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SUMMARY 

Wave load cycles, wet-deck slamming events, accelerations and motion comfort are important considerations for high-speed 
catamarans operating in moderate to large waves. Although developing a hull monitoring system according to classification 
guidelines for such vessels is broadly acceptable, the data processing requirements for outputs such as rainflow counting, 
filtering, probability distribution, fatigue damage estimation and warning due to slamming can be as sophisticated to 
implement as the system components themselves. Advanced analytics such as machine learning and deep learning data 
pipelines will also create more complexities for such systems, if included. This paper provides an overview of data 
analytics methods and cloud computing resources employed for remotely monitoring motions and structural responses of a 
111 m high-speed catamaran. To satisfy the data processing requirements, MATLAB Reference Architectures on Amazon 
Web Services (AWS) were used. Such combination enabled fast parallel computing and advanced feature engineering in a 
time-efficient manner. A MATLAB Production Server on AWS has been set up for near real-time analytics and execution 
of functions developed according to the class guidelines. A case study using Long ShortTerm Memory (LSTM) networks 
for ship speed and Motion Sickness Incidence (MSI) is provided and discussed. Such data architecture provides a flexible 
and scalable solution, leading to deeper insights through big data processing and machine learning, which supports hull 
monitoring functions as a service.

1. INTRODUCTION

This paper provides an overview of data analysis methods 
and cloud computing resources being considered for 
Volcan de Tagoro (see Figure 1), which has operated in 
Spain, Canary Islands in the route between Las Palmas and 
Tenerife since August 2019. Classified by DNV GL, the 
vessel has a maximum deadweight (DWT) of 1000 tonnes, 
can carry up to 1200 crew and passengers and 401 cars, 
and has a specification speed of 42.4 knots at 600 tonnes 
DWT. Large wave piercing catamarans (WPCs) have the 
capability of satisfying economic demands for fast sea 
transportation with improved seakeeping characteristics 
compared to conventional catamarans [1, 2]. Since the 
1990s many large WPCs have been constructed at Incat’s 
Hobart shipyard, ranging from 74 m to 112 m in overall 
length and being operated mainly as passenger/vehicle 
ferries. These aluminium vessels have a distinctive 
design due to an above-water centre bow connecting two 
demihulls at the forward region. The propulsion systems 
of the Incat WPCs are water jets and an active ride control 
system is installed to improve passenger comfort. Error! 
Reference source not found. shows the 111 m wave-
piercing catamaran (Volcan de Tagoro, Hull 091) built by 
Incat Tasmania in 2019. Table 1 shows the main particulars 
of Hull 091. A hull monitoring system was developed for 
Hull 091 as previously described in [3] to continuously 
monitor the ship motions and structural responses. 

It should be noted that wave load cycles, wet-deck 
slamming events, accelerations and motion comfort are 

important considerations for high-speed catamarans 
when operating in moderate to large waves. A guideline 
[4] presents the standard components to receive a Hull 
Monitoring System Notation (HMON) for different vessel 
types including high speed light craft. Although developing 
a hull monitoring system according to the classification 
guidelines for such vessels is broadly acceptable, the 
data processing requirements can be as sophisticated to 
implement as the system components themselves. One 
needs to consider rainflow counting, filtering, probability 
distribution, fatigue damage estimation, warning due to 
slamming and many others. 

Machine Learning (ML) and Deep Learning (DL) 
algorithms [5-8] add a layer of intelligence to onboard 
monitoring systems, with their potential yet to be fully 
explored. However, ML and DL data pipelines will also 
create more complexities for such systems, as is also 
evident from the class recommended practices for data 
quality assessment (i.e. DNVGL-RP-0497) and data-
driven algorithms and models (i.e. DNVGL-RP-0510). 

One solution to overcome complexities in big data 
processing and machine learning of modern hull monitoring 
systems is cloud computing. This represents an alternative 
approach to onboard processing and storage. Both methods 
provide many advantages, with the latter being a common 
method within the industry. However, cloud computing 
resources are an excellent choice for big data processing 
[9] and real-time analytics and their applications across 
many industries are well understood. A cloud processing 
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solution considering MATLAB Reference Architectures 
on Amazon Web Services (AWS) is introduced in this 
paper. Such a combination facilitated parallel processing 
of raw data and provided a framework for training various 
ML and DL algorithms on the cloud platform.

