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SUMMARY 

 

This report demonstrates the capability of the forward prediction of the properties of the arriving wind at a vessel for time 

intervals adequate to significantly aid in the recovery of a wide range of air vehicles onto vessels. For craft with flight decks 

sited in the fore part of the vessel it is adequate to simply predict the arriving wind. For the more difficult task of recovery to 

stern areas behind superstructure it is also necessary to predict either the explicit properties of the turbulent air-wake or else 

to predict some quality measure for the aid of recovery under the prevailing conditions. The approach is able to relate the 

trends in the short-term statistical properties of fluctuating airflow over the flight deck to the trends in the predicted arriving 

wind. 

 

 

NOMENCLATURE 

 

ai The ith coefficient of the space/time wind 

evolution model. 

n Summation index; of N in total. 

s(t) Advection distance. 

t Time. 

tn The nth discrete time step number. 

V Maximum wind velocity component measured 

along the LiDAR beam. 

x Space coordinate along maximum wind velocity 

component measured along the LiDAR beam. 

x0 The maximum value of the x coordinate. 

λ, τ Integration variables. 

 

1. INTRODUCTION  

 

The present approach to operating both fixed and rotary 

wing manned and unmanned aircraft from ships is based 

around measuring the short-term statistics of the 

prevailing wind speed and direction into the vessel and 

comparing this against a designated safe limit. This 

measure is frequently termed a SHOL which collectively 

specifies the range of allowed wind conditions and 

approach directions for recovery of a given air vehicle 

onto a specific vessel type. A fundamental difficulty with 

this statistical approach is that to achieve an acceptably 

low level of risk the prevailing values must be several 

standard deviations less than the safe tolerable maximum. 

This is to avoid the low but finite probability of extreme 

wind fluctuations. The result is either a very conservative 

approach that dramatically reduces the operational 

capability, and hence value for money, and or increases 

risk. For manned aircraft one alternative is to limit 

operations to the most experienced pilots which has its 

own consequences. 

 

The increasing move towards unmanned air-vehicles 

(UAVs) for a wide range of maritime roles in both the civil 

and military sectors aggravates this situation. This is 

because not only is it difficult to incorporate the skill of a 

manned pilot into the UAV flight controller but also in 

general UAVs are substantially smaller than their manned 

counterparts and have less penetration in chaotic airflows. 

Particularly challenging issues during UAV recovery are 

the combination of the highly disturbed air-wake produced 

by the vessel’s superstructure and the confined spaces 

typically available for recovery. Many custom recovery 

technologies have been developed to attempt to address 

this problem, ranging from nets to the line capture system 

used for the Boeing ScanEagle. However, these 

approaches are very difficult to operate in highly disturbed 

airflows without endangering the UAV. The situation is so 

difficult that in some first-generation applications 

operated by navies the UAV is required to ditch in the sea 

for subsequent small boat recovery which is clearly not a 

sustainable long-term strategy. Clearly the recovery 

problem becomes rapidly more demanding the higher the 

prevailing wind speed. 

 

Fortunately, the very fluctuations in typical winds that 

make the statistical approach to recovery problematic can 

be turned to advantage if the quieter periods (quiescent 

periods) inevitably present (where the wind is 

significantly less intense than the mean) could actually be 

reliably predicted in advance. It is not sufficient to merely 

measure the wind at the vessel bow to achieve this because 

recovery of the UAV from its safe loitering position off 

from the vessel takes a significant time. However, the 

technology of long-range Doppler LiDAR, (Banakh et al, 

1997, Drobin et al 2004, Davies et al 2004, O’Connor et 

al 2010, Liu et al 2019), has made such prediction 

possible, with the available predict ahead times being 

significantly longer than needed for reliable identification 

of the quiescent periods.  

 

This report examines the requirements of a Doppler 

LiDAR based aircraft recovery aid and describes field 
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trials conducted to explore such a system. This new 

technique both considerably extends the wind speeds for 

recovery but does so with the increased safety stemming 

from a deterministic rather than statistical approach. 

 

The work presented here represents one aspect of the 

proposed new generation predictive launch and recovery 

aids. These involve making short term deterministic 

estimates of the safest period in which to execute a 

potentially hazardous operation. 

 

The other main environmental factor to air wake is the 

deterministic prediction of wave induced vessel motion. 

Both deterministic air wake and wave prediction share the 

same underlying elements: 

(i) Make measurements of the wind or wave system 

several km from the vessel. 

