and listed in Table 3. 
However, an important aspect to note is that ANN 
training is not improved by using parameters, which 
remain constant over their entire range. Constant 
parameters provide little aid to the neural network during 
training in identifying the underlying relationship 
between input and target values. As a result, they are 
accounted for by an adjustment of the bias in the final 
network layer. Therefore, all constant value input 
parameters, based on the physical dimensions of the Tri-
SWACH model, were ignored since the same model was 
used to collect all experimental data; the exception being 
the side hull positions and splay angles. Removing the 
constant rows significantly reduced the number of input 
parameters available to train the ANN. This could 
significantly affect the ANN’s ability to acquire the 
intrinsic relationship between the input parameters and 
the target values. With constant value parameters 
removed, the parameters listed in Table 4 were used to 
predict Tri-SWACH total model resistance. 
 
Table 4 Key parameters in dimensional form that affect 

Tri-SWACH hull resistance 
Parameter Units 
Froude Number - 
Transverse Separation of Side Hulls Relative to 
Centre Hull 

m 

Longitudinal Separation of Side Hulls Relative 
to Centre Hull 

m 

Splay Angle of Side Hulls ° 
Trim m 
 
3.2 ANN TRAINING STUDY 
 
During this study, six different ANNs were trained to 
explore their performance at acquiring the relationship 
between the input parameters and the target values. All 
had a single hidden layer but the number of neurons in 
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the hidden layer ranged from one to six. The constraint of 
six ANN configurations was imposed by the general 
guidance that the number of weights in the ANN must be 
ten times less than the number of data vectors in the 
training data set, see Table 5. 
 
Table 5 ANN configuration limits from training data set 
ܰ௪௧௦ ൌ 10 ൈ ൫ ܰ௨௧	௧௦ ൈ ܰ௨ ௪௧௦൯

 ܰ௦	௩௨௦ 
  
6-neurons 10 ൈ ሺ5 ൈ 6  6 ൌ 36ሻ ൏ 375
  
7-neurons 10 ൈ ሺ5 ൈ 7  7 ൌ 42ሻ  375
 
Note, of the original 507 experimental data points, 375 
remained in the training data set once the test data set 
values were removed. This general direction guarantees 
that overfitting and data memorization does not occur, 
thus ensuring the validity of the results. In this case, 
ANN configurations that exceed six neurons increased 
the likelihood of overfitting and data memorization and 
were avoided. 
 
For the six different ANNs examined, the one-neuron 
ANN configuration employed a pure linear activation 
function. This ANN configuration linearly maps the 
inputs to the target values and allows the weights and 
bias values to be examined. The other ANN 
configurations employed a hyperbolic tangent (tansig) 
activation function: 
 

ሺ݊ሻ݃݅ݏ݊ܽݐ ൌ 2
1  ݁ିଶ െ 1 Eq. 1 

This function (shown in Figure 8c), is mathematically 
equivalent to tanh, but can be processed faster increasing 
neural network’s speed [13]. 
 
 

3.3 ANN PERFORMANCE VALIDATION  
 
The performance of each ANN can be quantified by a 
variety of statistical methods (as detailed in Annex A). In 
the case of this investigation, the MAE and MAPE were 
used as they provide a more tangible measure of error by 
giving the average deviation from the actual target value. 
The ANN configuration with the lowest MAE/MAPE 
value represents the best configuration.  
 
4. RESULTS 
 
Table 6 shows the MAE/MAPE results for each trained 
ANN configuration tested. The trained ANN with six 
neurons in the hidden layer had the highest accuracy of 
9.19% MAPE. Figure 10 illustrates the correlation 
between the predicted total model resistance results 
generated by the six-neuron, single hidden layer trained 
ANN and the actual experimental data for total model 
resistance selected from the independent test data set. 
Note that the experimental data is randomly selected and 
does not represent the resistance for one configuration. 
 

