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SUMMARY 
 
The prediction of manoeuvring characteristics of underwater vehicles during design involves approximations at various 
stages. This paper attempts to quantify some of the uncertainties involved in the manoeuvring characteristics of 
underwater vehicles. The first source of uncertainty is in idealization of mathematical model selected for trajectory 
simulation. This is illustrated for alternative mathematical models in trajectory simulation programs. Next, the values of 
the hydrodynamic coefficients (HDCs) in the equations of motion have their own levels of uncertainty, depending upon 
the methods used to determine them. The sensitivity of trajectory simulation results to uncertainty levels in various 
HDCs is examined. Finally, the level of uncertainty in full-scale measurements of manoeuvres of underwater vehicles is 
discussed and estimated. It emerges that the cumulative errors in the prediction process during design need to be reduced 
further, in order to maintain their levels of uncertainty below those of the validation process. 
 
 
NOMENCLATURE 
 
F = {X,Y,Z}
G

 External force on the body and its 
components along x, y and z directions 

M = {K,M, N}
G

 Moment of the external force and its 
components along x, y and z directions 

{xG, yG, zG} Coordinates of the body’s center of 
gravity (CG) with respect to the body-
fixed system oxyz 

m  Mass of the vehicle 
Iij  Moments of inertia about the body-

fixed system oxyz, where the indices i,j 
correspond to x,y,z coordinates. 

u, v, w Straight-line velocities of the body 
along x, y and z directions in the body-
fixed frame of reference 

p, q, r  Angular velocities of the body about x, 
y and z directions in the body-fixed 
frame of reference 

g Acceleration due to gravity 
 
 
1. INTRODUCTION 
 
The study of manoeuvring characteristics of underwater 
vehicles includes assessment of motion stability, 
controllability and trajectory simulation in six degrees of 
freedom. These have important operational implications 
for all types of underwater vehicles. There are a variety 
of approaches (empirical/analytical, experimental and 
numerical/computational techniques) for manoeuvring 
studies of underwater vehicles [1].  The problem of 
mathematical modelling of the motion of marine vehicles 
for trajectory simulation has been studied extensively 
over many decades [2-6]. The subject has gained 
renewed interest after the proliferation of Unmanned 
Underwater Vehicles (UUVs), which include Remotely 
Operated Vehicles (ROVs) and Autonomous Underwater 

Vehicles (AUVs) used for many commercial and 
scientific applications [7, 8]. 
 
Manoeuvring characteristics of underwater vehicles are 
difficult to predict accurately during initial stages of 
design. Frequently, recourse is made to empirical or 
semi-empirical methods for the purpose. Even after more 
detailed information is available from time-taking studies 
using tools like Computational Fluid Dynamics (CFD), 
or from expensive model tests, there are inherent 
uncertainties in the prediction process for manoeuvring 
qualities. All too often, attention is concentrated on 
particular aspects of the problem, such as model testing, 
CFD, control system design, system identification, or 
trajectory simulation. It is necessary to estimate the 
magnitude of uncertainty for the overall process of 
prediction of manoeuvring characteristics. 
 
In order to quantify these uncertainties, it is necessary to 
understand the choices being made at each stage of the 
prediction process and their implications on the ultimate 
result. These aspects or stages for manoeuvring 
prediction / evaluation may be outlined as follows. 
 
• Formulation of mathematical model for trajectory 

simulation 
• Estimation of values of Hydrodynamic 

Coefficients (HDCs) for the body 
• Simulation of trajectories for various manoeuvres 
• Full-scale trials for standard manoeuvres and 

comparison with predictions  
 
Each of these aspects has inherent uncertainties. The 
ultimate benchmark for evaluating any set of predictions 
should be comparing them with full-scale trial results for 
a set of standard manoeuvres. These are the only ‘true’ 
values against which the ‘errors’ in each stage of 
manoeuvrability prediction must be judged. However, 
not only are the full-scale measurements rarely 
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conducted or reported, but the full-scale measurement 
process itself is beset with uncertainties. Therefore, it is 
important to define realistic limits for error bounds in 
each stage of manoeuvring prediction, in order to ensure 
practically reliable results. 
 
This paper presents glimpses of the choices available to 
the designer / analyst at each of the stages for the 
manoeuvrability prediction process for underwater 
vehicles, ranging from manned submarines to UUVs. 
Cases are presented illustrating the effects of these 
decisions and the effects of variation in parameters on the 
trajectory simulation for typical underwater vehicles. 
Based on these simulations, the effect of variation in 
values of HDCs can be appreciated. Finally, the paper 
presents error bounds likely during full-scale 
measurements, which suggest the level of accuracy 
desirable for the preceding stages of manoeuvring 
prediction and analysis. 
 
2. FOCUS OF THIS STUDY  
 
Any study on the sensitivity of manoeuvring 
characteristics to the many variables in the modelling 
process needs to be limited to certain cases in order to 
keep the scope of the study within reasonable length. In 
this study, therefore, two underwater vehicle hull forms 
have been considered and various trajectory simulations 
have been undertaken for one particular type of definitive 
manoeuvre. 
 
2.1 UNDERWATER VEHICLES CONSIDERED 
 
Trajectory simulations were carried out for two 
underwater vehicle geometries in this study, which are 
typical of UUV and submarine forms, respectively: 
 
• Axisymmetric body of revolution with 

cruciform control surfaces at stern [9, 10]. The 
length of the body considered is 10 metres and 
weight (m.g) is 196.5 kg. 

• SUBOFF body with appendages (fin and 
cruciform control surfaces) as described in [11]. 
Length of the body is 4.26 m and weight (m.g) 
is 18.1 kg.  

 
The dimensions and weights of the bodies mentioned 
above were used for the trajectory simulation studies. 
The vehicle mass properties and HDC values determined 
by model testing (Planar Motion Mechanism) and 
reported in [9, 11] were used in the trajectory simulation 
programs developed.  
 
2.2 MANOEUVRE CONSIDERED 
 
Definitive manoeuvres are carried out to characterise and 
compare the handling qualities of underwater vehicles. 
These include zigzag/overshoot, meander, spiral, pullout 
and turning circle manoeuvres [2, 12]. The depth-
changing and depth-keeping abilities are particularly 

important for underwater vehicles due to the relatively 
narrow band of water (in depth) within which they 
require to operate. Therefore, the zigzag/overshoot 
manoeuvre in the vertical plane is considered for this 
study. 
 
