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SUMMARY  

An onboard monitoring system can measure features such as stress cycles counts and provide warnings due to slamming. 

Considering current technology trends there is the opportunity of incorporating machine learning methods into monitoring 

systems. A hull monitoring system has been developed and installed on a 111 m wave piercing catamaran (Hull 091) to 

remotely monitor the ship kinematics and hull structural responses. Parallel to that, an existing dataset of a similar vessel 

(Hull 061) was analysed using unsupervised and supervised learning models; these were found to be beneficial for the 

classification of bow entry events according to key kinematic parameters. A comparison of different algorithms including 

linear support vector machines, naïve Bayes and decision tree for the bow entry classification were conducted. In addition, 

using empirical probability distributions, the likelihood of wet-deck slamming was estimated given a vertical bow 

acceleration threshold of 1 𝑔 in head seas, clustering the feature space with the approximate probabilities of 0.001, 0.030 

and 0.25. 

 

1.  INTRODUCTION 

Wet-deck slamming (wave impact against the cross-

deck structure) is an important consideration in the 

structural design of catamarans (Lavroff et al., 2013, 

Shabani et al., 2018a). The centre bow (shown in Figures 

1 and 2) minimises the risk of deck-diving and improves 

seakeeping characteristics but adds complexity and 

non-linearity in the hull-wave interaction during arch 

filling and wet-deck slamming (Lavroff and Davis, 

2015). Large transient slam loads may occur, generating 

whipping and structural vibrations (Thomas et al., 2011) 

and in the long term, these vibrations can contribute to 

fatigue (Amin et al., 2013).  

 

Figure 1: HSV-2 SWIFT, a 98-meter wave piercing 

catamaran built in 2003 (Hull 061) (Incat.com.au, 

2019). 

The severity of slam forces on high speed wave piercing 

catamarans (WPCs) has been reported to be in the order 

of the vessel weight but a high level of uncertainty still 

exists in determining these loads.  There have been 

numerical simulations of motions and loads of WPCs 

(McVicar et al., 2018) and model test programmes for 

measuring the extreme model scale loads with respect to 

various speeds and wave heights in both regular and 

irregular waves (Davis et al., 2017, Lavroff et al., 2017, 

AlaviMehr et al., 2019). Recent studies on motions and 

loads of WPCs have been based on hydroelastic 

segmented model tests mainly conducted in regular 

(Shabani et al., 2019b, c, d) and irregular (Davis et al., 

2017) head waves.  

 

 

Figure 2: Volcan De Tagoro, A 111- m wave piercing 

catamaran built in 2019 (Hull 091) (Incat.com.au, 

2019). 

 

Slam loads, pressures and kinematics of WPCs during 

bow entry events in regular head seas were investigated 

previously in (Shabani et al., 2017, Shabani et al., 2018a, 

Shabani et al., 2018b, Shabani et al., 2019a, Shabani et 

al., 2019b, c, d). In regular waves, it was seen that wet-

deck slamming occurs when the centre bow (see Figure 

3) immersion depth relative to undisturbed water surface 
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reaches a certain limit which is a function of wave 

encounter frequency. This is shown in Figure 4 for two 

dimensionless wave encounter frequencies. In real 

operating conditions, a large set of data can lead to more 

accurate predictions of wet-deck slamming events. This 

is important from a structural design perspective 

considering that the existing prediction methods and 

design rules for WPCs are yet to be fully developed. 

 

 

Figure 3: The centre bow of a model wave piercing 

catamaran (Shabani et al., 2017). 

 

 
(a) 

 
(b) 

Figure 4: Vertical displacement, encountered wave 

profile and centre bow (CB) load at slamming instants 

for a catamaran model in 𝒉𝒘 = 𝟗𝟎 mm , 𝑽𝐦 = 𝟐. 𝟖𝟗 

m/s for two dimensionless wave encounter 

frequencies (𝝎𝒆
∗). ‘S’ shows intersection point of the 

static wet-deck level and instantaneous wet-deck line, 

𝒉𝒘 is wave height and 𝑽𝐦  is the model velocity 

(Shabani et al., 2018a). 

A hull monitoring system, which integrates strain 

gauges, accelerometers and other sensors, can provide 

valuable information for both ship design and 

operations. A monitoring system can have standard 

features specified in class guidelines such as stress 

cycles counts, warnings due to slamming and excessive 

motions. Considering the current technology trends and 

digitalisation affecting services, products and processes, 

smart and connected hull monitoring systems 

incorporating machine learning (ML) and deep learning 

methods are of interest (Bekker et al., 2018). 

When it comes to slamming, a hull monitoring system 

could be developed in order to satisfy multiple 

requirements in real-time. For example, it may have 

certain features to (1) predict ahead of time if the vessel 

is likely to be subjected to wave impacts given the 

current operating conditions (2) provide awareness of 

the likelihood and severity of slamming events that 

could hypothetically lead to either local or global 

structural damage (3) propose a modified speed or 

change of course to minimise the structural risks (4) 

automatically identify slamming events and provide a 

statistical summary of slamming occurrences and 

severity according to slam-induced accelerations and 

hull stresses. The first three features mentioned above 

represent some of the problems that were addressed by 

Ochi and Motter (Ochi and Motter, 1973) through a 

closed-form statistical model. More details of the Ochi 

slamming conditions and slamming probability can be 

found in (Dessi and Ciappi, 2013) and a review of 

slamming identification methods can be also found in 

(Magoga et al., 2017). Nevertheless, the alternative 

methods based on ML have yet to be developed to 

identify and classify slamming events in random waves. 

