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SUMMARY 

 

Designing bulbous bows for ships remains a challenging task.  Their impact on different design attributes as well as their 

change in performance when operating off their intended design condition renders this as a multidimensional problem.  This 

paper explores the application of machine learning techniques to a sample of in-service vessel data to develop a preliminary 

design tool.  The ships' data was analysed together with their bulbous bow data to generate machine learning models using a 

supervised approach.  The K Nearest Neighbours Classifier and Regression models were used as the basis of the tool.  

Together, these models can be used to predict whether to install a bulbous bow and the recommended dimensionless 

coefficients for new vessels. Generating this preliminary bulbous bow design tool required the introduction of new 

dimensionless coefficients that discretise the bulbous bow's longitudinal section.  The preliminary design tool gives the 

designer the ability to determine whether a bulbous bow should be fitted and, if so, to obtain an initial estimate of the bulbous 

bow required for the vessel being designed, based on key input parameters that relate to the ship and its operation.  The new 

design tool is demonstrated to provide preliminary design details for bulbous bows through the case studies.   

 

 

NOMENCLATURE 

 

A Administrative 

CFD Computational Fluid Dynamics 

IHS Information Handling Services 

KNN K Nearest Neighbours 

MAE Mean Absolute Error 

NYK Nippon Yusen Kabushiki 

PF Performance Features 

QQ Quantile - Quantile 

SP Ship Particulars 

SRP Ship Route Prediction 

TP Taxonomic Parameters 

  
𝐵𝑀𝑜𝑢𝑙𝑑𝑒𝑑
𝐷𝑀𝑜𝑢𝑙𝑑𝑒𝑑

 
Beam to Depth Ratio (-) 

𝐵𝑀𝑜𝑢𝑙𝑑𝑒𝑑
𝑇𝐷𝑒𝑠𝑖𝑔𝑛

 
Beam to Draught Ratio (-) 

𝐿𝐵𝑃
𝐵𝑀𝑜𝑢𝑙𝑑𝑒𝑑

 
Length to Beam Ratio (-) 

𝐿𝐵𝑃
𝐷𝑀𝑜𝑢𝑙𝑑𝑒𝑑

 
Length to Depth Ratio (-) 

𝐶𝐴𝑅 Aspect Ratio Coefficient (-) 

𝐶𝐻𝐵𝑜𝑡𝑡𝑜𝑚 Ratio of the bulb’s bottom height to 

the bulb’s total height (-) 

𝐶𝐻𝐹𝑎𝑖𝑟𝑖𝑛𝑔 Ratio of the bulb’s fairing height to 

the bulb’s total height (-) 

𝐶𝐻𝐹𝑙𝑎𝑡  Ratio of the bulb’s top flat height to 

the bulb’s total height (-) 

𝐶𝐻𝑇𝑜𝑝 Ratio of the bulb’s top height to the 

bulb’s total height (-) 

𝐶𝐿𝐹𝑎𝑖𝑟𝑖𝑛𝑔𝐵𝑃 Ratio of the bulb’s fairing length to 

the Vessel’s LBP (-) 

𝐶𝐿𝐹𝑎𝑖𝑟𝑖𝑛𝑔𝑀𝑎𝑥
 Ratio of the bulb’s fairing length to 

the bulb’s LMax (-) 

𝐶𝐿𝐹𝐿𝐴𝑇𝐵𝑃 Ratio of the bulb’s flat proportion 

over the vessel’s LBP (-) 

𝐶𝐿𝐹𝐿𝐴𝑇𝑀𝑎𝑥
 Ratio of the bulb’s flat proportion to 

the bulb’s LMax (-) 

𝐶𝐿𝑃𝑅 Ratio of the bulb’s  
𝐿𝑀𝑎𝑥 to the ship’s length between 

perpendiculars (-) 

𝐶𝑇𝑜𝑝 Ratio of the bulb’s top draught to the 

Vessel’s draught (-) 

𝐶𝑇 Ratio of the bulb’s draught centre 

point to the Vessel’s draught (-) 

𝐻𝐵𝑜𝑡𝑡𝑜𝑚 Vertical height from the base of the 

bulbous bow to the bottom of HFlat 

(m) 

𝐻𝐹𝑎𝑖𝑟𝑖𝑛𝑔 Height from the keel line to the base 

of the bulb (m) 

𝐻𝐹𝑙𝑎𝑡 Vertical height of the flat proportion 

of the bulbous bow (m) 

𝐻𝑇𝑜𝑝 Vertical height from the base of the 

bulbous bow to the top of HFlat (m) 

𝐻𝑇𝑜𝑡𝑎𝑙 Total bulb height at the base of the 

bulb (m) 

𝑘 Number of neighbours (-) 

𝐿𝐵𝑃 Ship’s length between 

perpendiculars (m) 

𝐿𝐹𝑎𝑖𝑟𝑖𝑛𝑔 Length of bulb fairing (m) 

𝐿𝐹𝑙𝑎𝑡 Length of the top flat proportion of 

the bulbous bow (m) 

𝐿𝑀𝑎𝑥 Longitudinal distance between the 

maximum longitudinal offset from 

the forward perpendicular (m) 

𝑇𝐶𝑒𝑛𝑡𝑟𝑒 Draught to the bulb’s central point 

on HFlat (m) 

𝑇𝐷𝑒𝑠𝑖𝑔𝑛 Ship’s design draught (m) 

𝑇𝑇𝑜𝑝 Head of water present above the 

base of the bulb (m) 
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1. INTRODUCTION 

 

A ship's hullform is a complex composition of curves and 

contours.  Its final shape has a major impact on the ship's 

energy performance, payload carrying capacity, sea 

keeping and manoeuvring ability.  When a vessel's 

hullform is modified it has an effect on the whole design 

that is not straight forward to recognise or quantify.  

With multiple design activities intertwined to ensure the 

final design is safe and feasible, iterative procedures are 

commonly used to enable convergence to a solution that 

satisfies all the necessary requirements for that particular 

vessel.  The desire to have optimised vessels that perform 

well in a range of different operating conditions, such as 

multiple speeds, adds another layer of complexity to the 

design challenge. 