In the zigzag manoeuvre, starting from a level submerged 
course, the control surfaces are set at constant angle δ1 as 
quickly and as smoothly as possible until the pitch angle 
(θ) becomes equal to the execute pitch angle (θe) decided 
for the manoeuvre. The planes are then deflected to an 
angle -δ1 until the original depth at the start of the 
manoeuvre is reached, or the execute pitch angle in the 
opposite sense (-θe)  is reached. The parameters of 
interest are the time to reach execute (te), time to check 
pitch (tc), time to check depth (td), overshoot pitch angle 
(θO) and overshoot change of depth (zO), as defined in 
Figure 1. These values will depend upon the specified 
plane deflection, execute pitch angle and the speed at 
which the manoeuvre is conducted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1   Definition of parameters for Zigzag manoeuvre 
in vertical plane [2] 
 
The variation in values of the above parameters for 
standard 10/10 zigzag manoeuvre (i.e. δ1=10 degrees, θe 
=10 degrees) and 15/5 zigzag at speed 5 knots was 
examined in this study for various mathematical models 
and HDC values.  
 
3. MATHEMATICAL MODELS FOR 

TRAJECTORY SIMULATION 
 
The motion of an underwater vehicle can be described in 
terms of Newton–Euler laws of motion, where the rate of 
change of momentum of a rigid body is equated to the 
external forces/ moments causing the change. For an 
underwater vehicle such as a submarine or an AUV, 
controlled motion is possible with six degrees of freedom 
(6-DOF). 
 
3.1 RIGID BODY EQUATIONS OF MOTION 
 
The trajectory of the body at any instant of time is 
described by its linear velocities u, v, w, and by its 
angular velocities p, q, r, in the body-fixed frame of 
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reference, and by its position and orientation in an 
inertial frame of reference (Figure 2).  
 
Let F

G
 denote the external force on the body, and 

M
G

denote the moment of the external force about the 
origin o of the body-fixed system oxyz. Their 
components are denoted as, F = {X,Y,Z}

G
 and M = {K,M, N}

G
. 

The mass of the vehicle is m and the moments of inertia 
about the body-fixed system oxyz are denoted as Iij where 
the indices i,j correspond to x,y,z coordinates. The 
coordinates of the body’s center of gravity (CG) with 
respect to the body system oxyz are {xG, yG, zG}.  
 
 
 
 
 
 
 
 
 
 
 
Figure 2  Definition diagram of symbols for orientation; 
linear and angular velocities 
 
The governing 6-DOF equations of motion can be 
written as follows for the body-fixed frame of reference 
[5, 6, 13]: 
 
Surge: 

2 2
G G Gm[u - vr + wq - x (q + r )+ y (pq - r)+ z (pr + q)] = X� � �  (1) 

Sway: 
2 2

G G Gm[v - wp + ur - y (r + p )+ z (qr - p)+ x (qp + r)] = Y� � �  (2) 
Heave: 

2 2
G G Gm[w - uq + vp - z (p + q )+ x (rp - q)+ y (rq + p)] = Z� � �  (3) 

Roll: 
2 2

G G

xx zz yy xz yz xyI p +(I - I )qr - (r + pq)I + (r - q )I +(pr - q)I

+ m[y (w - uq + vp) - z (v - wp + ur)] = K

� � �

� �
 (4) 

Pitch: 
2 2

G G

yy xx zz yx zx yzI q + (I - I )rp - (p + qr)I +(p - r )I +(qp - r)I

+ m[z (u - vr + wq) - x (w - uq + vp)] = M

� � �

� �
 (5) 

Yaw: 
2 2

G G

zz yy xx zy xy zxI r + (I - I )pq - (q + rp)I +(q - p )I +(rq - p)I

+ m[x (v - wp + ur) - y (u - vr + wq)] = N

� � �

� �
 (6) 

 
The above six dynamic motion equations can be written 
in matrix form [13] as: 
 
[ ]{ } { { }}I EA V F F− =�  (7) 
 
where the external generalised forces are denoted by 
 
{ } { , , , , , }T

EF X Y Z K M N=  (8) 
 

and the terms on the left hand side of equation (7) are 
matrices of size 6x6, defined as follows. 
 
The extended mass matrix (including added mass terms) 
is given by: 
 
[ ]A = [ ] [ ']+M M  (9) 
 
where mass matrix is given by: 

[M]  = 

0 0 0

0 0 0

0 0 0

0

0

0

G G

G G

G G

G G

G G

G G

xx xy xz

yx yy yz

zx zy zz

m mz my

m mz mx

m my mx

mz my I I I

mz mx I I I

my mx I I I

−

−

−

− − −

− − −

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(10) 

 
and added mass matrix is taken as: 

0 0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

u

v p r

w q

v p r

w q

v p r

X

Y Y Y

Z Z

K K K

M M

N N N

−

− − −

− −
′ =

− − −

− −

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

�

� � �

� �

� � �

� �

� � �

[M ]         (11) 

 
The subscript notation represents partial differentiation, 
so /uX X u= ∂ ∂� � , etc. 
 
Acceleration vector is given by: 
{ } { }TV u v w p q r=� � � � � � �  (12) 
 
The inertial force terms, independent of modelling of 
external hydrodynamic forces, are given by 
 
{FI}= 

2 2

2 2

2 2

2 2

2 2

[ ( )

[ ( )

[ ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(

G G G

G G G

G G G

yy zz xz yz xy G G

zz xx yx zx yz G G

xx y

m vr wq x q r y pq z pr

m wp ur y r p z qr x qp

m uq vp z p q x rp y rq

I I qr I pq I q r I pr my vp uq mz ur wp

I I rp I qr I r p I qp mz wq vr mx vp uq

I I

− + + − −

− + + − −

− + + − −

− + + − − − − + −

− + + − − − − + −

− 2 2) ( ) ( ) ( )y zy xy zx G Gpq I rp I p q I rq mx ur wp my wq vr

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪+ + − − − − + −⎪ ⎪⎩ ⎭
 (13) 
 
Thus far, there are no approximations in the 
mathematical model, but the external forces and 
moments are yet to be modelled.  
 
3.2 VARIANTS OF MATHEMATICAL MODEL 
 
The external forces and moments due to hydrodynamic 
(and hydrostatic) loads  are complicated functions of 
many factors, including water density, viscosity, surface 
tension, pressure, vapour pressure, and motions of the 
body. Rather than attempting to obtain hydrodynamic 
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forces exactly from the Navier-Stokes equations, the 
components of the hydrodynamic forces and moments 
acting on the hull and on each appendage are usually 
treated as a function of the motion state variables, in 
terms of ‘hydrodynamic coefficients’ (HDCs) [2, 4, 5]. 
 
In general, the most important part of developing the 
dynamic motion equations is in expressing the external 
force and moment vector {FE} properly. These forces 
/moments may be split into physically meaningful 
components corresponding to hydrostatic (gravity-
dependent) forces, fluid inertia (i.e. added mass, or 
acceleration-dependent terms), fluid damping forces 
(velocity-dependent terms), propulsion forces, and 
control surface forces, which are the most crucial for 
initiating any manoeuvre of the body.  
 