Various ML techniques (Aghabozorgi et al., 2015, Jain et 

al., 1999, Mahdavinejad et al., 2018, Witten et al., 2016, 

Berkhin, 2006) have been developed to address a variety of 

classification problems. Among a broad range of 

applications, ML models for structural health monitoring, 

damage detection and predictive maintenance of 

mechanical systems, ships and offshore structures (Mitra 

and Gopalakrishnan, 2016) and digital twin of a research 

vessel (Bekker, 2018) can be highlighted. 

In this paper, the development of a remote monitoring 

system will be presented, and machine learning 

algorithms will be applied to classify centre bow entry 

events in random seas. This is part of a broader research 

project which aims to develop smart and connected hull 

monitoring systems specific to WPCs. 

 

2.  FULL-SCALE DATASETS  

2.1 HULL 091 MONITORING SYSTEM 

A hull monitoring system has been developed for Hull 091 

Incat vessel (see Figure 2). The vessel was instrumented in 

July 2019 using a motion reference unit (MRU), a bow 

accelerometer and 10 strain gauges. An ultrasonic wave 

sensor was placed in the bow area to measure the incident 

wave profiles. An overview of the remote monitoring 

system is shown in Table 1. Figure 5 shows the 
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approximate longitudinal locations of the cDAQ, laptop, 

MRU, strain gauges, bow accelerometer and the  

ultrasonic sensor. The sampling rates were not consistent 

across the sensors because of the requirements of 

modules/sensors. More specifically, the sampling rates 

were set to 1000 Hz for strain gauge data, 100 Hz for 

 the bow and MRU acceleration data, 50 Hz for MRU 

heave, pitch and roll data and 9 Hz for the ultrasonic sensor.  

A LabVIEW program was developed to record and 

upload data automatically to a Google Drive account 

given a set of predefined rules and triggers. For instance, 

the LabVIEW program records full raw data as a 

technical data management streaming (TDMS) file and 

creates a subset file when the bow vertical acceleration 

is above 0.5g with a window of 30 seconds. In addition, 

the rain flow counting algorithm available in LabVIEW 

was included to output a comma-separated values (CSV) 

file, providing a summary of strain cycle counts from 

each strain gauge.  

 

Figure 5: Hull 091 cabling diagram from Frame 55 to frames (Fr) 38, 58, 73, 77, 83 and 85, showing the approximate 

longitudinal locations of the cDAQ, laptop, MRU, strain gauges, bow accelerometer and ultrasonic sensor listed in 

Table 1. 

Table 1 Overview of Hull 091 remote monitoring components 

Category  Item Quantity Description  

Sensors /data 

source 

Strain gauges  10 HBM 1-LY43-6/350 

Accelerometer (3-axial) 1 CrossBow- CXL04GP3 

Ultrasonic sensor 1 
ToughSonic 50(TSPC-

21SRM-485) 

Motion reference unit (MRU) 1 SBG Systems- Ellipse2-A 

Global Positioning System (GPS) receiver 1 Hull 091 GPS distributor  

Data 

acquisition 

Data acquisition (DAQ) module  1 
National Instrument (NI 

cDAQ-9174)  

Strain gauges module (8 channel) 2 National Instrument (NI-9236) 

Universal Input module (4 channel) 1 National Instrument (NI-9219) 

Computer, 

accessories 

and software 

Laptop  1 Dell latitude 7490 

USB Hub 1 Powered USB hub 

Onboard Monitoring Software  1 
Customised LabVIEW 

program  

Remote Desktop Access 1 TeamViewer 

Laptop tray 1 
RAM Universal tray (RAM-

234-3) 

Cabinet  1 PCLocs – Carrier 10 

 NMEA to USB convertor  1 Digital Yacht 

Storage & 

connectivity  

External hard drive 1 Samsung- USB-C 1T SSD 

Cloud based storage  
100GB 

(scalable)  
Google Drive 

WiFi/LAN router  1 
Digital Yacht 4G Connect 

PRO 

4G antennas 2 
Digital Yacht 4G Connect 

PRO 

Sim Card 1 Simyo 4G  
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 Figure 6: A sample streaming architecture, presenting data analytic & visualisation resources for a remote 

hull monitoring system (HMS) using Amazon Web Services (AWS) and MathWorks product  

 

It is worth mentioning that developing a customised 

LabVIEW program enabled the integration of the MRU 

and GPS data. This was achieved by incorporating SBG 

Systems (Ellipse2-A) and NMEA-0183 GPS drivers, to 

the strain gauges, bow accelerometer and ultrasonic 

sensor data acquired from NI 9236 and 9219 modules. 

Furthermore, a file management function was included 

so that the files could be uploaded into the Google Drive 

and deleted from the computer hard drive. The choice of 

Google Drive here is due to having a general purpose, 

temporary storage for preliminary data access and some 

other user-friendly features such as automatic 

synchronisation and backup to manage large data files. 

Password and two-step verification mechanisms were 

enabled to protect data and enhance security of the 

remote access to the monitoring computer.       

The customised upload code developed in the LabVIEW 

program can be adjusted to upload the data into a cloud 

platform which enables advanced features such as 

machine learning, deep learning and near real-time 

monitoring. Such features, for example, are available in 

public cloud computing services such as Amazon Web 

Services (AWS) Google Cloud Platform (GCP), and 

Microsoft Azure.  