Table 6 Test Data Set MAE/MAPE Results for Each 
ANN Configuration 

Number of Hidden Layer Neurons MAE MAPE 
One 0.4262 33.96% 
Two 0.3165 13.49% 
Three 0.3108 10.64% 
Four 0.3052 10.32% 
Five 0.3365 11.99% 
Six 0.2833 9.19% 
 
 
 
 
 
 

 
Figure 10 Correlation between total model resistance from experimental data and ANN results 
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Analysing Figure 10, it can be ascertained that the 
trained ANN has good prediction abilities for total 
model resistance values associated with low Froude 
numbers. This is likely to be a result of a significant 
number of training data points in this region which 
permitted the ANN to develop a good understanding of 
the relationship between the input parameters and the 
target values. The accuracy of the trained ANN appears 
to decrease, although not significantly, as the Froude 
number increases. The one area of concern is the 
apparent reduction of accuracy in the Froude range of 
0.25 to 0.40. Critically, based on the experimental 
results, this is an area of significant interest during the 
preliminary ship design as it coincides with the typical 
location of the resistance humps and potential cruise 
speed. Nevertheless, even in the Froude range of 0.25 to 
0.40 the predictions are reasonable. In fact, for the 
preliminary design stage, the results would likely be 
sufficient to generate satisfactory resistance predictions 
to allow the design to mature without drastic alterations 
at a later stage. 
 
The probable source for the lack of predictability in this 
region is the large variation incurred in this Froude 
number range in the experimental data. This could 
prohibit the ANN from appropriately developing the 
input-target relationship during training. The large 
variation is due to the high dependency on Tri-SWACH 
hull configuration within this region. Both transverse and 
longitudinal spacing of the side hulls relative to the 
centre hull affect the prismatic and main resistance 
humps [16]. As such, due to the experimental method 
employed whereby each institution tested different Tri-
SWACH configurations, there is little repetition of 
configuration trials, and therefore, less training data 
points available within this region to accurately train the 
ANN. With little training data to fully expose the input-
target relationship in this Froude number range, the 
accuracy of the ANN prediction capabilities is impaired. 
 
As shown in Figure 5, the scatter in the ACCeSS 
consortium experimental data was minimal. However, 
even minimal scatter can influence the accuracy of the 
ANN generated results since an ANN’s accuracy is 
highly dependent on the accuracy of the data used to 
train it; any scatter will be amplified by the ANN due to 
the inherent inaccuracies involved in the learning 
process. Increasing the volume of training data can 

reduce the error propagation. In this case, the scatter in 
experimental data at higher Froude numbers could be a 
contributing factor in the increased variations between 
the ANN generated results and the experimental values at 
Froude numbers above 0.30. 
 
5. CASE STUDY 
 
A case study was developed to provide an indication of 
the ANN’s performance as a potential resistance 
prediction tool by confirming the ANN’s ability to 
interpolate and predict Tri-SWACH resistance based on 
numbers not previously trained or tested on. The case 
study model is a hypothetical Tri-SWACH model whose 
hull geometry is identical to that of the ACCeSS 
programme, however, the side hull positions are different 
from any tested in the ACCeSS programme’s 
experimental towing tank tests. The longitudinal spacing 
of the side hulls is 1.10 m from the stem of the 
centrehull, which lies between the mid and aft locations 
of the ACCeSS experiments, and the transverse spacing 
is 0.250 m, which lies between the mid and inboard 
ACCeSS programme test configurations.  
 
Table 7 and Figure 11 display the physical parameters of 
the case study Tri-SWACH model.  
 

Table 7 Case study Tri-SWACH model parameters 
Parameter Model 

Transverse Side Hull Clearance 0.250 m 
Longitudinal Side Hull Clearance 1.100 m 

Side Hull Splay Angle 0° 
Maximum Speed 5.3 kts 
Maximum Speed 2.714 m/s 

Maximum Fr 0.593 
Maximum ReCH 6.86E+06 
Maximum ReSH 1.97E+06 

 
Using the trained ANN the case study values were 
simulated. The results displayed in Figure 12 were 
obtained over a Froude number of 0.1 to 0.6. 
 