 

Bulbous bows are a widely-used feature in hullform 

design aimed at reducing a vessel’s wave-making 

resistance.  They are expected to generate a wave 

forward of the bow that interacts with the vessel’s wave 

system, resulting in destructive interference (Kracht, 

1978; Larsson, 2010).  This interaction reduces the wave-

making component of the vessel’s total resistance 

typically by up to 5% but more generous savings of up to 

15% have also been recorded (Tsakalakis and et al., 

2014). 

 

In addition to the wave making component, bulbous 

bows can also be designed to impact the hullform's 

viscous resistance.  This can be done by extending the 

hullform's length to facilitate a better flow transition 

between the hullform’s main body and the bow (Kracht, 

1978).  Such bulbous bows are therefore typically found 

on vessels having block coefficients larger than 

approximately 0.7, typically on tankers and bulk carriers. 

 

Designing a bulbous bow is a multidimensional problem 

and despite their extensive use, bulbous bows are still 

challenging to design for a particular vessel's operating 

profile.  Their shape is dependent on several attributes 

such as resistance, hydrostatics and seakeeping.  Should 

the design of the bulbous bow be comprehensive enough 

to factor in these attributes, their in-service performance 

is influenced with the way the vessel is operated.  Factors 

such as the vessel's loading condition, speed and 

operational environment are all known to alter the 

bulbous bow's performance (Grech La Rosa et al., 2015). 

Despite their importance, the tools currently available to 

design bulbous bows are limited and few sources provide 

assistance for their early stage design (Kracht, 1978; R 

Sharma and Sha, 2005). 

 

Whilst vessels are expected to perform well in different 

scenarios with varying operating conditions (Banks et al., 

2013; Christensen et al., 2018), a bulbous bow has a 

fixed, rigid shape.  Therefore, its contribution to 

resistance reduction will not be constant given the 

change in conditions it experiences.  Companies such as 

Maersk (Jonathan, no date; Klimt-Møllenbach, no date; 

Cerup-Simonsen et al., 2009), Wilh Wilhelmsen and 

Nippon Yusen Kabushiki Kaisha's (NYK) (New Bulb to 

Save Fuel, 2014; Tolstrup, 2017) have replaced some of 

their vessel's bulbous bows with alternatives to suit a new 

operating profile, i.e. reduced speed.  Such measures 

show the importance of having a bulbous bow 

appropriately designed for a particular vessel and 

operating condition. 

 

One of the principal resources is still the publication by 

Kracht (1978), which gives guidance on designing 

bulbous bows focusing on their wave-making 

performance.  This work involved systematically altering 

the shape of the bulbous bow and measuring the changes 

in vessel resistance in towing tank experiments.  Whilst 

this work is invaluable, a desire to have a more 

accessible means of predicting a bulbous bow's expected 

performance exists amongst industry stakeholders. 

 

One way of achieving this is by Computational Fluid 

Dynamics (CFD) analysis.  This route is typically taken 

to carry out in-depth assessment of a bulbous bow's flow 

features to determine whether it is performing as 

expected (Atreyapurapu, Tallapragada and Voonna, 

2014; Park et al., 2015; Hakan Ozdemir et al., 2016).  In 

order to be able to conduct this analysis, the designer 

must already have a geometric model of both the 

hullform and the bulbous bow.  The baseline bulbous 

bow model can then be modified in an attempt to 

improve its performance.  This could be done manually 

or by using other bespoke software or algorithms to 

facilitate a more mathematical approach to the problem 

(Renaud and Berry, 2013). 

 

In practice, bulbous bows are typically designed using a 

combination of these two methods, increasing the 

complexity of the approach as the design matures.  

Although not explicitly published, it is known that 

hullform designers extensively use their professional 

judgement and utilise previously designed vessels as case 

studies when defining new designs.  The methods 

employed in each company to carry out this analysis are 

commercially sensitive protocols.  Such procedures may 

aid the designer in identifying the most effective bulbous 

bow from the set being considered, but not necessarily 

the most effective bulbous bow for that vessel. 

 

Finding solutions to multidimensional optimisation 

problems is a challenge that is experienced in many 

fields.  Different data analysis methods could be used to 

address these tasks, which use recorded data to predict a 

desired outcome based on predefined input parameters.  

These approaches vary according to the volume of data 

available and whether the prediction is related to 

classification for categorical outputs or regression for 

numerical outputs.  Machine learning solutions can be 

supervised, unsupervised, semi-supervised or use 

reinforcement learning (Sarker, 2021).  These strategies 

differ according to how the data is used to generate a 

prediction.  Supervised learning creates a mapping 
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between the input and output variables using the data 

source’s matched input and output values.  If data is 

unlabelled, unsupervised learning techniques map data 

according to similarities, clusters and patterns without 

human intervention.  Datasets having partially labelled 

data can benefit from semi-supervised learning which is 

a combination of two.  Reinforcement learning on the 

other hand uses models that learn directly from the 

environment that they are interacting with, and are thus 

most suited to control applications. K Nearest 

Neighbours (KNN) Classifier, Linear Support Vector 

Classification (SVC) and Naïve Bayes are examples of 

classification models, whilst Stochastic Gradient Descent 

(SGD) Regressor, Lasso and Elastic Net are examples of 

models used for regression analysis. 

 

Data science is being widely used in various industries 

such as business (Bose and Mahapatra, 2001), health care 

(Norgeot, Glicksberg and Butte, 2019), aviation (Zhang 

and Mahadevan, 2019) and manufacturing (Wuest et al., 

2016).  It is also being used in the shipping industry, for 

example Cui et al (2012) applied the Atkinson and 

Shiffrin model, as well as the memory concept by 

Baddeley to aid the optimisation process of their 

algorithm through deep learning.  They carried out a case 

study on the structural optimisation of a bulk carrier to 

highlight the benefits of using such an approach.  The 

model catered for important attributes related to a ship's 

structure and recognised the various limitations imposed 

by different regulating bodies.  The results show an 

8.15% reduction in structural weight.  Other applications 

include the work carried out by Trodden (Trodden et al., 

2015) showing how data analysis can be used to monitor 

and predict a vessel's fuel usage for energy efficient 

operations, whilst Duca et al (2017) used the K Nearest 

Neighbour classifier (KNN) to generate a Ship Route 

Prediction (SRP) algorithm. 