Figure 6 shows a typical streaming architecture, 

presenting data analytic and visualisation resources 

considered for the remote hull monitoring system. 

Through an Application Programming Interface (API), 

the solution architecture allows access to AWS data 

storage service (i.e. S3), sending information to AWS 

Lambda for serverless processing and using MATLAB 

on AWS for parallel computing. It also enables 

MATLAB users using different MATLAB runtimes to 

develop their algorithms on a local machine by 

incorporating some essential modules such as signal 

processing, machine learning and statistics or deep 

learning toolboxes but compile their codes to be 

deployed on MATLAB production server. The 

production server consists of several MATLAB workers 

running on remote computing instances on AWS and 

supports analytic integration to third-party software and 

webpages. The architecture incorporates Apache Kafka 

(i.e. a distributed streaming platform) for real time 

analytics. In addition, through web app designer and web 

app server, MATLAB applications can be designed and 

deployed to enable signal monitoring and customised 

analytics. At the time of writing this document, the data 

workflow benefits from AWS S3, and MATLAB on 

AWS for signal prepressing and filtering, standard 

calculations such as cumulative strain cycle counts on a 

monthly basis and reporting Motion Sickness Incidence 

(MSI) of voyages in each month. MSIs were calculated 

using rms weighted vertical accelerations for the 

location at which the MRU was placed. A Lambda 

function was also developed to highlight the highest 

peak bow acceleration of each month automatically on 

AWS (i.e. based on trigger events defined by new files 

received in S3 and without managing compute 

infrastructure). A customised MATLAB application was 

also developed to visualise the processed data. However, 

machine learning algorithms and near real-time analytics 

are yet to be investigated.   

Table 2 Main particulars of Hull 091 and Hull 061 

 Hull 091 Hull 061 

Length overall 111.9 m 97.22 m 

Length waterline  103.2 m 92 m 

Beam Overall  30.5 26.6 m 

Draught 4.1 m 3.434 m 

Demihull beam 5.8 m 4.5 m 

Max Deadweight 1000 tonnes 670 tonnes 

Speed  42.4 knots 38 knots 

HMS AWS S3 

AWS Lambda 

(Python 3.8) 

MATLAB 2020a 

on AWS 
MATLAB 

Production 

Server on 

AWS 

MATLAB Analytics 

(Signal processing, 

Statistics and Machine 

Learning, Deep learning, 

App designer, Compiler 

SDK …) 

 

 

Monitoring dashboard/ 

MATLAB Web App 

Server 

API 

Gateway 

Apache 

Kafka 

Kafka connector 
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Figure 7: General arrangement (GA) of Hull 061. 

 

Table 3 An overview of HSV-2 Swift (Hull 061) seakeeping and structural loads data obtained from sea trials 

between 11th and 17th of May 2004 

Total Runs 

 

Sea State 

 

Significant 

Wave Height 

(m) 

 

Ship Speed 

(knots) 

 

Number of 

channels 

Sampling rate Total data 

rows 

 

159 4-5 1.8- 3.8 10-38 79 100 Hz 24 million  

Table 4 Selected runs in head seas for Hull 061 data series 

Run 

number 

Significant 

wave height 

(m) 

Modal 

period (s) 

Speed 

(knots) 

Ride 

control 

status 

Run 

duration 

(min.) 

70 2.4 8.2 20 ON 21.1 

92 3.0 11 30 ON 22.2 

99 2.0 7.5 35 OFF 19.4 

145 2.4 10.2 35 ON 19.5 

159 1.7 8.4 30 OFF 20.2 

174 2.9 10.2 35 ON 20.4 

180 2.8 9.7 35 OFF 20.3 

192 1.9 7.6 30 ON 19.7 

206 1.6 7.2 15 OFF 21.1 

The delivery voyage of Hull 091 from Hobart, Tasmania 

to Canary Islands, Spain took place between 15 July and 

15 August 2019 and over 200 GB data has been collected 

so far.  Hull 061 sea trials data was first used in order to 

develop a classification algorithm for the bow entry of 

high-speed WPCs. Table 2 compares main particulars of 

Hull 061 and Hull 091.  

 

2.2  DEVELOPMENT OF ML PIPELINE USING 

EXISTING HULL 061 DATA 

An existing dataset (Hull 061 dataset) was used to 

propose a possible architecture for an ML pipeline, in 

which ML workflows can be automated as described in 

Figure 6. The use of Hull 061 dataset was an important 

step given the fact that the two vessels are similar in 

design, noting that the main objective of the ML 

workflows in this work is to classify the bow entry 

events according to the kinematics of centre bow entry 

(Shabani et al., 2018a) in random waves. In addition, the 

successful instrumentation of Hull 061 and notable 

findings regarding slamming characteristics were the 

key for developing a remote monitoring system for Hull 

091. The choice of having an ML model developed for 

classifying bow entry events of Hull 091 in the present 

work is also linked to Hull 061 bow entry events which 

resulted in wet-deck slamming occurrences (Jacobi et 

al., 2012, Jacobi et al., 2014) in various speeds and wave 

heights during HSV-2 Swift sea trials.  