(ii) Estimate the form of the wind or wave system 

when it has propagated to the vessel location. 

(iii) Predict the time interval when the environmental 

factors will have minimal impact on the operation 

of interest. These are so called quiescent periods. 

 

2. MAIN BODY  

 

2.1 AIR-WAKE PREDICTION BASED 

RECOVERY AID CONCEPT 

 

Figure 1 shows schematically the basis of an air-wake 

quiescent period prediction system for aiding ship born 

aircraft recovery. As is frequently the case in naval vessels 

the region designated for operating air-vehicles is at the 

stern behind the aft superstructure making recoveries 

subject to a considerably chaotic air-wake. 

 

 

 

 

  

Measure properties of vessel air-
wake over the flight deck 

Gives several minutes prediction 

of quiescent periods. 

Unsteady airstream 

Out to several km ahead 

LiDAR 

Figure 1. A schematic for an Air-wake Quiescent Prediction system for use as an aircraft recovery aid 

based around a long-range Doppler LiDAR. 
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The Doppler LiDAR system projects an infrared laser 

beam (required to be eye-safe) out to several km and 

measures the component of the airflow along the beam 

line via Doppler shifts introduced during scattering by 

atmospheric aerosols. In order to also assess the  

cross-beam component of the wind the LiDAR 

measurement beam is scanned horizontally in a fan of 

individual single beam scans.  

Various sea trials have been conducted to explore  

this approach (described in detail in section 4), supported 

by the UK Ministry of Defence. A typical resulting  

two-dimensional slice of wind speed values and directions 

determined from the long range scanning Doppler  

LiDAR measurements is shown in Figure 2. This figure 

illustrates the spatial details of the smaller scale wind  

gust structures present. 

 

 
 

 

 

 

 

2.2    AIR-WAKE PROPAGATION AND 

PREDICTION  

 

The predict-ahead time aspect of an air-wake quiescence 

prediction system arises from the time taken for the 

remotely measured wind system to propagate to the vessel. 

In principle the Doppler LiDAR data could be used as the 

input to a computational fluid dynamics (CFD) software 

system to predict not only the arriving airflow at a vessel 

but also properties of the subsequent air-wake over the 

ship induced by the arriving wind.  

 

As will be discussed in subsequently while this CFD 

approach is valuable in creating off-line key functional 

elements of the system it cannot be used to make the actual 

real time predictions themselves CFD due to the very long 

computational times required. A great benefit of CFD is 

that it can describe three-dimensional flow. However even 

if the approach was computationally viable the time 

needed to acquire three-dimensional LiDAR data would 

render the approach unrealistic. 

 

Hence an advection model of some nature is required to 

estimate the propagation of the measured wind profile up 

to the vessel. For a practical system even substantial errors 

in such propagation can be tolerated because the errors 

tend to scale with absolute wind speed allowing reliable 

confidence bounds can be established to guide a user’s 

reliance on the predictions. 

 

The simplest approach is spatially averaged advection 

(sometimes called “magic carpeting”) which involves first 

measuring the spatial profile at time t0 of the velocity 

component directed towards the vessel, V (x, t0), from the 

vessel out to the maximum measurement range. Then the 

spatial average, 
xV , of this quantity is determined, 

( )0,
x

V V x t= . The whole measured velocity profile 

is then simply advected bodily towards the vessel. 

 

For short prediction times the local mean wind does not 

evolve significantly hence this very simple method is 

adequate for the recovery of even moderate sized 

rotorcraft where 10 seconds or less prediction time is 

required. Where longer prediction times are needed for 

example in the rapid recovery of a swarm of small UAVs, 

or for larger aircraft such as Merlin it is useful to explore 

other methods. Such recovery times were supplied by a 

combination of the Royal Navy and air vehicle 

manufacturers, (e.g., Agusta Westland for Merlin). 

 

The spatial mean wind technique does not allow for 

temporal evolution in the local mean velocity component 

as the wind system propagates towards the vessel. A more 

sophisticated approach is the time evolving advection 

technique which involves making a spatio-temporal model 

Figure 2. A typical two-dimensional slice of wind velocity and direction values obtained using long range 

Doppler LiDAR. The small red arrow denotes the mean wind direction relative to the vessel. 
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of the spatially local mean value of, ( ),V x t , of the type 

produced by empirical mode decomposition techniques, 

(Huang 1971). 