2. HULL MONITORING SYSTEM 

A hull monitoring system has been developed for 
Hull 091 Incat vessel (see Figure 1). The vessel was 
instrumented in July 2019 using a motion reference 
unit (MRU), a bow accelerometer and 10 strain gauges. 
An ultrasonic wave sensor was placed in the bow area 

to measure the incident wave profiles. An overview of 
the remote monitoring system is shown in Table 2. In 
this paper, «remotely monitoring» refers to the use of 
cloud computing resources to monitor the motions and 
structural responses of a remotely located vessel. Figure 2  
shows the approximate longitudinal locations of the 
cDAQ, laptop, MRU, strain gauges, bow accelerometer 
and the ultrasonic sensor. The sampling rates were set to 
100 Hz for the bow and MRU acceleration data, 50 Hz for 
MRU heave, pitch, and roll data and 9 Hz for the ultrasonic 
sensor. The National Instruments (NI) module sampling 
rate was also 1000 Hz for strain measurements (due to 
a minimum requirement of NI-9236 module) but it was 
down sampled to 100 Hz before recording data to files.

Table 2: Overview of Hull 091 remote monitoring components

Category Item Quantity Description 

Sensors /data 
source

Strain gauges 10 HBM 1-LY43-6/350
Accelerometer (3-axial) 1 CrossBow- CXL04GP3
Ultrasonic sensor 1 ToughSonic 50(TSPC-21SRM-485)
Motion reference unit (MRU) 1 SBG Systems- Ellipse2-A
Global Positioning System (GPS) 
receiver 1 Hull 091 GPS distributor 

Data acquisition
Data acquisition (DAQ) module 1 National Instrument (NI cDAQ-9174) 
Strain gauges module (8 channel) 2 National Instrument (NI-9236)
Universal Input module (4 channel) 1 National Instrument (NI-9219)

Computer, 
accessories and 
software

Laptop 1 Dell latitude 7490
USB Hub 1 Powered USB hub
Onboard Monitoring Software 1 Customised LabVIEW program 
Remote Desktop Access 1 TeamViewer
Laptop tray 1 RAM Universal tray (RAM-234-3)
Cabinet 1 PCLocs – Carrier 10
NMEA to USB convertor 1 Digital Yacht

Storage & con-
nectivity 

External hard drive 1 Samsung- USB-C 1T SSD

Cloud based storage 100GB 
(scalable) Google Drive

WiFi/LAN router 1 Digital Yacht 4G Connect PRO
4G antennas 2 Digital Yacht 4G Connect PRO
Sim Card 1 Simyo 4G 

Figure 1. Volcan de Tagoro, Hull 091 111m wave-piercing 
catamaran built by Incat Tasmania in 2019.

Table 1: Main particulars of Hull 091 

Variable Value
Length overall 111.9 m

Length waterline 103.2 m
Beam Overall 30.5 m

Draft 4.1 m
Demihull beam 5.8 m

Max Deadweight 1000 tonnes
Speed 42.4 knots

Froude number 0.69
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A LabVIEW program was developed to record and 
upload data automatically to a cloud storage. It is worth 
mentioning that developing a customised LabVIEW 
program enabled the integration of the MRU and GPS 
data. This was achieved by incorporating SBG Systems 
(Ellipse2-A) and NMEA-0183 GPS drivers, to the strain 
gauges, bow accelerometer and ultrasonic sensor data 
acquired from NI 9236 and 9219 modules. Furthermore, 
a file management function was included so that the files 
could be uploaded into the Google Drive and then deleted 
from the computer hard drive. The choice of Google Drive 
here is due to it having a general purpose, temporary 
storage for preliminary data access and some other user-
friendly features such as automatic synchronisation and 
backup to manage large data files. The customised upload 
code developed in the LabVIEW program can be adjusted 
to upload the data into a cloud platform which enables 
advanced features such as machine learning, deep learning 
and near real-time monitoring. Such features, for example, 
are available in public cloud computing services such as 
Amazing Web Services (AWS) Google Cloud Platform 
(GCP), and Microsoft Azure.