The seakeeping and structural loads trials of Hull 061 

were conducted in May 2004. The vessel was 

extensively instrumented by 47 strain gauges and 4 
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triaxial accelerometers located at the bow, bridge, LCG, 

and flight deck. The roll, pitch and yaw were measured 

at the longitudinal centre of gravity and a Tsurumi Seiki 

Co.  Ltd (TSK) wave height meter system was installed 

at Fr 72 (see Figure 7). Several parameters of the 

shipboard control systems were also monitored 

including the position of the T-foil and trim tabs, 

waterjet nozzle angle and waterjet shaft speed. Table 3 

shows an overview of Hull 061 seakeeping and 

structural loads data obtained from sea trials between 

11th and 17th of May 2004. The accumulated data rows 

from all runs were approximately 24 million rows, an 

equivalent of 66.6 hours of logged data at 100 Hz.  

The sea trials were conducted in various wave heights 

and different octagons, each with five legs from head 

seas to following seas at a constant ship speed 

throughout each octagon. Since head seas accounted for 

a larger number of slams in comparison to other 

headings (Jacobi et al., 2014), a total of 9 runs in head 

seas were selected for current analyses as listed in 

Table 4. 

3.  DATA ANALYSES APPROACH  

3.1 TIME SERIES SEGMENTATION & 

FEATURE EXTRACTION  

The rate of wet-deck slamming occurrence is a function 

of the centre bow and wet-deck geometry, speed, wave 

height and other operational factors (Jacobi et al., 2014), 

but the condition in which a wet-deck slam can occur is 

often simplified by considering the relative vertical bow 

displacements along the centre bow (Davis et al., 2017, 

Shabani et al., 2018a). The rate of wet-deck slamming 

occurrence therefore can be described by the number of 

bow entries exceeding a threshold value (Davis et al., 

2017) noting that the variability of the threshold relative 

vertical bow displacement can be included.  

A new approach is proposed in this work with the 

objective of having an automated data pipeline for 

describing bow entry events, in particular those that are 

likely associated with wet-deck slamming events. 

Figure 8 shows the overall approach proposed for 

classifying the bow entry events that incorporates 

unsupervised and supervised classification methods 

(Witten et al., 2016). 

As mentioned earlier, various methods for identification 

of slamming events have been proposed previously 

including whipping-based criterion (Dessi, 2014), 

maximum rate of change of stress (Jacobi et al., 2014, 

Magoga et al., 2017), and wavelet methods (Amin et al., 

2013). The approach proposed in Figure 8 considers bow 

vertical accelerations, strain gauge measurements and 

relative motions as the inputs for an unsupervised 

learning algorithm for the classification of the bow entry 

events.  The selected features have some similarities 

with those mentioned earlier with respect to slamming 

identification criteria.  The unsupervised model can be 

used for onboard or cloud-based analyses when other all 

inputs are available from the measurements. In addition, 

a supervised learning model is proposed which only 

requires the relative motions data to classify the bow 

entry events. The supervised model is then an alternate 

solution for simulations of wet-deck slamming analyses 

in random waves according to the bow entry kinematics.  

 

Figure 8: The process of centre bow entry 

classification. 

As shown in Figure 8, in the first step, the moving mean 

of the bow vertical acceleration was used to divide the 

time series into segments so that each segment 

represented a time window between the zero crossings 

of the moving mean signal (see Figure 9). Only segments 

with positive moving mean accelerations (see for 

example Figure 9 between 10.3 and 10.35 minutes) were 

selected for the analyses as they are linked to the centre 

bow entry events.  

In a parallel step, by parsing strain signals through the 

1-D continuous wavelet transform (CWT) function in 

MATLAB version 2019a (by The MathWorks, Inc.), the 

frequencies with the highest magnitudes were identified 

for each strain signal within each segment. The wavelet 

transform is obtained using the analytic Morse wavelet, 

with 𝐿1 normalisation, so equal amplitude oscillatory 

components in the data at different scales have equal 

magnitude in the CWT function.  

Figure 10 shows an example of the wavelet transform 

applied to a standardised strain signal, which is scaled to 

a zero mean and standard deviation of 1. The strain 

signal was low-pass filtered by a cutoff frequency of 5 

Hz before applying the wavelet transform. Frequencies 

with the highest magnitude are presented as a function 

of time, showing a peak frequency of 2.83 Hz which 

plateaued around a time of 14.72 minutes from the start 

of recording, noting that this was in a segment at which 

a wet-deck slamming occurred with a peak acceleration 

of above 2 𝑔.  
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Figure 9: A time record of vertical bow acceleration and its moving average, showing a typical peak acceleration 

above the mean, and two segments with positive and negative moving mean accelerations. Raw data is taken from 

Hull 061, Run 145 at a speed of 35 knots in head seas with a significant wave height of 2.4 m. 

(a) 

 

(b) 

 

Figure 10: 1-D wavelet transform’s frequency and magnitude of a standardised strain signal (contour plots), and 

frequencies with the highest magnitude as a function of time (line plots): (a) between 10.2 and 10.5 min., 

corresponding to peak accelerations shown in Figure 9; (b) between 14.6 and 14.8 min, corresponding to an impact 

with a peak acceleration of above 2g. Raw data is taken from strain gauge T1_10 at Fr 61 measured during Run 145 

at a speed of 35 knots in head seas with a significant wave height of 2.4  m. The wavelet transform is obtained using 

the analytic Morse wavelet.  The colour bar shows the magnitude of oscillatory components with 𝑳𝟏 normalisation 

in MATLAB 2019a. 
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Figure 11: Representation of (a) minimum relative bow displacement in bow entry segments (b) minimum relative 

bow velocity in bow entry segments. Raw data is taken from Hull 061, Run 145 at a speed of 35 knots in head seas 

with a significant wave height of 2.4 m. 