 

Such a time dependent local advection velocity model 

then allows the local mean advection velocity, ( ),V x t , 

to evolve over the propagation time. This can be 

accomplished using, N , successive LiDAR scans taken 

at times, nt , 0 n N  , to build a short term least-

squares fit model of the local mean value of, ( ),V x t , in 

the variables, x , and, t . For this process to be reliable it 

is necessary to measure out to ranges, maxx , well beyond 

the parts of the profile that will propagate to the vessel 

during the predict ahead time, 
pt . In effect this scheme is 

estimating the, x , component of flow structures in the 

prevailing wind up to size scale, maxx . 

 

The analysis of this more sophisticated advection model is 

undertaken in section A1 in the appendix. A linear spatio-

temporal model  for the local velocity results in the 

expression given in equation 1 for the forward facing, 

( )x t , coordinate at time, t , of  a point which started at 

time, 0t = , at a location, 0x , measured out from the 

vessel along the LiDAR beam (in the direction of 

maximum wind velocity): 
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where the, ia , are coefficients in a first order spatio-

temporal model for, ( ),V x t . If higher order corrections 

are required, then a perturbation approach is the natural 

route. The analysis required for a quadratic spatio-

temporal local velocity model is developed in section A2 

of appendix I. 

 

This spatio-temporal modelling approach to the local 

velocity allows more precise prediction of the advection 

process and is computationally inexpensive. 

Consequently, unlike a CFD based methodology it can 

deliver the required real time operation of the prediction 

system to predict ahead times of several hundreds of 

seconds. 

 

Further refinements involve involving fans of LiDAR 

scans in the actual prediction process instead of merely 

measurements along the beam line. Such data describes 

two dimensional slices through the wind structure and 

makes it possible to lift the assumption that the wind 

direction is constant over the prediction timescale. 

However as will be shown in section 4 the simpler one-

dimensional advection methods have proved adequate in 

practice. 

 

Apart from the CFD approach, which as stated is not 

possible for real time prediction, all the above techniques 

neglect non-linearities that cause the very local shape  

of the turbulent eddies within the profile to evolve (the  

so-called turbulent cascade process). Such local changes 

should not be confused with changes in the local  

mean velocity of the profile shape as modelled in the  

time evolving advection method. This implicit assumption 

that the local eddy shape is conserved during short  

term fluid transport was considered by G.I.Taylor and 

forms the basis of his well-known frozen turbulence 

hypothesis, (Taylor 1938, Frisch et al 1995, Sreenivason 

et al 1996). Extensive subsequent research has shown  

that provided the velocity fluctuations within the  

turbulent eddies are no greater than approximately half  

the local mean velocity then this hypothesis holds. The 

details of the measured turbulent structures (the gusts) can 

thus be simply advected with negligible change in  

shape. This provides a strong justification for the local 

advection-based approaches to prediction employed here 

and explains their success. 

 

2.3    PREDICTING THE VESSEL AIR-WAKE 

PROPERTIES FROM THE PREDICTED 

ARRIVING WIND  

 

Existing SHOLs are derived mainly for manned aircraft 

tend to focus upon the short term mean wind arriving at a 

vessel. Hence the bare prediction process described in 

section 3 is adequate for such applications. In fact very 

little extra is required for air recovery of all types of air-

vehicle on the bow mounted landing pads common in 

offshore service vessels. However as indicated in the 

introduction the flight-deck in many military craft is often 

located aft were recovery is strongly affected by the 

turbulent air-wake created by the superstructure. 

Furthermore, because UAVs typically have less 

penetration into aggressive airflows than their larger 

manned counterparts the provision of more detailed air-

wake information to UAV flight controllers during 

recovery would be highly beneficial. 

 

Given that the air-wake flows encountered during 

recovery are chaotic in nature it is only possible to 

consider their short-term statistical properties. Clearly 

these properties will scale with the wind speed and be 

affected by the vessel heading relative to the mean wind 

direction where for most recovery operations the preferred 

vessel course is to produce head or near head winds. 

 

2.3.1     LiDAR-based sea trial 

 

In order to explore typical relationships between the 

incoming wind and the flight deck flows a sea trial was 

conducted in 2019 aboard a Tide Class Royal Fleet 
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Auxiliary tanker with a helicopter flight deck located at 

the stern. The arrangement was as shown in Figure 1 with 

a long-range Doppler LiDAR mounted just aft of the bow 

and short range LiDARs that exhibit high spatial 

resolution mounted on the flight deck pointing vertically 

upward. The detailed specifications and the instruments 

employed are given in section 2.3.2. In order to allow the 

LiDAR beam scan angle to be compensated for vessel 

motion the craft was fitted with a high resolution 6 degree 

of freedom motion sensor. 