The HDCs may be denoted using another form of 
subscripts, where subscripts denote the motion variable 
they are multiplied with. For example, for a small sway 
velocity v, the hydrodynamic force component arising 
from that motion is expressed as Yvv, where Yv is the 
HDC for the motion variable v in the equation of motion 
for the Y-force. All coefficients can be made non-
dimensional using appropriate combinations of vessel 
length and initial axial velocity. 
 
In order to generalise the various mathematical models 
available for expressing {FE} in terms of HDCs, we can 
consider {FE} as the product of various HDCs (as matrix 
[B] of size 6 x n) with respective motion variables (as 
matrix [C] of size n x 6), where n depends on the 
particular model and may typically vary from 6 to 15.   
 
Thus, 
 
{FE} = diag ([B].[C])   (14)  
 
i.e. the vector {FE} is formed by the diagonal terms of 
the 6 x 6 matrix [B].[C], which also includes terms 
corresponding to hydrostatic forces and control forces. 
 
Various models developed for specific applications can 
be conveniently expressed in the above form. For 
example, only linear terms may be retained in some 
models, or cross-coupling between various motions may 
be neglected, or special terms may be added to account 
for cross-flow drag, or empirical corrective terms may be 
included. 
 
Three mathematical models for external hydrodynamic 
force have been considered in this study, as described 
below. 
 
3.2 (a) First Mathematical Model 
 
For the first model [9, 13], we consider the following 
structure of matrices representing the external 
hydrodynamic forces. 
 

[B1] = 

0 0

0 0

0

0

G

G

uu vv ww w q r v s s r r

u v w q r rv v

w v u q r sw w

vw p vq qr wr s r

uw w r r q q sw w

uv v q q r r rv v

X X X Z Z Y Y X X

X Y Y Z Z Y Y

Z Z Y X Z Y Z

K K K K K K K z W

M M M N Y Z M M z W

N N N Z M Y N N

δ δ δ δ

δ

δ

δ δ

δ

δ

− −

− −

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

� � � �

� � �

� � �

�

� � � �

� � �

  (15) 
where, 

vw w v vq r q

qr r q wr r q

uw u w uv v u

K Z Y K Y Z

K N M K Y Z

M X Z N Y X

= − = +

= − = − −

= − = −

� � � �

� � � �

� � � �

 (16) 

 
The relations of (14) above hold good for any model, 
since the combination of some acceleration-dependent 
HDCs are merely being represented in terms of the state 
variables with which they are multiplied in the respective 
force / moment equation. 
 
In the first model considered, we have 

[C1] =

2

2

2

2

2

2

2

( ) 0 0 .

( ) 0 0 0 0

u ur w vw uw uv

v v w w p w v

w v v vp vq w w v v

wq wp uq qr rp wp

q pq q wr vp pq

r r pr s uq ur

vr r s r q r

s c s s r

r s

δ

δ δ δ

δ θ φ δ δ

δ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (17) 

 
where cθ denotes cosθ, sθ denotes sinθ, and δr and δs 
denote rudder and stern plane deflection, respectively. 
 
3.2 (b)  Second Mathematical Model 
 
The second model considered here is a partly linearised 
version of the first model, dropping squared velocity 
terms and retaining only those second order terms which 
are cross-products of velocity components. Thus, we 
have: 
 
[B2] = 

0 0 0 0 0 0 0

0 0 0

0 0 0

0

0

0 0

G

G

w v

u v w q r r

w v u q r s

vw p vq qr wr s r

uw w r r q q s

uv v q q r r r

Z Y

X Y Z Z Y Y

Z Y X Z Y Z

K K K K K K K z W

M M N Y Z M M z W

N N Z M Y N N

δ

δ

δ δ

δ

δ

−

− −

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

� �

� � �

� � �

� � �

� � �

 (18) 
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and  

[C2] = 

0

0 0

0 0 0 0

0

0

0 0 0 .

0 0 0 0 0

ur w vw uw uv

v p w v

vp vq

wq wp uq qr rp wp

pq q wr vp pq

r pr s uq ur

vr r s r q r

c s s r

s

δ

δ δ δ

θ φ δ δ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (19) 

 
3.2 (c)  Third Mathematical Model 
   
The third model considered retains only strictly linear 
terms. Thus, 

[B3] = 

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

G

G

v r r

w q s

p s r

w q s

v r r

Y Y Y

Z Z Z

K K K z W

M M M z W

N N N

δ

δ

δ δ

δ

δ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (20) 
and 

[C3] = 

0 0 0 0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0

0 0 0 .

0 0 0 0 0

w

v p w v

q

r s

r s r q r

c s s r

s

δ

δ δ δ

θ φ δ δ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (21) 

 
Other mathematical models such as those given in [14, 
15] can also be cast in this form, requiring additional 
HDCs to be evaluated / estimated. These models have 
retained many additional (cross-coupled and non-linear) 
HDC’s, in addition to those obtained strictly by Taylor 
series expansions, based on the best-fit for measured 
forces in model testing. 
 
4. TRAJECTORY SIMULATION 
 
4.1 ALGORITHM FOR SIMULATION 
 
The dynamic equations summarised in equation (7) can 
now be recast as: 
 

1

1

{ } [ ] {{ } { }}

[ ] {{ [ ].[ ] { }}

T
E I

I

u v w p q r A F F

A diag B C F

−

−

= +

= +

� � � � � �
      (22) 

The following transformation relations exist between the 
velocities in the body system oxyz and the inertial system 
OxOyOzO: 
 

0 2 3 1 3 1 2 3 1 3 1 2 3

0 2 3 1 3 1 2 3 1 3 1 2 3

0 2 1 2 1 2

( ) ( )

( ) ( )

x c c u c s s s c v s s c s c w

y c s u c c s s s v s c c s s w

z s u s c v c c w

= + − + + +

= + + + − +

= − + +

�

�

�

 (23) 

 
1 2 2 1 2 2

1 1

1 2 1 2

( / ) ( / )

( / ) ( / )

p s s c q c s c r

c q s r

s c q c c r

φ

θ

ψ

= + +

= −

= +

�

�

�

 (24) 

 
where  

1 2 3

1 2 3

sin ; sin ; sin

sin ; sin ; sin

s s s

c c c

φ θ ψ

φ θ ψ

= = =

= = =
 (25) 

 
Equations (22, 23, 24) are thus 12 ordinary linear 
differential equation whose integration in time will 
determine the values of vehicle position XO, YO, ZO and 
orientation φ, θ, ψ with time. There are numerous 
integration schemes for integration of such ordinary 
linear differential equations, starting from simplest 1st 
order explicit schemes to high order implicit schemes 
such as Runge-Kutta schemes, Predictor-corrector 
schemes, etc. These (dynamic motion) equations are 
usually very robust and do not lead to numerical 
instability due to integration scheme if the time step size 
is sufficiently small. 
 