Table 5 Variables selected for the classification of the centre bow entry 

Variable 

Names 

Data category  Selected features  
Presentation  

Standardisation 

var1 Moving average of bow 

vertical acceleration  

Maximum value for each segment  
Figure 9 

Yes 

var2 Vertical bow acceleration 

above the moving average  

Peak value for each segment  
Figure 9 

Yes 

var3 Peak frequencies obtained 

from the wavelet analyses  

Maximum frequency value for each 

segment 
Figure 10 

Yes 

var4 Peak magnitudes obtained 

from the wavelet analyses  

Maximum magnitude for each 

segment  
Figure 10 

Yes 

var5 Relative bow displacement  Minimum value for each segment  Figure 11 Yes 

var6 Relative bow velocity  Minimum value for each segment  Figure 11 Yes 

 

The centre bow entry in waves was analysed by 

considering the vertical displacement of the centre bow 

relative to the measured wave elevation in the bow area. 

Two parameters were selected to describe the centre bow 

entry in each segment: (1) relative bow displacement (2) 

relative bow velocity, as shown in Figure 11. The 

segment’s boundaries in the figure are zero crossing 

points found by the analyses of the moving average of 

the vertical bow acceleration as shown in Figure 9. Table 

5 shows a summary of features extracted for each 

segment. Features are either maximum or minimum 

values of quantities described in Figures 9-11.  

In the data preparation step before clustering, features 

were scaled to have a mean value of zero and a standard 

deviation of 1. The standardisation function is 𝑍 =
𝑥−�̅�

𝑆
 , 

where 𝑥 is sample data, �̅� is the mean and 𝑆 is the 

standard deviation of the sample data. It is worth noting 

that the standardisation was conducted after the features 

listed in Table 5 were calculated from all runs listed in 

Table 4. The normalisation is required for the subsequent 

data clustering (described in the following section) so 

that the clustering is not biased towards any particular 

feature. 

3.2 DATA CLUSTERING AND SUPERVISED 

CLASSIFICATION  

Data clustering or unsupervised classification is a 

technique that does not require structured prior 

information about groups or classes in a given dataset 

[30]. The objective is to find natural groups (i.e. clusters) 

within the dataset based on a similarity measure such 

that each cluster represents a meaningful category 

according to a selection of variables or features extracted 

from the original dataset. Various algorithms have been 

developed for clustering including hierarchical 

clustering, partitioning and density-based partitioning 

algorithms [31]. For instance, in the k-means algorithm, 

which is one of the most widely used methods in 

partitioning, the objective is to find k clusters from n 
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observations so that each observation can be assigned to 

a cluster according to the minimum distance (e.g. 

Euclidian metric) from the mean value of each cluster 

(Aghabozorgi et al., 2015, Jain, 2010). While there are 

various forms of k-means, the main steps are (Jain, 2010, 

Jain and Dubes, 1988):  

Step 1.     Select an initial partition with k clusters;  

      repeat steps 2 and 3 until cluster 

      membership stabilises.  

Step 2.   Generate a new partition by assigning  

      each pattern to its closest cluster centre.  

Step 3.         Compute new cluster centres 

In the steps above the number of clusters (k), distance 

metric and initialisation of clusters are user specified 

parameters. Use of the Euclidean distance as the distance 

metric is a typical choice; other metrics include 

Manhattan, Chebyshev and Minkowski metrics (Singh 

et al., 2013). The cluster initialization error can be also 

minimised through different approaches (Khan and 

Ahmad, 2004, Likas et al., 2003). It is worth noting that 

an extension of the basic k-means is the fuzzy c-means 

(Dunn, 1973, Bezdek, 1981), in which each observation 

can be assigned to multiple clusters. An in-depth review 

of the application of clustering techniques can be found 

in (Dunn, 1973, Bezdek, 1981), noting that the second 

paper is focused on time series clustering which is the 

case for the present study.  

The clustering analyses were conducted using the 

statistics and machine learning toolbox available in 

MATLAB version 2019a, in which a function has been 

developed that uses a k-means clustering method 

referred to as Lloyd’s algorithm (Lloyd, 1982), but the 

default setting of the function uses k-means++ (Arthur 

and Vassilvitskii, 2007). The k-means++ algorithm 

outperforms Lloyd’s algorithm in speed and accuracy by 

incorporating a different seeding technique that creates k 

clusters one by one according to a probability function, 

as opposed to an initial partitioning with k clusters in the 

first step. 

In supervised learning the objective is to train a classifier 

based on a set of labelled data or training examples. 

Various classifiers have been developed for this task 

including Bayesian classifiers, nearest neighbour 

classifiers, linear and polynomial classifiers, artificial 

neural networks and decision trees (Kubat, 2017). A 

review of classification techniques and algorithms with 

a focus on Internet of Things and sensory data analysis 

can be found in (Mahdavinejad et al., 2018). In this 

work, the classification learner application in MATLAB 

version 2019a was used to train classifiers based on 

relative motion features. 