 

Examples of the key experimental findings are presented 

in Figures 3 and 4. Figures 3a-c show the predicted wind 

arriving at the vessel using the time evolving advection 

technique and subsequently measured winds arriving at 

the vessel as a function of predict ahead time the 

maximum value of which was 180 seconds. It should be 

noted that as shown in the legends the symbols used in 

Figure 3a to denote the predicted and measured wind are 

the reverse to those in Figures 3b and 3c. 

 

The vessel was nominally steering into wind however to 

obtain a better estimate of the actual relative wind and 

hence the true component advecting towards the vessel the 

LiDAR beam was scanned in an angular fan. The 

maximum wind value was then estimated by taking the 

largest 8 values of speed verses angle and least squares 

fitting these to a quadratic angular dependence model. The 

maximum value was then computed from the best fit 

model.  Only 8 values were used for two reasons, firstly 

because the quadratic model was clearly only a second 

order Taylor expansion of the projected cosine value of 

the true wind onto the beam direction and secondly to 

minimise the temporal smearing due to the finite time 

required to execute the angular fan of scans. 

 

A more detailed time local view of the predictions is 

shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 
Figure 3a: Comparison of 60 sec ahead predicted and measured winds arriving at the vessel. 

Time Seconds 
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Figure 3b: Comparison of 120 sec ahead predicted and measured winds arriving at the vessel. 

Figure 3c: Comparison of 180 sec ahead predicted and measured winds arriving at the vessel. 
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The flow properties observed at different heights over the 

flight deck are shown in Figure 5 together with the 

corresponding predicted arriving wind strength. In order 

to relate the results more directly to the level of 

aerodynamic forces acting on an air vehicle the squares of 

the various properties are plotted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4: A short timescale comparison of 60 sec ahead predicted and measured winds arriving at the vessel. 

The first blue point is artificial for scaling purposes. 

 

Figure 5: Comparison of the square of the predicted arriving wind with the short-term averaged velocity 

squared values over the flight deck in the main vessel axis direction. The predicted arriving wind is the solid 

line. 
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The superstructure of the vessel extended to 

approximately 20m above deck height. The results follow 

the expected behaviour in that both the mean level and the 

scale of the fluctuations of the airflow over the flight deck 

follow closely the predicted arriving wind at the vessel. 

Thus, the predictions drawn from the long-range LiDAR 

measurements are reliably able to track the short-term 

statistical properties of the flight deck airflow. 

 

The forward-facing LiDAR beam was set below the level 

of the stern superstructure and thus as expected the 

relatively steady flow at 40m corresponding to the free 

stream over the vessel and is larger than the arriving flow. 

As the elevation above deck reduces the ratio of the mean 

to the fluctuating flow decreases down low values at deck 

level where the flow is essentially noise-like. From a 

recovery perspective the most critical region is where the 

UAV transitions from the free stream to the chaotic flows 

behind the superstructure.  The data shows that the trends 

in the flow properties at this transition height are well 

described by the predicted wind arriving at the vessel. 

Telemetering such information to the flight controller of a 

UAV would significantly aid in its recovery approach, 

particularly as UAVs evolve to having greater and greater 

autonomy. 

 

2.3.2   LiDAR system specifications 

 

The forward-facing long-range LiDAR was a Halo 

Photonics Ltd., “Stream Line” device. This was a pulsed 

Doppler LiDAR which recorded the component of the 

prevailing wind speed along the beam line. Typically, 

1500 spatial samples were recorded along the beam 

direction out to ranges of up to several km (the exact 

 range being dependent upon aerosol density). The spatial 

samples were obtained during the transit time of LiDAR 

light out to full range and return and hence in the present 

context can be considered to be instantaneous. The 

instruments could be operate at a maximum repetition 

cycle rate of 10Hz, i.e., a set of 1500 spatial samples  

every 0.1 sec. The instrument was equipped with a  

three-dimensional scanner allowing it in principle to 

explore a full upper hemisphere, however in the sea trial 

the beam was scanned in a flat fan of 15 separate lines at 

deck level. As with all measurements of the present type 

the sample variance was an inverse function of the 

aperture time. The results shown in Figure 2 were obtained 

from scans over a periodic arc (typically 20 20− → +   

the vessel centre line) executed during 15 seconds.   The 

length of the light pulse employed produced an effective 

spatial resolution of approximately 30m which was 

adequate for the forward measurements. 