The delivery voyage of Hull 091 from Hobart, Tasmania to 
Canary Islands, Spain took place between 15 July and 15 
August 2019. 

3. CLOUD COMPUTING AND PARALLEL 
PROCESSING 

3.1 MATLAB REFERENCE ARCHITECTURES 
ON AMAZON WEB SERVICES (AWS)

In the proposed system, the data is collected on the 
vessel and transmitted to a cloud computing resources for 
processing and analysis, which enables remote monitoring 
of the vessel. As a public cloud service provider, among 
many others, AWS provides a broad range of services 
including computation, storage, analytics, machine 
learning, Internet of Things, and security. The full list of all 
services is available from the AWS management console. 
One of the services that provides all required resources in 

a specific, predefined format is AWS CloudFormation. The 
rationale for selecting AWS as the cloud provider is that 
the data was already stored on AWS S3 and the availability 
of a MATLAB reference architecture on the platform at the 
time of project planning. 

Figure 3 shows two different solution architectures using 
MathWorks products on AWS. The CloudFormation 
templates for each specific solution are available from the 
MathWorks page on GitHub [10]. Figure 3a presents a 
simple architecture in which the user can set up MATLAB 
Desktop on Amazon Elastic Compute (EC2) for a scalable 
cloud computing. The connection to the compute 
instance which is in a Virtual Private Cloud (VPC) is 
available by a Remote Desktop Protocol (RDP) client 
software and Secure Shell (SSH) tunneling, with the 
username and password to be specified during the launch 
of the template. The access of the compute instance to 
other resources such as Amazon Simple Storage Service 
(S3) will need to be enabled by attaching specific policy 
to the compute instance. Various types of EC2 instances 
are available to select, including general purpose such 
as M5 series, compute optimised such as C5 series, and 
accelerated computing such as P3 series. The accelerated 
computing type comes with graphics processing units 
(GPU), which is ideal for training deep neural networks 
and allows to significantly reduce training times when 
compared with Central Processing Units (CPU). It should 
be stressed that the MathWorks reference architectures 
are pre-configured to use single or multiple GPUs and this 
facilitates the process on both AWS and Microsoft Azure 
cloud services. 

Parallel CPU processing is often required when training 
various machine learning algorithms and this can be 
performed by MATLAB Classification Learner or 
Regression Learner Apps. MATLAB recommends a 
minimum of 2 virtual Central Processing Units (vCPU) for 
each worker because two vCPUs share only one Floating 
Point Unit. To give an example, by selecting m5.xlarge, 
which comes with 4 vCPUs and 16 GB memory, only 2 
workers are available in the cluster, while by selecting 

Figure 2. Hull 091 cabling diagram from frame 55 to frames (Fr) 38, 58, 73, 77, 83 and 85, showing 
the approximate longitudinal locations of the National Instruments cDAQ, laptop computer, MRU, 

strain gauges, bow accelerometer and ultrasonic sensor listed in Table 2
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m5.24xlarge as a compute instance on AWS, which comes 
with 96 vCPUs and 384 GB memory, a maximum of 48 
MATLAB workers are available to be used in the local 
parallel processing. 

The second architecture (Figure 3b) presents another 
approach for parallel processing and scaling of the compute 
workers. In this method, MATLAB workers are distributed 
across two or several EC2 instances with a dedicated 
EC2 instance as the head node. The number of workers 
is adjustable by changing the desired capacity within the 
autoscaling policy and the connection to the head node is 
enabled via SSL. This can present a convenient model when 
there are multiple users and these users have MATLAB on 
their local computers as they can connect to the parallel 
processing cluster remotely and perform their analytics. 
When dealing with files stored in an S3 bucket, access to 
the bucket should be enabled for each worker by attaching 
an S3 access policy to the autoscaling group policy.