By substituting the HDC values in the above equations of 
motion, the equations of motion can thus be integrated 
for known control inputs and speed, to calculate the 
accelerations, velocities and displacements (position) of 
the body as function of time. Thus, the trajectory of an 
underwater vessel can be simulated [5, 13].  
 
4.2 TYPICAL RESULTS 
 
A flexible trajectory simulation program was created, 
with scope for modifying the external force matrices [B] 
and [C], thus enabling the mathematical model to be 
readily changed.  
 
Results of a 15/5 zigzag manoeuvre at 5 knots for the 
axisymmetric body and for SUBOFF geometry, both 
using the linear mathematical model (3.2(c) above) are 
shown in Figures 3 and 4. For the trajectory simulations 
shown in Figures 3 and 4, the main parameters of interest 
are shown in Table 1. 
 
To examine the effect of varying the mathematical 
model, the same manoeuvre was simulated using 
different mathematical models (described in sub-section 
3.2 above). Results are plotted for two of the models in 
Figure 5 (for axisymmetric body) and the parameter 
values obtained for all three mathematical models are 
given in Table 2. 
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Figure 3    Simulation of 15/5 Zigzag at 5 knots – 
Axisymmetric body  
 
 

 
Figure 4    Simulation of 15/5 Zigzag at 5 knots – 
SUBOFF body  
 
 

Parameter  Axisym-
metric body 

SUBOFF 
body 

Overshoot pitch 
angle (θO); degrees 

2.16 11.43 

Overshoot change 
of depth (zO); 
metres 

2.81 26.34 

Time to reach 
execute (te); 
seconds 

6.12 18.96 

Time to check pitch 
(tc); seconds 

9.16 45.48 

Time to check 
depth (td); seconds 

18.94 74.94 

 
Table 1   Parameters estimated by trajectory simulation 
for 15/5 zigzag at 5 knots using strictly linear 
mathematical model 

 
Figure 5     Effect of variation in mathematical model on 
trajectory simulation for axisymmetric body 
 
 

θO 
(deg) 

zO 
(m) 

te 
(sec) 

tc 
(sec) 

td 
(sec) 

Para-
meters of 
Zigzag 
→ (Difference from Model 3 values given in %) 

2.40 2.91 6.28 9.44 19.14 Model 1 
11.1% 3.6% 2.6% 3.1% 1.1% 
2.95 3.74 5.76 9.66 20.86 Model 2 

 36.6% 33.1% 5.9% 5.5% 10.1% 
Model 3 
(fully 
linear) 

2.16 2.81 6.12 9.16 18.94 

Table 2   Effect of variation in mathematical model on 
trajectory simulation results (15/5 zigzag at 5 kts) for 
axisymmetric body. 
 
Examining the results shown in Table 2, it is seen that 
changing the mathematical model from strictly linear to 
non-linear terms causes variation in parameter values in 
the range of 1 to 37% for the manoeuvre and the body 
considered. In the sequel, the significance of this level of 
uncertainty will be examined in light of the other 
uncertainties in the manoeuvring prediction process. 
 
 
5. VALUES OF HYDRODYNAMIC 

COEFFICIENTS 
 
The main unknowns in the procedure of prediction of 
manoeuvring characteristics are the numerous HDC’s. It 
is desirable that once the geometry of the vessel is 
defined in the early stages of the design, these derivatives 
are estimated by empirical methods based on similar 
vessels, or other methods, so that necessary checks can 
be made as to whether the design satisfies the various 
manoeuvring requirements.  
 
As described in Section 3, the choice of mathematical 
model dictates which HDCs that need to be evaluated. Of 
the 36 first-order HDC’s possible, many can be neglected 
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depending on symmetry of the body [4, 16]. The model 
test data available in [11] includes only 21 linear HDCs. 
The number of second-order HDCs and various 
correction terms may vary from model to model. The 
mathematical models described in sub-sections 3.2(a) 
(Model 1) and 3.2(b) (Model 2) contain 55 and 24 HDCs, 
respectively. 
 
The values of the hydrodynamic coefficients (HDCs) in 
the equations of motion have their own levels of 
uncertainty depending upon the model testing methods 
and facilities used to determine them. For the SUBOFF 
body, [11] the reported levels of uncertainty are listed in 
Table 3. 
 
 

HDC Estimated 
Uncertainty 

Static HDCs: Zw’, Mw’, Yv’, Nv’ 4 – 5 % 
Rotary HDCs: Zq’, Mq’, Yr’, Nr’ 10% 
Control HDCs 6 – 10% 
Added mass HDCs: Zw.’, Mq.’, Yv.’, 
Nr.’ 

7% 

Table 3   Uncertainty estimated for various HDCs for 
SUBOFF body obtained by model testing [11] 
 
 
The error level in one coefficient may be masked by 
errors in others, such that the margins of stability 
computed give misleading results, or such that the 
trajectories computed are similar for different 
combinations of HDC values.  
 
5.1 SENSITIVITY STUDIES - BACKGROUND 
 
Sensitivity studies have been carried out for HDCs of 
underwater vehicles in order to determine their relative 
importance and hence, the error bounds permissible for 
their values. In general, sensitivity has been defined as 
the ratio of the relative change in some output variable, 
O, and the relative change in an input parameter, I, each 
compared to nominal values (Onom, Inom). For each case 
the sensitivity, S, of the response to the variation in 
parameter can be calculated as [10]: 
 

( ) /

( ) /
nom nom

nom nom

O O O
S

I I I

−
=

−
 (26) 

 
The influence of various hydrodynamic coefficients on 
the predicted manoeuvrability of submerged bodies has 
been examined [9, 10] and it is reported that for a 
submarine-like body, trajectories are most sensitive to 
linear damping coefficients. 
 
For a bare hull axisymmetric body, the linear inertial 
coefficients were found to be the most significant. In 
another study [17], the sensitivity of geometrical 
characteristics of an AUV vis-à-vis its added mass HDCs 
have been explored. Sensitivity analysis using Genetic 

Algorithms [18] for various manoeuvres has revealed 
that difference in the model geometry caused HDCs to 
have different tendencies in sensitivity change. Also, the 
nature of sensitivity changes depending on the trials 
executed. 
 
Considering the focus of this study on vertical plane 
manoeuvres, the most significant coefficients for 
axisymmetric body have been identified [9] as: 

, , , , , ,s w s w q q qM Z Z M M M Zδ δ� � � � . For submarine-like body, 

these are: , , , , , , ,,q s s q w w q w qM M Z Z Z Z Z M Mδ δ � � � � . The 
difference in relative sensitivity has been attributed to the 
difference in the mathematical model used for the two 
bodies, but may also be the result of the difference in 
their geometries. 
 