 

Machine learning methods have also been applied to the 

development of preliminary design tools.  In the study 

carried out by Cepowski (2017), the data from a fleet of 

container ships was used to predict the main engine 

power of newly proposed container ships by means of the 

linear regression equations plotted through the data used.  

Abramowski (2010) applied neural network theory to 

established empirical equations from experiments.  The 

input parameters to generate the result set were retrieved 

from available vessel databases.  The neural network 

consisted of five input parameters and made use of the 

Levenberg-Marquard learning algorithm.  Gaspar (2019) 

proposed the increased use of data driven analysis for 

ship design applications.   

 

Given the complexity involved in bulbous bow design, 

this study aims to apply data science approaches to aid 

the designer in determining whether a bulbous bow 

should be considered for the vessel being designed and, 

if so, what longitudinal profile it should have.  In this 

work, data analysis combined with statistical 

examination and data visualisation is used to suggest 

initial bulbous bow dimensionless coefficients from a 

collection of in-service vessels, thus developing a tool 

that aids early-stage bulbous bow design.   

 

The geometries of bulbous bows of different vessels  

are scrutinised to update the characterisation of bulbous 

bows.  New variables pertaining to different bulbous  

bow dimensions are recorded to define the shape of a 

bulbous bow by means of new dimensionless 

coefficients.  Spatial plots are used to illustrate the results 

from an  

initial study to identify trends between the different 

parameters considered.  Statistical methods are then  

used to provide evidence of any features that may aid  

in generating repeatable results of the bulbous bow 

dimensionless coefficients. 

 

2. GEOMETRY OF BULBOUS BOWS 

 

A clear definition of a bulbous bow is first required. A 

bulbous bow is a bulging formation in the vessel’s 

structure at the forward end of the vessel that typically 

extends beyond the forward perpendicular. 

 

The standard measurements typically used for bulbous 

bows were defined by Kracht (1978).  These 

measurements define the primary parameters that 

influence a bulbous bow’s shape when the vessel is 

sitting at its design waterline.  Since then, the number of 

differing bulbous bows has increased, some having 

distinctly dissimilar shapes to the ones considered by 

Kracht.  The bulbous bow's aspect ratio as well as the 

longitudinal profile's curvature vary greatly.  These 

differences impact the bulbous bow's performance 

making each style of bulbous bow more appropriate to 

different ship types having different requirements. 

 

This study builds on the work of Kracht (1978) and 

introduces a series of new variables, measurements  

and dimensionless coefficients.  By decomposing the  

main lines that form the shape of the bulb, a more 

extensive representation of modern-day bulbous bows  

is proposed that caters for a larger variety of bulbous 

bows.  Unconventional bulbous bows that do not exhibit 

typical longitudinal profiles, such as those found on ice 

breaking ships or special purpose vessels, are outliers to 

the new representation.   

 

These new dimensionless coefficients allow the 

additional geometric features of modern bulbous bows 

to be captured.  This is principally required since the 

selection of bulbous bow longitudinal profiles has 

increased since Kracht's study.  Additional parameters 

to discretise the bulbous bow’s transverse section 

along the bulbous bow’s length should be considered 

in future work.   

 

The reference lines used in the analysis are the design 

waterline and the forward perpendicular.  These two lines 

act as a means of sectioning off the bulbous bow from 
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the rest of the hullform.  The proportion of the forward 

perpendicular that intersects the hull's bow will be 

referred to as the base of the bulbous bow. 

 

Figure 1 shows a marked-up sketch of the newly 

proposed measurements.  Table 1 records each of the 

variables labelled on the diagram together with a brief 

description of what they represent. 

 

 

Figure 1 - Diagram of a bulbous bow with the proposed 

dimensions 

Table 1 - Proposed bulbous bow dimensions 

Variable Description 

LMax The longitudinal distance between the 

maximum longitudinal offset from the 

forward perpendicular 

HTotal The total bulb height at the base of the bulb 

LFlat The length of the top flat proportion of the 

bulbous bow 

LFairing The length of bulb fairing 

TTop The head of water present above the base of 

the bulb 

TCentre The draught to the bulb’s central point on 

HFlat 

HFlat The vertical height of the flat proportion of 

the bulbous bow 

HTop The vertical height from the base of the 

bulbous bow to the top of HFlat 

HBottom The vertical height from the base of the 

bulbous bow to the bottom of HFlat 

HFairing The height from the keel line to the base of 

the bulb 

The fairing of the main hullform into the bulbous bow is 

also important (R Sharma and Sha, 2005a; Larsson, 

2010).  This fairing is defined as the proportion of the 

bow arrangement that streamlines the bulbous bow aft of 

the forward perpendicular to the vessel’s keel. 

   

Whilst a bulbous bow may not necessarily be totally 

submerged, the complete bulbous bow profile must still  

be accounted for.  As the waterline changes during the 

vessel’s operating profile, some of its dimensionless 

coefficients will also change resulting in a change in the 

bulb’s performance.  The base of the bulb though  

remains constant.  By introducing new parameters to 

discretise a bulbous bow, new dimensionless coefficients 

may be defined that allow the similarities or differences 

between bulbous bows to be identified.  These have been 

recorded in two sets to reflect the fact that some of  

these dimensionless coefficients would vary as the 

waterline changes. 

 

The fixed set of dimensionless coefficients is the larger 

of the two.  It comprises of Kracht's bulbous bow overall 

length ratio as can be seen in Equation 1 as well as the 

new dimensionless coefficients being defined here. 

 

 
𝐶𝐿𝑃𝑅 =

𝐿𝑀𝑎𝑥
𝐿𝐵𝑃

 
Eq1 

 

Equation 2 shows the bulbous bow aspect ratio 

coefficient which is the ratio of the bulbous bow’s 

maximum length to its total height.  This coefficient can 

be used to distinguish between bulbous bow types. 

 

 
𝐶𝐴𝑅 =

𝐿𝑀𝑎𝑥
𝐻𝑇𝑜𝑡𝑎𝑙

 
Eq2 

 

Equation 3 and Equation 4 relate the top flat proportion 

of the bulbous bow to the ship's length between 

perpendiculars and the bulbous bow’s maximum length.  