 

 

4.  RESULTS  

4.1 CLASSIFICATION OF BOW ENTRY 

EVENTS USING UNSUPERVISED 

LEARNING 

The centre bow entry events were analysed from a total 

of approximately 3 hours of measurements on Hull 061 

accumulated from 9 runs in head seas with a significant 

wave height in the range between 1.6 m and 3.0 m, as 

presented in Table 4, in order to classify the events into 

3 groups with respect to 6 features listed in Table 5 

showing a set of features obtained from strain 

measurements, vertical bow acceleration and bow 

relative motion data. The clustering was achieved by 

using k-means++ algorithm, which was briefly 

introduced in the previous section. As mentioned earlier, 

the number of clusters (k) is a user specified parameter 

and the choice of k=3 here can be altered to a higher or 

lower number. Bow entry events with a minimum 

relative bow displacement of - 0.5 m at the reference 

frame of relative motion measurement (i.e. Fr72-Hull 

061) were selected. This resulted in a total of 2378 bow 

entry events, from which 58%, 31% and 11% were 

identified as “group 1”, “group 2” and “group 3”, 

respectively. The differences between the groups can be 

explained by box plot presentations of feature variables 

in each group as shown in Figures 12-14. The line inside 

each box is the median calculated for each distribution, 

while the upper and lower edges of each box present the 

25th and 75th percentiles, respectively. The most extreme 

data points shown by the upper and lower whiskers 

correspond approximately to ± 2.7𝜎 if the data were 

normally distributed, where 𝜎 is the standard deviation 

of the sample population. The data points outside these 

limits (i.e. 99.3% coverage) are considered as “outliers” 

and are shown by separate data points in each case. 

It can be inferred from Figure 12(b) that group 3 contains 

strong wet-deck slamming events given the distribution 

of the outliers in comparison to that in groups 1 and 2. In 

addition, the likelihood of wet-deck slamming events to 

be in groups 1 and 2 is much lower than that in group 3, 

supported by the frequency distributions presented in 

Figure 13 (a) in which groups 1 and 2 data are almost out 

of the range of expected whipping frequency (i.e. 2 -3 

Hz) for Hull 061. It should be noted that since filtering 

was not carried out on strain signals prior to the wavelet 

analyses, unlike group 3, group 1 and 2 data represent 

bow entry events where global loads are dominant rather 

than slam-induced whipping loads.  

For the above reasons, it can be argued that the 

kinematics conditions for wet-deck slamming 

occurrences in terms of bow relative displacement and 

velocity are best described by group 3 distributions 

plotted in Figure 14. However, it is difficult to draw a 

conclusion for conditions leading to wet-deck slamming 

occurrences based on the individual distribution of either 

minimum relative bow displacement or relative bow 

velocity. For example, the top whiskers in groups 2 and 
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3 show little differences in Figure 14, indicating that 

group 2 bow entry events could be easily misclassified 

as group 3 or vice versa. This is an important 

consideration as minimum relative bow displacement is 

often considered as the only parameter in the simulation 

of wet-deck slamming occurrences of WPCs in a seaway 

Such an approach can be, to a certain degree, misleading 

in terms of the rate of slamming occurrences if only one 

reference section is used. 

 

 

Figure 12: Box plot presentations of (top) maximum 

values of moving average of vertical bow acceleration 

during bow entry (var1) (bottom) maximum vertical 

bow acceleration above the moving mean (var2). 

Groups 1, 2 and 3 were determined by k-means ++ 

algorithm with input variables shown in Table 5. 

 

Fig13.a 

 

Fig13.b 

Figure 13: Box plot presentations of (a) frequency 

with maximum magnitude in the wavelet transform 

during bow entry (var3 in Table 5) and (b) wavelet 

transform maximum magnitude during bow entry 

(var4 in Table 5), where raw data obtained from a 

strain gauge at Fr 61. Groups 1, 2 and 3 were 

determined by k-means ++ algorithm with input 

variables shown in Table 5. 

 

 

Figure 14: Box plot presentations of (top) minimum 

relative bow displacement (var5 in Table 5) (bottom) 

minimum relative bow velocity (var6 in Table 5). 

Groups 1, 2 and 3 were determined by k-means ++ 

algorithm with input variables shown in Table 5. 
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Figure 15 The rate of bow entry per minute for various groups for each individual run  (refer to Table 4). 

Figure 15 shows bow entry event rates for various runs 

at different speeds and significant wave heights. It can 

be seen that the bow entry event rates in group 2 can be 

several times higher than that in group 3. Interestingly, 

the results in Figure 15 show that in 30 and 20 knots the 

rates of group 3 bow entry events are higher than that in 

35 knots, but such events are eliminated at a speed of 15 

knots, highlighting the importance of effective speed 

reduction for decreasing the rate or minimising the 

likelihood of wet-deck slamming occurrences from 

operational perspective. 

4.2 CLASSIFICATION OF BOW ENTRY 

EVENTS USING SUPERVISED LEARNING  

Considering minimum relative bow displacement and 

velocity as a pair to classify bow entry events may lead 

to a better estimation of group 3 bow entry events in 

comparison to a single parameter criterion such as 

threshold relative vertical bow displacement. This is in 

fact a common approach for evaluating bottom 

slamming occurrences and the probability of such events 

in monohulls (Dessi and Ciappi, 2013). However, it 

should be noted that the conditions in which bottom 

entry events are classified for monohulls as either 

“slamming” or “no slamming” are usually defined by 

certain kinematics rules (Ochi and Motter, 1973) rather 

than by a data driven approach taken in the present work.  