In order to ensure that the vertical plane trajectories do 
not vary by more than 10%, it is reported [9] that the 
HDCs that need to be determined within about 10% 
accuracy are , , , , ,w s q s q wZ M Z Z M Mδ δ� � � �  for axisymmetric 
body. Based on a study using Genetic Algorithm 
technique [18], Mw and Mq were found to be the two most 
significant HDCs. 
 
5.2 SENSITIVITY STUDIES - AXISYMMETRIC 

BODY 
 
For this study, the HDCs considered most significant for 
the axisymmetric body were varied, one at a time, by ±25 
to 50% of their initial values and the trajectory 
simulation was repeated using the linear mathematical 
model (Model 3). Although these values are higher than 
the uncertainty levels estimated for model test data 
(Table 3), the aim was to explore the relative and 
cumulative effect of change in various HDCs on the 
trajectory simulation parameters for the zigzag 
manoeuvre in vertical plane. Further, as an extreme case, 
all the HDC values were simultaneously changed by 
±50% from initial values and trajectory simulation 
repeated. 
 
Results of these sensitivity studies are summarised in 
Table 4. The results are graphically shown in Figure 6, 
wherein the cumulative effect of changes in each HDC is 
presented for the five parameters of the vertical plane 
zigzag manoeuvre. 
 
It is seen that the three most important HDCs for the case 
considered are MδS (change in pitching moment due to 
plane deflection), ZδS (change in heave force due to plane 
deflection) and Mq (change in pitching moment due to 
rate of change in pitch angle). Change in value of these 
HDCs by ±50% causes change in at least one of the 
vertical plane zigzag manoeuvre parameters by more 
than 50%. The marked influence of HDCs MδS, ZδS and 
Mq are clearly evident from Figure 6. 
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Table 4  Results of sensitivity studies of HDC values for 
vertical plane zigzag - axisymmetric body 
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Figure 6  Graphical representation of results of sensitivity 
analysis showing percentage change in zigzag parameters 
due to ±50% change in HDCs 
 
Figure 6 also shows that the total change in overshoot 
angle (θO) could be -200% to +225%, due to the sum of 
the effects of variation in each HDC by ±50%. However, 
as seen in Table 4, for simultaneous change of all HDC 
values by ±50%, simulated overshoot angle (θO) values 
change by -32% to +164%. For overshoot change of 
depth (zO), around 200% increase is expected in case of 
simultaneous reduction in all listed HDC values by 50%, 
as well as in the case of the sum of changes in individual 
HDCs. 

It is also seen that the parameters time to reach execute 
(te) and time to check pitch (tc) and depth (td) are 
relatively less influenced (about ±100%) by change in 
HDC values, as compared to the parameters θO and zO. 
The effect of change in trajectory of the body due to 
simultaneous change of ±50% in all listed HDCs is 
shown in Figure 7. The original response curves are in 
the middle, while quicker responses are for the case 
when HDCs were increased by 50%. Responses were 
delayed when all HDC values were reduced by 50%. 
 

 
Figure 7 Change in trajectory simulation results for 
axisymmetric body due to change in HDCs by ±50%  
 
5.3 SENSITIVITY STUDIES - SUBOFF BODY 
 
These studies were repeated for the submarine-like 
SUBOFF body, varying all HDCs varied for 
axisymmetric body, as well as Zq, again using the linear 
mathematical model (Model 3). Variation of HDC values 
by ±50% from model test values was considered. Results 
of these sensitivity studies are summarised in Table 5. 
Only those HDCs which had an effect of more than 2% 
on the zigzag parameters have been included in the 
Table.  
 
The most significant HDCs for the SUBOFF body 
simulation emerge as , ,w s wZ Z Mδ� . It is thus seen that 
even for the same mathematical model, the body 
geometry has a significant influence on the relative 
importance of the HDCs. 
 
The change in zigzag manoeuvre parameters due to HDC 
value variations does not exceed 21% when HDCs are 
varied one at a time. This is much lesser than the effect 
of variations in case of axisymmetric body. Even when 
all relevant HDCs are varied simultaneously by ±50% 
from original values, the variation in zigzag parameters is 
at most by 55% only. Although the magnitude of 
variation in actual terms is much greater, the percentage 
change is relatively less.  

% Change in values of Zigzag 
Parameters Change in 

HDC by ↓ θO zO te tc td 
+50% 56.3 3.2 -

23.9 -13.5 -18.0 sMδ

 -25% -48.5 -26.1 29.1 10.5 2.2 
+50% 8.0 -4.6 -2.9 -1.5 -6.5 

wZ �  
-50% -18.2 21.8 7.2 3.9 28.5 
+50% -50.6 -45.2 11.1 -6.6 -20.1 

sZδ

 -50% 68.7 55.5 -7.2 14.6 12.0 
+50% -2.9 -1.7 0.7 -0.2 -0.2 

qZ �  
-50% 3.0 1.8 -0.7 0.2 0.3 
+50% -2.1 -2.2 -0.7 -1.1 -1.3 

wM �

 -50% 0.5 1.4 0.3 0.7 1.0 
+50% -6.9 15.3 21.2 19.7 18.9 

qM �  -50% 0.5 -26.5 -
25.8 -26.9 -25.9 

+50% -38.3 -28.7 9.8 -3.1 -8.7 Mq -50% 78.2 110.8 -8.2 18.3 44.2 
+50% -26.5 -6.5 7.5 -0.7 10.6 Mw -50% 17.6 -5.5 -5.6 -2.4 -10.7 
+50% -31.9 -34.9 3.9 -7.0 -17.8 All -50% 163.6 197.5 -6.5 69.0 50.4 
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Table 5  Results of sensitivity studies of HDC values for 
vertical plane zigzag - SUBOFF body 
 
The change in trajectory for simultaneous variation in 
HDCs by ±50% for SUBOFF body is shown in Figure 8. 
As in Figure 7, the quickest responses correspond to 50% 
greater HDC values. 
 

 
Figure 8   Change in trajectory simulation results for 
SUBOFF body due to change in HDCs by ±50% 
 
 
5.4 SENSITIVITY STUDIES FOR ±10% 

CHANGE IN HDC VALUES 
 
Having gained some insight into the relative importance 
of HDC values for both the bodies, we now consider the 
effect of variation in the most significant HDCs by 
±10%. This is the maximum uncertainty estimated in the 
model testing process (Table 3), and we explore the 
effect of this magnitude of variation on the zigzag 
parameters. Results obtained by trajectory simulation 
using fully linear mathematical model for the 
axisymmetric body are given in Table 6, and for the 
SUBOFF body in Table 7. 