Should the flat proportion not be parallel to the waterline, 

the angle between the waterline and top of the bulbous 

bow, µ, was proposed as a parameter.  A positive µ 

represents a bulbous bow having its nose pointing down. 

 

 
𝐶𝐿𝐹𝑙𝑎𝑡𝐵𝑃 =

𝐿𝐹𝑙𝑎𝑡
𝐿𝐵𝑃

 

 

Eq3 

 
𝐶𝐿𝐹𝑙𝑎𝑡𝑀𝑎𝑥 =

𝐿𝐹𝑙𝑎𝑡
𝐿𝑀𝑎𝑥

 

 

Eq4 

The changes in bulbous bow longitudinal profile over its 

height have been recorded by means of Equations 5 to 

Equation 7 which express the top, flat and bottom 

proportions of the bulbous bow as a fraction of the total 

height.  Combined, these dimensionless coefficients can 

be used to understand how the bulbous bow can be 

subdivided along its height. 

 

 
𝐶𝐻𝑇𝑜𝑝 =

𝐻𝑇𝑜𝑝

𝐻𝑇𝑜𝑡𝑎𝑙
 

Eq5 

 
𝐶𝐻𝐹𝑙𝑎𝑡 =

𝐻𝐹𝑙𝑎𝑡
𝐻𝑇𝑜𝑡𝑎𝑙

 
Eq6 

 𝐶𝐻𝐵𝑜𝑡𝑡𝑜𝑚

=
𝐻𝐵𝑜𝑡𝑡𝑜𝑚
𝐻𝑇𝑜𝑡𝑎𝑙

 

Eq7 
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The length and height of the fairing are discretised by 

means of Equation 8 to Equation 10.  These 

dimensionless coefficients express the fairing's length 

and height to the ship's length between perpendiculars as 

well as the bulbous bow's maximum length and height. 

 

 𝐶𝐿𝐹𝑎𝑖𝑟𝑖𝑛𝑔𝐵𝑃

=
𝐿𝐹𝑎𝑖𝑟𝑖𝑛𝑔

𝐿𝐵𝑃
 

Eq8 

 𝐶𝐹𝑎𝑖𝑟𝑖𝑛𝑔𝑀𝑎𝑥

=
𝐿𝐹𝑎𝑖𝑟𝑖𝑛𝑔

𝐿𝑀𝑎𝑥
 

Eq9 

 𝐶𝐻𝐹𝑎𝑖𝑟𝑖𝑛𝑔

=
𝐻𝐹𝑎𝑖𝑟𝑖𝑛𝑔

𝐻𝑇𝑜𝑡𝑎𝑙
 

Eq10 

 

The second set of dimensionless coefficients relate the 

bulbous bow with its loading condition.  Equation 11 

expresses the bulbous bow's draught as a ratio of the 

vessel's draught.  This dimensionless coefficient is a 

modified version of Kracht's where the draughts being 

considered are defined from the design waterline  

instead of the keel.  When analysing the bulbous  

bows performance over a range of operating conditions, 

the design waterline could be replaced with the  

operating waterline. 

 

 
𝐶𝑇 =

𝑇𝐶𝑒𝑛𝑡𝑟𝑒
𝑇𝐷𝑒𝑠𝑖𝑔𝑛

 
Eq11 

 

The head of water on top of the bulbous bow is factored 

in by means of Equation 12.  Should a proportion of the 

bulbous bow be out of the water, a negative value is 

assigned to TTop. 

 

 
𝐶𝑇𝑜𝑝 =

𝑇𝑇𝑜𝑝

𝑇𝐷𝑒𝑠𝑖𝑔𝑛
 

Eq12 

 

3. DATA 

 

3.1 DATA SOURCE 

 

To investigate whether data analysis techniques can be 

used to obtain initial estimates of bulbous bow 

characteristics for different ships with varying operating 

variables, a data sample is needed. 

 

The only available source to collect this data was 

identified to be Significant Ships (Royal Institution of 

Naval Architects, 2012, 2013, 2014, 2015, 2016, 2017, 

2018).  This is an annual publication which presents a 

variety of vessels that are deemed to be at the forefront of 

the market for that particular year.  As well as the ship’s 

particulars, the publication also provides a longitudinal 

section of the vessel.  Unfortunately, no lines plans or 

transverse sections that could be used to quantify the 

bulbous bow’s offsets, sectional areas or volume are 

provided.  In the absence of additional resources to 

conduct this study, this data source was deemed 

suitable to investigate this proof-of-concept 

preliminary design tool. 

 

The publications from 2012 to 2018 were used as the 

basis of this work resulting in a total of 298 ships (Royal 

Institution of Naval Architects, 2012, 2013, 2014, 2015, 

2016, 2017, 2018).  The data manually recorded from 

these publications could be categorised into four 

categories, being: 

 

1. Administrative – A 

2. Taxonomic Parameters - TP 

3. Ship Particulars - SP 

4. Performance Features - PF 

 

Examples of the fields used in each category are recorded 

in Table 2.  Administrative variables helped manage data 

through the data manipulation stages whilst the 

taxonomic data was used to filter through the different 

types of ships.  Ship particulars and performance features 

were essential to create the machine learning model to 

record trends in the data set.    

 

Table 2 - Examples of fields used in each category 

Administrative  

 

(A) 

Taxonomic 

Parameters   

(TP) 

Ship 

Particulars   

(SP) 

Performance 

Features  

(PF) 

Publication 

Year 

Ship Family Overall 

Length 

Design Speed 

IMO Number Ship Type Design 
Draught  

Total Power 

Ship Name Designer Block 

Coefficient 

Fuel 

Consumption 

 

The bulbous bow measurements required to quantify the 

dimensionless coefficients were manually extracted from 

the drawings available.  This was done by: 

 

1. importing the ship drawing image into CAD 

software; 

2. manually taking measurements of known 

reference lengths, typically the overall length; 

3. marking the design draught on the drawing by 

scaling the recorded draught to that of the 

drawing; 

4. measuring and recording each bulbous bow 

measurement; 

5. automatically scaling the bulbous bow 

measurements taken from the drawing to the 

full-scale length by means of a python code. 