One approach for the classification of centre bow entry 

events could be to calculate distances from the centroid 

of each group shown in Figure 16 to determine the type 

of bow entry events. More broadly, supervised learning 

classification algorithms such as support vector 

machines (SVMs), naïve Bayes or decision trees can be 

applied. The full explanation of supervised learning 

models and their applications for the classification of the 

bow entry events is beyond the scope of the present work 

but it is of interest to show how these models would 

generalise the bow entry classification problem by 

considering bow entry groups, shown in Figure 16, as 

training examples. An overview of possible outcomes 

from these models is presented in Figure 17. Table 6 

shows the confusion matrix and the accuracy of these 

models with MATLAB’s default settings (version 

2019a) for each algorithm.  

 

Figure 16 Minimum relative bow displacement versus 

minimum relative bow velocity during bow entry 

events in groups 1, 2 and 3. 

Each algorithm resulted in a different pattern although 

the data used for training were identical. Figure 17(c) 

shows the result of a coarse decision tree which indicates 

a minimum relative displacement and velocity of about 

-2.6 m and -3 m/s for group 3 bow entry events, where 

the former value is comparable to the wet-deck clearance 

of Hull 061 in calm water and the latter is about 15% of 

a full speed of 38 knots. In contrast, at a relative 

displacement of -2.6 m, the two other models (i.e. linear 

SVM and Gaussian naïve Bayes) shown in 

Figure 17 (a & b), suggest a relative bow velocity of 

- 5.3 m/s although these models describe the bow entry 

events quite differently in other regions.  
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(a) Unclassified domain (c) Classification based on a coarse decision tree 

  

(b) Classification based on a linear support vector 

machine (SVM) model 

(d) Classification based on a Gaussian naïve Bayes 

model 

 

Figure 17 An overview of bow entry classification using three supervised learning models by incorporating data 

shown in Figure 16 as training examples. 

 

Table 6 Confusion matrix and accuracy of trained models 

 Model 1 Model 2 Model 3 

Confusion 

matrix 

(observations) 

 
  

Accuracy  84.9 % 77.7% 83.9% 
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(a) Model 1 groups: linear support vector 

machine (SVM) 

 
(b) Model 2 groups: coarse decision tree 

 
(c) Model3 groups: Gaussian Naive Bayes 

model 

Figure 18 Box plot presentations of maximum vertical 

bow acceleration above the moving mean (var2) 

based on the outputs of three different classifiers 

trained by incorporating data shown in Figure 16 as 

training examples and general patterns described in 

Figure 17. 

Moreover, the number of strong wet-deck slamming 

events in each group was found to be very different to 

that seen in the original groups used for training. This is 

shown in Figure 18 which shows the maximum bow 

vertical acceleration above the moving mean, or feature 

defined as var2, for each group for the three classifiers. 

As can be seen in Figure 18 (a-c), there are many outliers 

suggesting wet-deck slamming events in groups 1 and 2 

as opposed to that seen in Figure 12 (b). Thus, it is 

difficult to judge whether wet-deck slamming events are 

best described by these classifiers without prior 

knowledge about the distribution of wet-deck slamming 

events in each group. Therefore, a probabilistic 

description of wet-deck slamming events is required.  

 

4.3 PROBABILITY OF SLAMMING  

The probability of wet-deck slamming 𝑃(slam) can be 

estimated as: 

𝑃(slam) =
𝑁𝑠

𝑁𝑏𝑒  
=

∑  𝑁𝑆,𝑖 
𝑘
𝑖=1

∑ 𝑁𝑏𝑒 ,𝑖
𝑘
𝑖=1

=
∑ 𝑃𝑖 . 𝑁𝑏𝑒,𝑖

𝑘
𝑖=1

∑ 𝑁𝑏𝑒 ,𝑖
𝑘
𝑖=1

 

(1) 

where, 𝑁𝑠 is the total number of wet-deck slams, 𝑁𝑏𝑒 is 

the total number of bow entry events, 𝑁𝑆,𝑖 is the number 

of wet-deck slams in cluster i, 𝑁𝑏𝑒 ,𝑖 is the number of bow 

entry events in cluster i, and 𝑃𝑖  is wet-deck slamming 

probability of cluster i.  

The number of bow entries for each cluster, 𝑁𝑏𝑒,𝑖, in a 

seaway is a parameter that can be obtained through an 

ML model by considering a set of known features. What 

is difficult to estimate is the probability of wet-deck 

slamming for each cluster (𝑃𝑖). The ideal situation is to 

find clusters in which 𝑃𝑖  is the element of an ideal set, 

for example, clusters with 𝑃𝑖 ∈ {1, 0}. This could be the 

case to a certain degree if the bow vertical acceleration 

and the wavelet features were used in an ML model such 

as the unsupervised model discussed in Section 4.1. As 

mentioned, such model is useful for automated data 

analyses for a monitoring system as described in 

Figure 7.  

For simulation purposes, relative motions are considered 

as features to determine the rate of wet-deck slamming 

occurrences, in which 𝑃𝑖  should be estimated for each 

cluster.  