 
Table 6  Results of sensitivity studies, with small change 
in HDC values, for vertical plane zigzag - axisymmetric 
body 
 
 

 
Table 7  Results of sensitivity studies, with small change 
in HDC values, for vertical plane zigzag - SUBOFF body 
 
 
From Table 6 and 7, it emerges that the maximum 
change in trajectory parameters due to change in HDC 
values by ±10% is around 18% for the axisymmetric 
body and 9% for the SUBOFF body. Thus, considering 
an uncertainty of up to ±10% in HDC values estimated 
from model testing, the main parameters of the zigzag 
considered can be determined with a fair degree of 
confidence. 
 

% Change in Zigzag ParametersChange in 
HDC by ↓ θO zO te tc td 

+50% -3.6 -7.7 -5.6 -5.6 -5.3 sMδ

 -50% 4.4 9.4 6.6 6.5 6.1 
+50% 15.7 19.1 5.3 11.5 11.4 

wZ �  
-50% -17.4 -19.4 -6.4 

-
12.0 

-
11.4 

+50% 17.3 0.3 -11.4 -6.6 -6.6 
sZδ  

-50% -20.8 1.3 20.5 13.1 13.8 

+50% 13.6 -2.4 -11.9 -9.5 
-

10.3 Mw 
-50% -18.4 3.9 21.6 16.6 18.5 

+50% -2.33 -2.58 0.11 
-

1.01 
-

0.93 Zq 
-50% 2.43 2.72 -0.11 1.01 0.96 
+50% 54.9 16.0 -20.0 -5.9 -6.0 All -50% -37.9 11.0 57.1 39.0 41.7 

% Change in values of Zigzag 
Parameters Change in 

HDC by ↓ θO zO te tc td 
+10% 13.9 2.8 -6.9 -3.3 -4.0 sMδ

 -10% -18.0 -6.9 8.5 3.1 2.7 
+10% 1.0 -1.9 -1.0 -0.7 -2.1 

wZ �  
-10% -3.7 1.0 0.7 0.2 2.1 
+10% -12.0 -11.0 1.6 -2.2 -4.1 

sZδ

 -10% 12.1 11.2 -1.6 2.4 3.6 
+10% -1.2 -0.7 0.0 -0.2 -0.2 

qZ �  
-10% -0.4 -0.2 -0.3 -0.2 -0.1 
+10% -1.4 -1.0 -0.3 -0.4 -0.4 

wM �

 -10% -0.2 0.1 0.0 0.0 0.1 
+10% -2.4 3.0 4.2 4.1 3.9 

qM �  -10% -0.2 -4.7 -4.9 -4.8 -4.6 
+10% -10.3 -8.3 1.6 -1.3 -2.9 Mq -10% 9.7 9.1 -2.0 1.3 3.2 
+10% -4.6 0.4 1.3 0.0 2.6 Mw -10% 3.8 -1.0 -1.3 -0.4 -2.5 
+10% -8.8 -11.0 1.0 -2.4 -5.3 All -10% 10.1 14.3 -1.3 3.1 6.3 

% Change in Zigzag ParametersChange in 
HDC by ↓ θO zO te tc td 

+10% -0.68 -1.56 -1.16 -1.19 -1.07 sMδ

 -10% 0.90 1.82 1.27 1.23 1.17 
+10% 3.32 3.92 1.16 2.33 2.30 

wZ �  
-10% -3.25 -3.80 -1.16 -2.37 -2.27 
+10% 3.63 -0.05 -2.74 -1.72 -1.71 

sZδ

 -10% -3.77 0.09 3.06 1.89 1.95 
+10% 3.08 -0.48 -2.85 -2.24 -2.46 Mw -10% -3.33 0.45 3.16 2.46 2.72 
+10% -0.54 -0.59 0.00 -0.22 -0.21 Zq -10% 0.54 0.60 0.00 0.22 0.21 
+10% 8.88 1.21 -5.38 -2.81 -2.96 All -10% -8.34 -0.35 6.54 3.78 4.08 
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6. CUMULATIVE UNCERTAINTY IN 
MANOEUVRABILITY PREDICTION 

 
The likely ranges of uncertainty due to choice of type of 
mathematical model (Section 4), and values of HDCs 
(Section 5) have been examined for two bodies. The 
effect of these variations on the parameters of the vertical 
plane zigzag manoeuvre has been explored by trajectory 
simulation. For the cases considered, we now attempt to 
assess the cumulative uncertainty in the parameters of the 
definitive manoeuvres due to the stages of the 
manoeuvring prediction process. 
 
We consider the maximum variation in zigzag 
parameters due to choice of mathematical model (in 
trajectory simulation program) for the axisymmetric 
body, as listed in Table 2 as one source of uncertainty. 
The other source of uncertainty is due to variation in 
HDC values by ±10%, typical of model test values, as 
listed in Table 6 for axisymmetric body (Listed as case 
(a) in Table 8, with values taken from Table 6). Effect of 
variation of HDCs by ±50% is also listed (as case (b), 
with values taken from Table 4).  
 
Summing these, we obtain the cumulative uncertainty in 
prediction for the axisymmetric body in Table 8 and for 
the SUBOFF body in Table 9. The range of total 
uncertainty may thus be estimated as 11% to 55% for 
±10% variation of HDCs of axisymmetric body, for the 
manoeuvre considered. These values would be up to 45% 
for the SUBOFF body (using earlier results of Table 7). 
In case of ±50% variation of HDCs, the total uncertainty 
values would increase to up to 231% for axisymmetric 
body (and roughly up to 92% for SUBOFF body). 
 
 

Parameters 
of Zigzag → 

Source of 
Uncertainty

↓ 

θO zO te tc td 

Mathematica
l model 
(Trajectory 
simulation) 

37% 33% 6% 6% 10% 

(a) 
±10
% 

18% 14% 9% 5% 6% 
HDC 
value (b) 

±50
% 

164% 198% 29% 69% 50% 

(a) 55% 47% 15% 11% 16% 
Total 

(b) 201% 231% 35% 75% 60% 
 
Table 8 Estimation of uncertainty in manoeuvring 
prediction process for 15/5 vertical plane zigzag at 5 
knots – Axisymmetric body 
 

 
Table 9 Estimation of uncertainty in manoeuvring 
prediction process for 15/5 vertical plane zigzag at 5 
knots – SUBOFF body 
 
 
7. UNCERTAINTY IN FULL-SCALE TRIALS 
 
For each stage of the trajectory simulation process 
described above (formulation of mathematical model, 
program for trajectory simulation and estimating values 
of HDCs), the ultimate check for the manoeuvrability 
prediction procedure is to compare the predicted 
trajectory with the measured values during full-scale 
trials. However, such comparisons are not only rare [2, 7, 
19], but are also fraught with the uncertainties due to 
noise in the data obtained during full-scale trials, since 
laboratory conditions (say, of model testing for obtaining 
HDCs) cannot be replicated. 
 