 

This procedure was repeated for each vessel equipped 

with a bulbous bow.  Those vessels without a bulbous 

bow only had their other variables recorded. 
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3.2 DATA DISTRIBUTION 

 

The distribution of vessels with and without bulbs is 

82.9% and 17.1% respectively.  This clearly 

demonstrates the bias towards vessels being designed and 

built fitted with bulbous bows.  Such an imbalance in the 

dataset could lead to inaccurate predictions favouring 

vessels  

with bulbous bows.  For the purposes of this initial  

study, it was decided not to artificially balance the data 

sets to record what the outcome would be.  To see  

whether a vessel type had the likelihood of being  

equipped with or without a bulb, a histogram showing 

the distribution of vessel types with and without bulbs for  

the whole of the sample was plotted. 

 

A total of 43 ship types were recorded with the 

maximum population being 55 for container ships.  The 

sample  

was too restricted for some ship types, with some having 

a population of one.  To rectify this, a modified 

Information Handling Services (IHS) Statcode5 

classification system as shown in Figure 2 was used to 

generate clusters according to Level 2, which is referred 

to as the Family (IHS Markit, 2018).  This subdivision 

resulted in larger populations for each family with 28 

passenger vessels, 90 dry cargo vessels, 39 bulk carriers, 

110 tankers and 31 miscellaneous vessels.  No fishing or 

offshore vessels were considered in this study.  As can be 

seen from Figure 3, a more uniform distribution between 

the vessels is recorded.   

 

 

Figure 2 - Modified IHS Classification System 

 

 

Figure 3 - Distribution of vessel families with and 

without bulbs 

A total of 88 ship design companies were recorded in the 

sample, but no particular company had designed more 

than 9.7% of the vessels, meaning that there is not a bias 

towards the design methodologies employed by a 

particular ship designer in this study. 

 

3.3 DATA VERIFICATION 

 

Since the data sourced was not intended to be used for such 

an application, verification of data against other sources was 

carried out to determine the quality of the sample.  Ship 

particulars were also cross referenced against its drawing to 

determine whether the data was consistent.   

 

Where data was missing, alternative sources were 

consulted to populate the missing fields.  If this was not 

possible, interpolation or the mean absolute value for 

vessel variables from the same ship family were used. 

 

3.4 DATA UNCERTAINTY 

 

Obtaining the parameters from a set of published 

drawings meant that there is some inherent uncertainty in 

the parameter values due to: line thickness, scaling issues 

and poor, or inconsistent, definition of the vessel design 

draught.  Table 3 records an estimation of the percentage 

uncertainty associated with some of the dimensionless 

coefficients considered. 

 

Table 3 - Sample of errors recorded for dimensionless 

coefficients 

Dimensionless 

Coefficient 

Error 

𝐶𝐿𝑃𝑅 5% 

𝐶𝐴𝑅 2% 

𝐶𝐿𝐹𝑙𝑎𝑡𝑀𝑎𝑥 7% 
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4. DATA ANALYSIS 

 

The basis of the preliminary design tool is a Python 

script applying data analytical techniques.  To determine 

whether a vessel should have a bulbous bow, a 

supervised classification model will be modelled whilst a 

supervised regression model will be applied to quantify 

the bulbous bow dimensionless coefficients.  The quality 

and volume of data available has a direct impact on the 

choice of machine learning algorithms that can be 

selected to develop this tool.  Given the limitations of the 

dataset, the K Nearest Neighbour algorithm for both 

classification and regression was identified to be the 

most suitable to develop this concept.  This model has 

also been applied to other maritime applications such as 

Abbasian et al’s (2018) study on Offshore Support 

Vessel (OSV) design robustness.  This model was 

selected for its simplicity and applicability to smaller, 

non-gaussian datasets (Parthasarathy and Chatterji, 

1990). 

 

The data analysis process followed the key steps as 

portrayed in Figure 4, with this process being repeated 

for each target variable considered in this study. 

 

 

Figure 4 – Flowchart of the analysis process  

 

4.1 DATA VISUALISATION 

 

Two and three-dimensional scatter plots were used to 

identify trends between variables.  The plot markers 

represented an additional dimension by associating each 

point with a ship family.  Visualising the data in this 

manner permitted the identification of the following 

phenomena: 

 

1. Supervised clusters - a cluster is made up of 

points representing vessels that have similar 

characteristics to each other but are distinct 

enough from others to form a subset.  The 

clusters were defined as supervised since they 

were assigned to a group. 

2. Overall trends - when the points plotted formed 

trends, curve fitting or regression analysis was 

carried out to predict bulbous bow 

dimensionless coefficients for other vessels.  

Trends were identified in multiple dimensions. 

3. Trends within supervised clusters - when trends 

were found within a cluster, separate curve 

fitting or regression analysis could be carried 

out by isolating the effects of each ship family.  

Such trends enabled the regression analysis to 

be carried out for each ship family. 

 

4.2 STATISTICS 

 

The statistical limitations of the data set were established.  

The statistical distributions of the variables in the sample 

set were assessed by means of histograms, skewness and 

kurtosis, the Shapiro Wilk test and the Anderson test to 

determine whether any variables were Gaussian.   

 

The relationships between variables were captured by 

plotting a correlation matrix of all the fields.  

Recognising the variables that exhibited better 

conformance with each other aided in selecting the inputs 

for the machine learning model. 

 

The Chi Squared test was also carried out on each of the 

ship families to determine whether the difference 

between the expected and observed quantities of vessels 

with and without bulbous bows in each category display 

any relationship in the population. 

 

4.3 OUTLIERS 

 

The main outliers in the dataset were identified to 

determine whether they could have originated from any 

of the errors outlined in Section 3.4 and where possible 

corrected. 

 

Other outliers that were identified to be factually correct 

were kept in the dataset.  The machine learning model 

was left to tackle outliers instead of manually eliminating 

vessels from the dataset.   

 

4.4 K NEAREST NEIGHBOURS 

CLASSIFICATION 

 

A supervised learning approach was selected due to the 

small volume of data available. A 1 was assigned to 

vessels having a bulb whilst a 0 was assigned to vessels 

without. 