To confirm the accuracy of the ANN generated results 
for the case study Tri-SWACH, four Webb Institute 
experimental results, which had similar configurations 
to the case study Tri-SWACH, were plotted. The side 
hull arrangements of the four comparison models are 
listed in Table 8. 

 
Figure 11 Overlay of case study side hull arrangement compared to ACCeSS programme's tested side hull locations 
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Table 8 Side hull arrangement characteristics of similar Tri-SWACH configurations tested experimentally at Webb 
 Case Study 

Model 
Mid-Mid 

Configuration 
Mid-Inner 

Configuration 
Aft-Mid 

Configuration 
Aft-Inner 

Configuration 
Longitudinal Spacing (m) 1.100 1.003 1.003 1.290 1.290 
Transverse Spacing (m) 0.250 0.273 0.216 0.273 0.216 
Splay Angle (°) 0 0 0 0 0 
 

 
Figure 12 Comparison of case study ANN predicted resistance to similar Tri-SWACH configurations tested 

experimentally 

 
Figure 13 ANN results compared to numerical prediction 

 
Comparison to the numerical resistance prediction results 
obtained for the specific case study configuration 
reinforces the ANN’s ability to function as a resistance 
prediction tool. Figure 13 compares the ANN output to 
data obtained from a numerical thin ship theory based 
code – Michlet. Michlet was selected, as it typifies the 
rapid analysis tools often employed within concept 

design. While not able to match the accuracy of a higher 
order CFD code such as AEGIR, Michlet captures key 
resistance characteristics, e.g. the locations of resistance 
“humps”. While the ANN and numerically predicted 
resistance humps do not line up, drawing on the 
observations from Figure 5, it was evident that Michlet 
tends to shift the main and prismatic humps to the left 
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(i.e. lower Froude numbers). Therefore, for the assessed 
configuration the main hump would actually lie slightly 
to the right (at a higher Froude number) closer to the 
ANN generated resistance prediction. 
 
The shape of the main hump could likely be improved by 
increasing the case study data points; however, as a tool 
for preliminary ship design, the fact that the ANN is 
capable of determining the Froude range of the main 
hump would be adequate enough to allow the design 
process to progress. Later in the design process a more 
accurate prediction of Tri-SWACH resistance would 
need to be determined but by that point model testing 
would be a viable option. 
 
The case study results provide fidelity in the ability of 
the ANN to perform as a Tri-SWACH resistance 
prediction tool for this particular Tri-SWACH model. 
The authors remain confident that with further work, this 
confidence in the ANN’s potential to predict resistance 
values will strengthen and clearly demonstrate the 
ANN’s ability to be a resistance prediction for Tri-
SWACH preliminary ship design. The results yielded in 
this investigation are encouraging and demonstrate the 
ANN’s capacity to model complex relationships 
associated, in particular, to multi-hull design but further 
support continued efforts to utilize ANNs in marine 
applications. 
 
6. CONCLUSIONS 
 
The results confirm the ANN’s ability to perform as a 
resistance tool for Tri-SWACH preliminary design for 
this particular model. Research and experimental data 
has shown that the prismatic and main resistance hump 
for Tri-SWACH vessels is dependent on the physical 
configuration of the side hulls relative to the centre hull. 
Careful consideration of Tri-SWACH configuration can 
lead to reduced resistance characteristics potentially 
permitting better performance and reduced fuel 
consumption, especially at high speeds. Research has 
also confirmed that Tri-SWACH resistance is dependent 
on a large number of parameters, indicating a high level 
of complexity, which would require sophisticated models 
to accurately understand and interpret its behaviour.  
 
The ANN is capable of producing a resistance prediction 
despite the complex nature of Tri-SWACH resistance. 
Although not accurate enough for a final design, the 
results generated by the ANN would be sufficiently 
accurate for preliminary ship design, permitting the 
design process to progress based on approximate 
resistance values. The current ANN has a mean average 
percentage error of approximately 10%; and with 
additional experimental data available, it is believed that 
this error could be greatly reduced.  
 