It is worth noting that, in the case of bottom slamming 

of monohulls, the assumption is that relative 

displacement and velocity are two features that describe 

“slamming” and “non-slamming” zones (Dessi, 2014, 

Dessi and Ciappi, 2013, Ochi and Motter, 1973), which 

means there exist two clusters with 𝑃1 ≅ 1 for slamming 

events and 𝑃2 ≅ 0 for non-slamming events. However, 

this was not the case in Figure 18 (a-c) and a broader 

approach should be developed.  

One approach to estimate 𝑷𝒊 for clusters could be 

based on empirical cumulative distribution 

probability of a third-party feature which can describe 
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the severity of slamming, such as maximum vertical 

bow acceleration during the bow entry or maximum 

vertical bow acceleration above the moving mean. 

Figure 19 shows cumulative probability plots of 

maximum vertical bow acceleration above the moving 

mean in three different groups obtained from the 

linear SVM classification model, which compares the 

cumulative probability at an arbitrary reference value 

of 0.5 𝒈. The cumulative probability of bow entry 

with a figure above this can be calculated as an 

estimate for 𝑷𝒊 for each cluster, which are 

approximately, 0.01, 0.13 and 0.53 for groups 1, 2 and 

3 respectively. Table 7 shows the estimations of 𝑷𝒊 for 

each cluster for the three models trained.  

 

Figure 19 cumulative probability plots of max vertical 

bow acceleration above the moving mean in three 

different groups obtained from Model 1 classification 

algorithm (linear support vector machine (SVM)). 

As can be seen in Table 7, wet-deck slamming events 

are less likely to occur in groups 1 and 2 compared to 

group 3 for each model. Although the choice of model 

does affect the probability of slamming for each group 

(i.e. 𝑷𝒊 ), the number of bow entries in each group (i.e. 

𝑵𝒃𝒆 ,𝒊 ) predicted by each model will change 

proportionally, and therefore ∑ 𝑷𝒊. 𝑵𝒃𝒆,𝒊
𝒌
𝒊=𝟏  is expected 

to be similar. Consequently, given a certain threshold 

(e.g. 0.5 𝒈 or 1 𝒈) the choice of clustering should not 

significantly change the probability of slamming 

𝑷(𝐬𝐥𝐚𝐦), which is equivalent to 
∑ 𝑷𝒊.𝑵𝒃𝒆,𝒊

𝒌
𝒊=𝟏

∑ 𝑵𝒃𝒆 ,𝒊
𝒌
𝒊=𝟏

 as defined 

in Equation 1.  

It is worth noting that the number and type of clusters 

can be important for optimal decision making, for 

instance to decide how often and to what degree the 

ship speed is required to be reduced in order to lower 

the probability of experiencing slamming events 

above a certain threshold in terms of slam-induced 

acceleration. However, recommending an optimal 

ship speed requires a much more complex matrix as 

other operational factors will come into effect.  

The applicability of the presented method for monohull 

slamming has not been investigated and is thus a 

limitation of this work.  Whether data driven methods for 

peak vertical acceleration distributions (Begovic et al., 

2016, Razola et al., 2016, VanDerwerken and Judge, 

2017) could be combined with appropriate ML models 

for improved slamming analyses is yet to be considered.     

 

 

Table 7 Empirical estimators of wet deck slamming probability (above given thresholds) in each group for different 

trained models with two thresholds of 0.5 𝒈 and 1 𝒈 for Hull 061 in head seas. 

  Group 1 Group 2  Group 3 Group 1 Group 2  Group 3 

threshold  0.5 𝑔 1 𝑔 

Model1 0.013 0.130 0.530 0.001 0.032 0.250 

Model2 0.016 0.150 0.440 0.002 0.052 0.190 

Model3  0.013 0.140 0.490 0.001 0.037 0.220 

        

 

5.  CONCLUSIONS 

A remote hull monitoring system was developed for a 

111 m catamaran with the objective of connectivity to a 

cloud-based platform in which machine learning/deep 

learning models could be deployed, enabling near real 

time analyses, classification and visualisation of data. 

The monitoring system is capable of measuring strain 

across multiple locations, bow and passenger deck 

accelerations, motions (i.e. heave, pitch and roll) and 

motions at the bow area relative to the water surface. 

Using sea trials data available from a similar vessel 

(Hull 061) and with the consideration of both 

unsupervised and supervised learning algorithms, 

centre bow entry events were classified into different 

groups and the likelihood of wet-deck slamming in 

head seas was estimated in each group for slamming 

events above two slam-induced bow acceleration 
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thresholds of 0.5 𝒈 and 1 𝒈. By collecting a large 

amount of data of bow entry and wet-deck slamming 

events in various operational conditions, the models 

and estimates could be improved, and the probability 

of wet-deck slamming events in each cluster can be 

better evaluated. The ML approach proposed in this 

paper can be used for clustering and grouping bow 

entry events. This also provides a basis for slamming 

probability analyses in each group/cluster for real-

time operations. For instance, the effect of speed 

changes on relative motions and slamming probability 

in any sea state could be monitored and displayed, 

provided that the vessel is equipped with the 

appropriate sensors. Loads and motions information 

could be also used for future design analyses 

investigating the influence of wet-deck slamming.    

More investigations are recommended to explore the 

application of learning models and recommendation 

systems for slamming, seakeeping, passenger comfort 

and the development of smart and connected hull 

monitoring systems such as on Incat Hull 093 and 

future WPC vessels to help with the improvement of 

high-speed vessels and the understanding of structural 

loads and sea keeping performance.  
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