 

The KNN Classifier was the machine learning model 

selected; it is an algorithm that can be used to predict the 

group that a set of input parameters should be assigned 

to.  This is based on feature similarity and computing the 

distance between the point being queried and the k 
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number of adjacent points (Goldberger et al., 2004; 

Parsons and Scott, 2004). 

 

The classification of the k points is then consulted to 

determine which group the point being investigated  

should be assigned to.  Depending on the degree of 

clustering present in the dataset, the ambiguity of which 

subset the data point should be assigned to varies. The 

magnitude of k therefore varies according to the type and 

size of data available.   

 

A study to determine the optimal k was conducted by 

monitoring the mean binary classification error of the 

predicted values to the test set for each classification 

model having different values of k.  This was quantified 

by calculating the mean of a vector of booleans.  A 1 is 

assigned when the test and prediction do not match 

whilst a 0 is allocated when they do.  The model 

recording the least mean binary classification error for 

the least k was identified to be the optimal model for the 

study.  Basing a prediction on a fewer number of k 

vessels reduces the chances of having vessels not in the 

same range to influence results.   

 

Different distance metrics can be used to compute the 

distance between the respective points to identify the  

k points needed to carry out the computation.  This study 

applied the Euclidean distance between each point  

which is used to determine the straight line distance 

between 2 points. 

 

The KNN Classifier is also able to apply weighting to the 

points being considered.  This provides the option of 

making the points closest to the data point being 

considered to have more of an impact than the other 

points further away.  Other functions that apply 

weighting according to different criteria may also be 

custom defined.  Here a uniform weighting was applied 

since k and the sample size were small. 

 

The input parameters used to build the model were 

Froude number, 𝐿𝐵𝑃/𝐵 and 𝐵/𝑇.  Although additional 

features would characterise the differences between 

vessel requirements better, KNN models are known to 

perform best with the least number of features, especially 

if the data set is small (Parthasarathy and Chatterji, 

1990).  The selected features were identified to be the 

least number of features possible to isolate the 

performance of each ship family.  Other inputs such as 

block coefficient and displacement were considered but 

rejected since they had lower record populations.   

 

The data was randomly split into a training set (70%) 

and test set (30%).  The random selection of vessels 

for each set was inspected to ensure that a similar 

proportion of vessels with and without bulbs was 

included.  Future iterations of the tool would seek to 

treat the imbalance in the dataset by gathering more 

data or by artificially augmenting the population by 

bootstrapping or by applying Synthetic Minority 

Oversampling Technique (SMOTE)(Chawla et al., 

2002).  Cross validation was used on the training set to 

check whether the model was over fitting; enabling 

better use of the small sample being used.   

 

A confusion matrix based on the complete sample set 

was conducted to capture the performance of the 

classification model.  The accuracy, misclassification, 

sensitivity, false positive rate, specificity and precision 

were also calculated. 

 

4.5 K NEAREST NEIGHBOURS REGRESSION 

 

The K Nearest Neighbour approach was also used to 

determine the shape and size of a bulbous bow.  

Having the same benefits of being able to function 

with smaller datasets that do not necessarily follow a 

normal distribution, this model was identified to be 

one of the most valid for this proof-of-concept 

preliminary design tool.  In a similar way to the KNN 

classifier, this model considers k sample points 

adjacent to the point being investigated to determine 

what its target output should be.  A new model was 

generated for each target considered. 

 

The attributes used to form this model are similar to the 

classifier.  The Euclidean distance was selected to be the 

most appropriate means of quantifying the distance 

between points and no weighting was assigned to them.  

Once the points required to carry out the analysis were 

outlined, the regression analysis was carried out.  The 

model was made by randomly selecting 70% of the 

sample as a training set and the remainder as the test set.  

This process was repeated for each target considered. 

 

An iterative procedure was carried out to determine  

which variables should be used as input parameters for  

the models.  This process was conducted in consultation 

with the correlation matrix.  The variables that showed 

the best outcomes for the targets were 𝐿𝐵𝑃/𝐵 and 𝐵/𝑇, 

together with the design Froude number. All of the 

bulbous bow dimensionless coefficients defined earlier 

were set as targets. 

 

4.6 UNCERTAINTY ANALYSIS 

 

After creating the KNN models, the uncertainly for each 

model was quantified by calculating the mean absolute 

error (MAE) between the train and test set.  This error  

was recorded whilst ensuring that the model was not  

over fitting the data.  The number of inputs selected  

for each model was limited to maintain the error in a 

tolerable range. 

 

5. RESULTS AND DISCUSSION 

 

Trends, clusters and trends within clusters were recorded, 

with better conformance noted when bulbous bow 

dimensionless coefficients were plotted against ship 

particulars and performance features. 
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5.1 TWO-DIMENSIONAL SCATTER PLOTS 

 

A sample of the two-dimensional plots is shown in Figure 5 

where the bulbous bow aspect ratio dimensionless 

coefficient is plotted against the vessel's Froude number.  

The plot shows that as the Froude number increases, the 

shape of the bulb becomes longer and slenderer.  This 

observation is in good conformance with wave theory.  This 

plot shows supervised clustering between tankers and dry 

cargo vessels.  The bulbous bow aspect ratio dimensionless 

coefficient for bulk carriers and tankers are similar with 

some over spill into the dry cargo regime.  Passenger vessels 

do not cluster as well as other ship families but do inhabit a 

distinct region.  Increasing the sample's population of 

passenger vessels could result in the formation of a clear 

cluster.  The miscellaneous family consists of a variety of 

ship types that have differing characteristics resulting in no 

distinct clusters being recorded. 

 

 

Figure 5 - Scatter plot CAR against Fn 

5.2 STATISTICS RESULTS 

 

The ship and bulbous bow variables investigated did not 

follow a normal distribution.  This was concluded after 

analysing the results of the statistical tests.  Table 4 

shows a sample of the statistical results recorded, 

showing p values of 0 for all three variables.  This was 

one of the key reasons why a non-parametric method was 

selected as the basis of the tool.  To simplify the model’s 

complexity, some variables were discounted from the 

study to stop them influencing the rest of the analysis.  

Such variables include gross tonnage and deadweight. 

 

Table 4 - Sample of Statistical results recorded for Input 

variables. 