The results also further support previous work, which 
highlighted the success application of ANNs to predict 
performance characteristics of other multi-hull vessels; 

specifically the work carried out by Dr. Rick Royce at 
Webb Institute on trimaran hull forms [3]. Given the 
success obtained in using ANNs for resistance prediction 
of these two multi-hull vessel types, the authors are 
confident that ANNs could be trained and used with a 
wide assortment of hull form types, as a means of 
predicting resistance performance. The ability to use 
ANNs to simplify the prediction methods to obtain multi-
hull resistance could be of interest to military and 
offshore conceptual design teams where, increasingly, 
multi-hulled vessels are proving to be attractive options 
due to their superior seakeeping performance and large 
upper deck area. 
 
Overall, the results presented in this paper demonstrate 
the ANN’s potential to be a resistance prediction tool for 
Tri-SWACH preliminary ship design. It should be noted 
that total ship resistance can be determined using a 
scaling method of the user’s preference. 
 
6.1 FUTURE WORK 
 
The results presented in this paper are an encouraging 
demonstration that an ANN can be used to develop an 
effective Tri-SWACH resistance prediction tool; 
however, several areas exist where further developments 
are possible.  
 
In conversation with ACCeSS partners, it has been 
recommended that the model be tested using the side hull 
configuration identified in the case study to verify the 
accuracy of the ANN generated results. Although a 
comparison was made to a numerical thin ship theory 
based code, the inherent limitations and assumptions 
within the code prevent an accurate assessment of the 
true performance of the trained ANN as a resistance 
prediction tool. Direct comparison to experimental data 
would provide a true evaluation of the ANN’s 
performance.  
 
Further areas to investigate include increasing the range 
of experimental data through further testing of different 
model sizes with different geometric properties. The 
current trained ANN is limited to predicting resistance 
values within the bounds of the extreme side hull 
configurations of the tested model. Additional model 
tests would also allow the ANN to expand the 
applicability envelope to a range of numerous hull 
parameters, as listed in Table 3. 
 
The recommendation would be to first conduct towing 
tank tests using extreme side hull configurations of the 
current model, which represent realistic extremes of this 
Tri-SWACH design. After that, it would be advisable to 
perform resistance tests for several different models 
whose geometry is systematically changed to represent 
the limits of practical Tri-SWACH designs. Using the 
experimental data collected the ANN could be retrained 
and validated as a resistance prediction tool, drawing on 
the ANN’s ability to interpolate results. 
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Additionally, a comparison of Tri-SWACH resistance 
to other hull forms would be of interest. Based on 
intuition, one would speculate that Tri-SWACH vessels 
would display resistance characteristics similar to 
trimaran hull forms but with potential performance 
benefits overall given that the central hull would 
generate less wave-making resistance than a traditional 
trimaran central hull. Less wave generation would also 
reduce the interference effects traditional experienced 
by trimaran hull forms. However, further research using 
similarly proportioned hull forms would need to be 
undertaken to verify this hypothesis. 
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ANNEX A - Statistical Methods Applied to ANN 
Performance Prediction 
 
The performance of each ANN can be quantified by a 
variety of statistical methods: 
 

i. Root Mean Square (RMS): 
 
 

ܵܯܴ ൌ ඩ1݊ሾ ݂ െ ሿଶݕ


ୀଵ
 Eq. 2 

 
ii. Mean Squared Error (MSE): 

 
 

ܧܵܯ ൌ 1
݊ሾ ݂ െ ሿଶݕ



ୀଵ
 Eq. 3 

 
iii. Mean Absolute Error (MAE):  

 
 

ܧܣܯ ൌ 1
݊| ݂ െ |ݕ



ୀଵ
 Eq. 4 

iv. Mean Absolute Percentage Error (MAPE): 
 
 

ܧܲܣܯ ൌ 100%
݊ ฬ ݂ െ ݕ

ݕ
ฬ



ୀଵ
 Eq. 5 

 
Where   
fi Is the actual experimental value (actual target) 
yi Is the ANN generated output (predicted value) 
n Is the number of values 
 
  