 

It is possible to increase the spatial resolution of this  

type of pulsed Doppler LiDAR if fine detail of close in 

winds are required. This is accomplished by forcing  

the light pulses employed to deliberately overlap. This 

produces a superimposed set of overlapping convolutions 

of the wind data (at a significantly higher resolution  

than otherwise possible) with the Gaussian profile of  

the LiDAR pulse. By knowing the profile of the pulse and 

employing deconvolution techniques, it is possible to 

estimate the original wind data at significantly higher 

spatial resolution, (Gurdev et al 1996, Belmont et al 2017).  

Using this technique, it has been possible to increase  

the spatial resolution by 3 to 5 times depending on the 

prevailing signal to noise ration present in the raw LiDAR 

wind measurements. 

 

The two short range Doppler LiDARs were mounted 

along the vessels centre line on the flight deck. One was at 

the touchdown point and one approximately 5m from the 

stern. These were continuous beam devices as opposed to 

the pulsed variant used for the forward measurements. 

These instruments were “Wind Scout” instruments 

produced by METEK SA. They deliver fully vector 

resolved wind measurements by scanning around a small 

disk-shaped region. Hence such devices measure 

vertically but unlike the pulsed LiDARs return a full 

vector wind velocity rather than the component along the 

beam direction. The spatial resolution varied from 0.1m at 

2m above the flight-deck level to 2m at 40m. These 

devices produced a vector wind value at a rate of 1 Hz. 

 

2.4    AN ARTIFICIAL INTELLIGENCE 

ENHANCED RECOVERY TOOL 

 

As indicated in section 1 the first implementation of an air-

wake prediction-based recovery advice system would 

simply need to predict the intensity of the arriving wind. 

This is essentially a SHOL based prediction approach. 

 

To move to more sophisticated systems able to provide a 

UAV flight controller with more detailed information for 

aiding recovery a system is required that associates the 

predicted arriving wind with either the corresponding 

expected flight deck flows or with the anticipated ease of 

recovery for the specific UAV. This is the role of the 

classifier which is an artificial intelligence system that 

identifies and classifies the characteristics of the incoming 

airflow and then identifies the most probable 

corresponding match in a database of flight deck airflow 

properties. Clearly the classifier will need to have 

knowledge of the impact of the class of predicted arriving 

wind on recovery of a given air-vehicle type on a given 

class of vessel. Here the term class of wind conditions 

would be expected to be set by the directional power 

density spectrum of the wind.  

 

Such a system would be initially loaded with previously 

acquired information about the relationships between the 

flight deck flows and the arriving winds. Such initial data 

would be obtained from a variety of sources such as field 

trials of the type described here and from off-line CFD 

simulations. Once operational the AI system will grow in 

capability over time by continuously updating the 

databases for the results of actual recovery operations. 

This learning process can be considerably accelerated if 

the updating process takes place across all the vessels in 

each type exchanging data-base information. Ideally the 
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flight deck would be equipped with upward pointing short 

range Doppler LiDAR to log the actual airflows, however 

in the absence of this the flight logs recorded by both 

UAVs and manned aircraft during each recovery will 

provide “quality of recovery” information that can be 

incorporated into the data base. The AI system would thus 

need to be capable of associating the predicted wind 

arriving at the vessel with various different types of 

information, ranging from explicit flow properties to more 

metric like parameters such as quality measures of the ease 

of recovery. 

 

3. CONCLUSIONS 

 

The authors have demonstrated the capability of the 

forward prediction of the properties of the arriving wind 

at a vessel for time intervals adequate to significantly aid 

in the recovery of a wide range of air vehicles onto vessels. 

For craft with flight decks sited in the fore part of the 

vessel it is adequate to simply predict the arriving wind. 

For the more difficult task of recovery to stern areas 

behind superstructure it is also necessary to predict either 

the explicit properties of the turbulent air-wake or else to 

predict some quality measure for the aid of recovery under 

the prevailing conditions. As would be anticipated it has 

been confirmed that the trends in the properties of flight 

deck and hence of recovery quality measures follow the 

trends in the predicted arriving wind. 
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