Variable Skewness Kurtosis 

Shapiro 

statistic 

Shapiro p 

value 

𝐿𝐵𝑃/𝐵 3.62 31.40 0.75 0.00 

𝐵/𝑇 2.38 10.57 0.81 0.00 

Fn 2.17 17.64 0.86 0.00 

 

Figure 6 shows an example of the histograms recorded.  

In this case, the distribution recorded is not strictly 

gaussian but does show the correct trend.  Increasing the 

sample size could improve this distribution. 

 

 

Figure 6 – Histogram of CAR 

A correlation matrix was plotted to understand which 

variables conformed more strongly to each other.   

 

 

Figure 7 shows the strongest correlations are recorded 

between the vessel's Froude number, block coefficient 

and the bulbous bow dimensionless coefficients.  These 

correlations can be confirmed with the two- and three-

dimensional plots highlighted earlier.   

 

The Chi Squared test conducted showed dependency 

between vessels with and without bulbous bows.  The 

null hypothesis was therefore rejected. 
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Figure 7 - Correlation Matrix for complete sample set 

 

 

5.3 KNN CLASSIFICATION RESULTS 

 

The classification model generated can predict whether a 

vessel should or should not have a bulbous bow fitted to 

it.  A study to determine the optimal k value for the KNN 

Classification model by monitoring the mean binary 

classification error was carried out.  Figure 8 shows the 

plot of the mean binary classification error against k that 

shows that a k value of 5 is the smallest value that would 

generate the least error. 

 

 

 

Figure 8 - Mean binary classification error against k 

value for different classification models 

 

Table 5 records the results of the confusion matrix 

together with the evaluation metrics used to understand 

the machine learning model’s performance.  The matrix 

demonstrates that the model was able to predict whether 
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a vessel should or should not have a bulbous bow fitted 

based on the three features selected with an accuracy of 

87.2%.  The model was able to predict 243 true positives 

with a precision of 87.4%.  These results demonstrate 

that a supervised learning approach as outlined in Section 

1 produced good results for this application.  

 

Table 5 - Confusion Matrix for complete sample 

  Predicted 

 n=297 0 1 

Actual 
0 16 35 

1 3 243 

    

Accuracy 87.2% 

Misclassification 12.8% 

Sensitivity 98.8% 

False Positive Rate 68.6% 

Specificity 31.4% 

Precision 87.4% 

 

Figure 9 shows how the population of vessels within the 

sample predominately have bulbous bows.  The vessels 

do not form distinct subsets of vessels with or without 

bulbous bows.  Improving the size and quality of the data 

together with implementing additional features would 

improve the tool’s performance.  As highlighted 

previously, the data could also be artificially modified to 

reduce the bias on vessels with bulbous bows. 

 

 
(A) 

 

 
(B) 

Figure 9 – Scatter plots showing the distribution of 

vessels with and without bulbous bows. 

 

5.4 KNN REGRESSION RESULTS 

 

A machine learning model for each of the bulbous bow 

dimensionless coefficients was successfully generated.  

Based on the inputs submitted, the model suggests an 

initial bulbous bow parameter to create the bulbous bow 

section.  The case studies presented later in this paper 

demonstrates how these results can be utilised. 

 

5.5 UNCERTAINTY RESULTS 

 

A sensitivity study was carried out to determine whether 

the sample size was sufficient to reliably predict bulbous 

bow parameters.  By varying the number of vessels used 

to generate the machine learning model, the error 

between the predicted bulb parameter and the actual bulb 

parameter was calculated. 

 

Figure 10 shows the standardised mean absolute error 

results for the sensitivity study.  The errors plotted show 

that whilst certain errors relating to some bulb 

parameters plateaued, others had not and would benefit 

from more vessels.  Based on the study carried out, it was 

decided to use all vessels in the dataset for the tool. 
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Figure 10 – Standardised mean absolute error for 

sensitivity study 

Table 6 records a selection of some of the errors 

quantified for each dimensionless coefficient.  For the 

purposes of this study, this error was deemed acceptable.   

 

Table 6 - Error quantification for a selection of the 

machine learning algorithms created 

Variables Mean Absolute 

Error 

Mean Square 

Error 

𝐶𝐿𝑃𝑅 5% 5% 

𝐶𝐴𝑅 2% 2% 

𝐶𝐿𝐹𝑙𝑎𝑡𝑀𝑎𝑥 7% 7% 

 

The percentage error for each predicted variable was not 

the same.  This is due to the difference in spatial spread 

that each variable has.  If the similarity between one 

bulbous bow and the other for a set of inputs was higher, 

the calculated error was less. 

 

Should additional inputs be used to predict the same 

target variables listed, with the same restricted dataset, 

the error in the prediction will increase.  This means that 

for the tool to cater for other input variables, such as 

block coefficient and length to displacement ratio, the 

sample size must increase.  

 

By addressing the data extraction errors outlined in 

Section 3.4, the quality of the data would improve and 

the quality of the results would also improve.  This 

means that increasing the sample size is not the only 

approach for reducing the uncertainty. 

 

6. CASE STUDIES 

 

To demonstrate the performance of the bulbous bow 

initial design tool, the ship and bulbous bow data was 

extracted from Significant Ships 2019 (Royal Institution 

of Naval Architects, 2019) following the same 

procedures outlined earlier.  The details of these vessels 

were used as the input parameters in the model, whilst 

testing was enabled by knowing whether a bulbous bow 

was fitted to the vessel and, if so, what its profile was.  A 

total of 43 vessels were recorded from this publication 

but the case studies will focus on four vessels.  Table 7 

records the details of these vessels where there first two 

vessels do not have a bulbous bow fitted and the 

remaining two have bulbous bows. 

 

Table 7 – Case studies input parameters 

Vessel Fn 𝑳𝑩𝑷/𝑩 𝑩/𝑻 Bulb? 

Vessel 1 0.17 9.06 1.80 N 

Vessel 2 0.13 5.63 2.66 N 

Vessel 3 0.19 6.86 3.52 Y 

Vessel 4 0.15 5.54 3.22 Y 

 

The KNN Classifier was first applied to determine 

whether these vessels should have a bulbous bow 

installed.  Table 8 shows the results of the confusion 

matrix using all the data recorded from Significant Ships 

2019.  The matrix and data metrics recorded show a 

similar performance to what was achieved with the 

complete sample set.   