It is therefore necessary to quantify typical levels of 
uncertainty in the full-scale measurement process in 
order to arrive at realistic estimates of the accuracy 
required of the entire process of manoeuvrability 
prediction. This is applicable for large manned 
submarines as well as small UUVs. 
 
7.1 SOURCES OF ERRORS 
 
As per uncertainty analysis described in [11], the errors 
in measurement can be of two types: bias errors (which 
are constant throughout an experiment, affecting all 
measurements in the same sense) and precision errors 
(which are random scatter in results during an 
experiment).  
 
Focusing our attention on zigzag manoeuvres in the 
vertical plane for underwater vehicles, we may identify 
the possible sources of bias errors in full-scale trials as:  

• Errors in measuring instruments for depth, pitch 
angle and speed of the vehicle 

• Set in inertial navigation or other motion / 
position-recording instruments 

• Hydrostatic imbalance of the vehicle 

Parameters 
of Zigzag → 

Source of 
Uncertainty↓ 

θO zO te tc td 

Mathematical 
model 
(Trajectory 
simulation) 

6% 5% 1% 5% 7% 

(a) 
±10% 9% 4% 7% 4% 4% HDC 

value (b) 
±50% 55% 19% 57% 39% 42% 

 (a) 15% 9% 8% 9% 11% Total  (b) 61% 24% 58% 44% 49% 
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• Changes in temperature of water with depth 
(affecting density and viscosity) 

• Ocean currents at different depths 
 
Sources of precision errors may be listed as follows: 

• Errors in recording and processing data, 
depending on frequency of measurements 

• Unknown and random sea water disturbances 
• Errors due to variation in time for applying 

control forces 
 
7.2 UNCERTAINTY ESTIMATES 
 
Most of the above errors are impossible to quantify 
exactly, but the expected variations can be estimated, 
albeit somewhat crudely. 
 
7.2(a) Instrumentation Bias 
 
During full-scale sea trials on manned underwater 
vehicles reported in [19], the instrument resolution (least 
count) for on-board instrumentation of various 
parameters was as follows.  
 

• Depth: 1 metre 
• Pitch angle: 1 degree 
• Time: 0.5 seconds 
• Plane angle: 1 degree 
• Speed: 0.5 knots 
 

Based on the above values, the uncertainty in each of the 
parameters of interest in the zigzag manoeuvre may be 
quantified for typical assumed values, as shown in Table 
10. The values used are those for the axisymmetric body 
parameters (Table 1) for the 15/5 zigzag. 
 

Parameter Typical 
Value 

Instrument 
Uncertainty 

Overshoot pitch angle 
(θO) 

2 degrees 0.500 

Overshoot change of 
depth (zO) 

3 metres 0.333 

Time to reach execute 
(te) 

6 seconds 0.083 

Time to check pitch (tc) 9 seconds 0.111 
Time to check depth (td) 19 seconds 0.026 

Table 10 Typical bias error estimated based on 
measuring instrument resolution (least count) 
 
For UUVs, the values would change according to the 
resolution of the instruments installed, but may be 
estimated using the same approach. 
 
7.2(b) Sea Water Density Variation 
 
The variation in density of sea water of tropical waters 
may be from 1.015 to 1.030 tons/m3. Change of vehicle 
depth in a region with sharp temperature gradient may 
cause imbalance between weight and buoyancy, which 

may be as much as 0.25% of the vehicle displacement. 
The effect of this magnitude of change during the course 
of a typical zigzag manoeuvre was found to be marginal. 
The uncertainty due to this source of error may be 
roughly estimated (on the higher side) as 0.003 for θO 
and 0.005 for zO. 
 
7.2(c) Errors in Data Recording 
 
The value of precision error due to recording and 
processing data may be estimated in model testing by 
repeating a particular observation at different points of 
time. However, for sea trials, it is near-impossible to 
repeat the experiment in exactly the same fashion with 
the same environmental conditions to gauge the errors in 
the instrumentation or recording process. However, the 
values of error in data recording may be estimated to be 
of the order of the least count of the instruments for 
depth, pitch angle, time and speed. This suggests 
additional uncertainty values similar to those listed in 
Table 10. 
 
Currents have not been mentioned explicitly, but their 
effects may be included in the environmental 
uncertainties affecting the data recording process. 
Currents may not affect the recorded motion parameters 
if the UUV measures speed through water, but could 
significantly bias the results if instead, its speed over the 
ground is measured using a Doppler velocity log. 
 
7.2(d) Error in Control Force Application 
 
Precision errors due to control force application result 
from inexact or asynchronous application of plane 
angles. Particularly in case of manned submarines, the 
time required to apply plane angle when ordered may 
vary from operator to operator and may not exactly 
coincide with the moment the execute pitch angle is 
reached. Typical variations are of the order of 2 seconds, 
leading to uncertainties in all time parameters of the 
zigzag manoeuvre by the same amount, and a variation in 
the overshoot angle by as much as 1-2 degrees, and 
variation in overshoot change of depth by 2-5 metres. 
These values are typical for low speeds (3 to 5 knots) and 
may be somewhat higher for greater speeds. The 
consequent uncertainties in the parameters of interest, for 
sample values listed in Table 10, may be (lower values): 
0.50 for θO , 0.67 for zO, 0.33 for te, 0.22 for tc, and 0.11 
for td.  
 
In case of UUVs, this error due to human action would 
not be present. However, the uncertainty in time lag for 
actuation of control surfaces based on a logical input may 
need to be estimated for unmanned vehicles. 
 
7.3 CUMULATIVE UNCERTAINTY IN FULL-

SCALE MEASUREMENTS 
 
In the worst case scenario, all the errors quantified above 
can occur simultaneously and hence the uncertainties 
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estimated due to various sources of error would add up. 
Since all possible sources of error have not been 
quantified, this estimate is not necessarily conservative 
(i.e., the actual error may be even greater). Since all 
parameters of interest in the zigzag manoeuvre are 
measured directly in the full-scale trials, simple addition 
of the uncertainties due to the sources of error would 
suffice. Thus, summing up the estimated uncertainty 
values for various sources of error described above, the 
results are given in Table 11.  
 

Parameter Assumed 
Value 

Total 
Uncertainty 

Overshoot pitch angle 
(θO) 

2 degrees 
1.503 

Overshoot change of 
depth (zO) 

3 metres 
1.338 

Time to reach 
execute (te) 

6 seconds 
0.500 

Time to check pitch 
(tc) 

9 seconds 
0.444 

Time to check depth 
(td) 

19 seconds 
0.158 

Table 11  Typical uncertainty levels estimated based on 
various sources of bias and precision errors for one set of 
parameter values 
 
In case of an UUV, if the uncertainty due to error in 
control force application is ignored, the total uncertainty 
for the case considered would reduce to 1.00 for θO , 0.67 
for zO, 0.17 for te, 0.22 for tc, and 0.05 for td. 
 
It may be noted that these estimates are only meaningful 
for values of parameters close to those assumed as 
‘typical’. For different speeds, and certainly for different 
vehicles, these values would vary and accordingly the 
uncertainty levels would also change. In general, it is 
likely that for more unstable or larger bodies and / or 
greater speeds (or plane deflections), the values of 
parameters measured would be greater. In such a 
scenario, the associated uncertainties are likely to be 
lower.  
 
To illustrate this aspect, the estimated total uncertainty 
for another set of parameters (for a case of higher speed 
or a more unstable vehicle or a greater control surface 
deflection) is shown in Table 12. The assumed values are 
similar to those obtained by simulation for the SUBOFF 
body in 15/5 zigzag (Table 1), which is a more unstable 
body than the axisymmetric body considered earlier. 
 
In the uncertainty analysis described here, although some 
aspects pertain to manned submarines, the likely changes 
in case of UUVs have been mentioned. The typical 
manoeuvre parameter values quoted here also pertain to 
simulation of UUV-sized bodies. Hence the range of 
uncertainty reported is fairly representative of the entire 
gamut of underwater vehicles. 
 
 

Parameter Assumed 
Value 

Total 
Uncertainty 

Overshoot pitch angle 
(θO) 

11 degrees 
0.276 

Overshoot change of 
depth (zO) 

26 metres 
0.159 

Time to reach execute 
(te) 

19 seconds 
0.158 

Time to check pitch (tc) 45 seconds 0.089 
Time to check depth 
(td) 

75 seconds 
0.040 

Table 12 Typical uncertainty levels estimated for another 
set of parameter values (for higher speeds / more 
unstable body/ greater plane deflection) 
 
 
8. CONCLUSIONS 
 
The process of manoeuvrability prediction of underwater 
vehicles is fraught with uncertainties at every stage. It is 
important to have an overall perspective of the subject in 
order to ensure that estimates at every stage are 
reasonably accurate, while also optimising the time and 
effort required in the process. 
 
This study has considered two body geometries. A 
generalised trajectory simulation program was 
developed, using which simulations have been carried 
out using three mathematical models. Results have been 
presented for a typical 15/5 vertical plane zigzag 
manoeuvre at 5 knots. Conclusions have been drawn 
regarding the effect of various choices on the values of 
main parameters obtained from simulating this 
manoeuvre. 
 
It was seen that choice of mathematical model (linear / 
non-linear) can influence the zigzag trajectory parameters 
by 1% to 37%, with greater effect on the pitch overshoot 
and depth overshoot, which are measures of the depth-
keeping  (rather than depth-changing) ability of the 
underwater vehicle.  
 
Estimation of HDC values is usually the most time-
consuming aspect of manoeuvrability prediction. Based 
on sensitivity analysis of the effect of HDC values on 
vertical plane zigzag parameters, it was seen that for the 
axisymmetric body considered, MδS, ZδS and Mq are most 
significant. Variation in any one of these HDCs by ±50% 
causes more than 50% change in at least one of the 
zigzag parameters. However, for the SUBOFF body 
(which is more akin to a submarine form), the most 
significant HDCs emerge as , ,w s wZ Z Mδ� , for which 
individual ±50% change does not cause change of zigzag 
parameters by more than 21%. If all significant HDCs 
are varied by ±50% simultaneously, the zigzag 
parameters change by up to 55% for SUBOFF and up to 
almost 200% for the axisymmetric body. Thus, the 
sensitivity of HDCs depends not only on the 
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mathematical model adopted, but also on the manoeuvre 
considered and the body geometry being studied. 
 
Considering the experimental uncertainty (from model 
testing) as up to 10%, it emerges that the resultant 
uncertainty in zigzag parameters is approximately 18% 
for the axisymmetric body and 9% for the SUBOFF 
body. Summing up the possible uncertainties in the 
various stages of manoeuvrability prediction discussed, a 
figure of uncertainty of 11% to 55% may be suggested 
for the parameters of the manoeuvre considered in this 
study, for the axisymmetric body. For the SUBOFF 
body, this value would be approximately up to 45%.  
 
However, if a variation of ±50% in the HDC values is 
assumed (which may be the case if prediction methods 
other than model tests, such as empirical or numerical 
methods, are used for HDC estimation), then the 
consequent range of uncertainty increases to 
approximately 231% for axisymmetric body and 92% for 
the SUBOFF body. 
 
Uncertainty estimation for various sources of error has 
been discussed for full-scale sea trials, which are the 
ultimate benchmark for any prediction process. It is seen 
that the uncertainty levels in the measurement process 
depend on many unknown factors, and also on the values 
of manoeuvre parameters. Based on two typical cases, it 
is estimated that error magnitude of various parameters 
during full-scale measurements may vary from 5% to 
150% for manned submarines and up to 100% in case of 
UUVs.  
 
This range of uncertainty values in the measurement 
process appears greater than the cumulative uncertainty 
(11-55%) in the overall prediction process, considering 
10% uncertainty in HDC values. However, in case the 
uncertainty in HDC values in higher (say ±50%), then the 
uncertainty levels of predicted zigzag parameters would 
be substantially greater than the uncertainty in full-scale 
measurements. 
 
The quantitative results presented are for very specific 
cases of manoeuvre type, mathematical model, body 
geometry (typical of UUVs and submarines) and vehicle 
sizes (typical of UUVs). In addition, the following 
generic qualitative conclusions may be drawn:- 
 

• The mathematical model used for trajectory 
simulation may contribute to a similar or even 
greater degree of uncertainty in results, 
compared to uncertainty due to variation in 
HDC values. 

• The sensitivity (relative importance) of HDCs 
depends on the mathematical model, the 
manoeuvre considered, as well as the body 
geometry.  

• Full-scale trials of the body performing open-
loop definitive manoeuvres are the ultimate test 
of any manoeuvrability prediction process, but 

these trials have their own levels of uncertainty, 
affected by the manoeuvre performed. 

• In real-life operations, uncertainties in the 
prediction process are often masked by the 
close-loop control system action of the operator 
or autopilot, unless the vehicle is highly 
unstable. 

 
It needs to be emphasised that predictions need to be 
only as accurate as can be measured and verified. The 
quantification of uncertainties at various stages can offer 
insight into margins for improvement in each of the 
stages of manoeuvrability prediction during design. 
Meaningful targets can thus be set for accuracy of each 
aspect of the manoeuvrability design process.  
 
Further studies may expand the approach adopted here to 
other definitive manoeuvres, other bodies and other 
mathematical models. 
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