 

Table 8 - Confusion Matrix for sample of vessels from 

2019 

  Predicted 

 n=43 0 1 

Actual 
0 5 6 

1 1 31 

    

Accuracy 83.7% 

Misclassification 16.3% 

Sensitivity 96.9% 

False Positive Rate 54.5% 

Specificity 45.5% 

Precision 83.8% 

 

The tool recommended that no bulbous bows should be 

fitted to Vessel 1 and Vessel 2 which conforms to the 

ship's status.  The tool also recommended that Vessel 3 

and Vessel 4 should have bulbous bows fitted, which 

also conforms with the ship’s geometry. 

 

The KNN Regressor was then applied to predict the 

bulbous bow dimensionless coefficients for Vessel 3 and 

Vessel 4.  These, together with the input parameters, 

were subsequently used to quantify the absolute bulbous 

bow dimensions as well the bulbous bow’s draught.   

 

The bulbous bow dimensions were first used to manually 

generate a grid.  This grid acted as the basis to build the 

longitudinal section of the bulbous bow.  The uncertainty in 

the model was captured by drawing an additional two grids 
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representing the upper and lower limits of the model, as is 

illustrated by means of the dashed lines in Figure 11.  

 

 

Figure 11 - Montage of Construction grids  

A combination of lines and splines were then used to 

manually create the bulbous bow profile.  The 

intersection points of the main grid acted as the control 

points whilst the upper and lower limits grid acted as the 

boundaries for the curves to stay within. 

 

Figure 12 shows the predicted bulbous bow profiles 

(solid green) together with the actual bulbous bow profile 

(dashed black) selected for that vessel.  The design 

waterline for each of the vessels was also drawn and 

contrasted to the actual design waterline. 

 

  
Vessel 3 Vessel 4 

Figure 12 – Predicted bulbous bows for vessels 

 

The profile’s shape, scale and features show good 

conformity with the original bulbous bow profiles.  The 

recommended design waterline was also well predicted 

where the design and actual waterline of Vessel 3 are 

superimposed on top of each other. 

 

7. CONCLUSIONS 

 

The development of bulbous bow design, during early-

stage ship design, has been revisited in this paper by 

applying machine learning techniques to determine an 

initial estimate for a vessel's bulbous bow’s design.  The 

key steps in creating this proof-of-concept tool were: 

1. developing a sample of ship and corresponding 

bulbous bow data; 

2. developing a parametric geometric model to 

discretise the bulbous bow’s longitudinal profile 

3. carrying out a statistical analysis of the data; 

4. applying the KNN classifier and regressor to the 

sample; 

5. calculating the associated uncertainties of the 

models; 

6. Conducting a case study to evaluate the tool’s 

performance. 

 

This study proposed a more comprehensive definition for 

bulbous bows to capture the wide variety of bulbous 

bows in the world’s fleet.  New dimensions and 

dimensionless coefficients were proposed to better 

characterise the shape of bulbous bows.   

 

The design tool proposed is composed of two machine 

learning models.  The first determines whether a bulbous 

bow should be fitted to a vessel whilst the second 

quantifies the bulbous bow dimensionless coefficients if 

the first model recommended that a bulbous bow should 

be fitted.  These models were assessed by means of case 

studies that consisted of the vessels from Significant 

Ships 2019 with focus on four of those vessels.  This 

concept design tool complements other procedures that 

could be implemented to design bulbous bows.   

 

The results of the KNN Classification model showed 

good results where an accuracy of 87.2% was recorded.  

The bias in the dataset towards vessels without bulbous 

bows resulted in three false negative results from a 

complete sample of 297 vessels.  The data from 2019 

recorded a similar overall performance where one false 

negative was recorded from a sample of 43 vessels.  Two 

of the four vessels, Vessel 1 and Vessel 2, were correctly 

recommended not to have a bulbous bow fitted whilst the 

remaining two were correctly assigned a bulbous bow. 

 

Future iterations of the tool would aim to address the bias 

in the dataset to improve its accuracy.  This could be 

done by having better data, artificially augmenting the 

population of vessels without a bulbous bow by 

bootstrapping or SMOTE.  Additional challenges relating 

to the non-gaussian distribution of the data at hand is a 

challenge that would also to be addressed. 

 

The KNN Regressor model was then applied to quantify 

the dimensionless coefficients for those vessels that were 

assigned a bulbous bow with focus on Vessel 3 and 

Vessel 4.  These were used to generate an initial sketch 

of the longitudinal section for each vessel’s bulbous bow.  

The sections recorded were compared to those of the 

actual vessel and showed good conformity.   

 

The sample set recorded from Significant Ships was used 

as the basis for creating the preliminary bulbous bow 

design tool.  This sample was deemed appropriate as a 

proof of concept, but a more robust dataset would be 
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recommended for further analysis.  This would enable 

additional input parameters to be included that would 

cater for the vessel’s design requirements better.  The 

model is currently limited to the bulbous bow’s 

longitudinal section.  Including data relating to the 

bulbous bow’s transverse section would widen the scope 

of the tool making it possible to investigate volumetric 

changes in the bulbous bows shape.   

 

Should other elements be factored into the models, 

predictions of the expected performance of a bulbous 

bow could be derived.  These initial estimates could act 

as a catalyst in design studies to identify the relative 

change between different options. 

 

Future iterations of the tool would aim to gather more 

ship specific data to create specialised sub tools for 

specific ship families or ship types.  This would ensure 

that predicted bulbous bows having certain design 

requirements are not influenced by other vessels having 

different requirements.  

 

Another feature that should be considered for future 

iterations is to automatically generate the bulbous bow 

profiles from the dimensionless coefficients.  If the 

model made use of three-dimensional data, the bulbous 

bow geometry could be exported into other software for 

further analysis. 

 

The preliminary bulbous bow design tool demonstrates 

that data analysis techniques can be applied to determine 

whether a vessel should have a bulbous bow installed and 

to obtain estimates on what shape and size it should be.  

Although this work has focused on the design of the 

bulbous bow, its scope could be widened to consider 

other vessel attributes or even the complete hullform. 
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