Figure 3. MathWorks reference architectures on AWS 
(top) MATLAB on AWS (bottom) MATLAB Parallel 

Server on AWS

(a)

(b)

Both architectures presented in Figure 3 are supported 
with MATLAB online licensing, which means individual 
account holders can setup their own resources on AWS. 
These architectures were used for processing raw data 
received from Hull 091 and training ML/DL algorithms to 
be briefly introduced in Section 4.

3.2 PRODUCTION SERVER

MATLAB Production Server on AWS was considered 
for real-time analytics and automated data processing. 
The reference architecture as shown in Figure 4 requires 
additional cloud resources in comparison with the 
two earlier architectures discussed. It can for example 
provide (i) a framework to automate data processing 
in relation to some customised monitoring functions 
such as MSI, rain flow cycle counts and peak over 
threshold; (ii) a ML production pipeline by hosting ML 
and DL classifiers; and (iii) a mechanism for calling 
MATLAB functions deployed on the production sever 
from either a MATLAB client or third-party clients/
applications developed in other programming languages 
for realtime analytics or visualisation. More details of 
this architecture are given in [10]. 

Moreover, the analysis process can be fully automated by 
incorporating serverless resources such as AWS Lambda 
and DynamoDB for event triggering, concurrent executions 
and storing processed data. Such data architecture can 
provide a flexible, scalable, and cost-effective solution, 
leading to deeper insights through automated data 
processing. Consequently, it has been proposed that the 
hull monitoring functions and classifiers can be offered as 
a service, supporting Hull 091 and future vessels. 

It should be noted that this study did not consider 
several options, and optimal solution is often not readily 
available. Therefore, it is encouraged to explore various 
options including software provided by the open source 
community and other packages. Amazon SageMaker 
Studio is also recommended for training and deploying ML 
algorithms as it simplifies compute resource allocations, 
experimenting with various models and hyper parameter 
tuning for optimal performance. 

It should be noted that there is a limitation in the current 
work regarding the limited use of cloud computing 
resources due to connectivity issues and thus careful 
consideration is required in the implementation of the 
proposed method. 

4. DATA ANALYSES 

4.1 OVERVIEW 

Developing appropriate functions and methods for 
analysing data collected from Hull 091 on the cloud is an 
ongoing project. The purpose of this section is to provide 
an overview of some standard analyses according to DNV 
GL guidelines and to highlight some selected analysis 
methods published in the literature for high speed vessels. 
This is important as the DNV GL guidelines do not specify 
signal processing requirements such as filtering, slamming, 
and whipping identification for such vessels.  
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For the current project three main areas have been 
considered for the analyses: (i) evaluating motion comfort 
through MSI (ii) identifying rainflow cycles for fatigue 
damage analyses, and (iii) developing a method for 
slamming identification. 

4.2 MOTIONS AND MOTION COMFORT 

A function in MATLAB was developed to obtain weighted 
accelerations, according to ISO standard 2631-1. The 
outputs were then used to calculate MSI according to the 
vertical root mean square weighted acceleration ( )wa  and 
exposure time (T) in seconds:

 

1MSI
3

= wa T
(1)

The above equation is a measure of whole-body exposure 
to low frequency vertical accelerations. Another parameter 
can be considered for higher frequency accelerations. 
This is the Vibration Dose Value (VDV) as recommended 
by DNV GL, which includes accelerations in x-, y- and 
z-directions. It should be noted that MSIs at other locations 
can be calculated by considering rigid body motions. 
Moreover, the vertical and lateral accelerations, pitch 
and roll can also be considered in evaluating passenger 
comfort and safety according to some threshold values 
given in [11]. The method presented in [12] to evaluate 
motion response amplitudes has also been considered. 
This requires the Fast Fourier Transform (FFT) of heave, 
pitch, roll and wave response amplitudes. For Hull 091, 
a helper function needs to be developed to estimate the 

wave elevation by relative displacement at the location of 
the bow ultrasonic sensor. More details for the estimation 
of wave spectra using an ultrasonic altimeter can be 
found in [13].

4.3 STRESS CYCLES ANALYSES 

The DNV GL procedure for fatigue assessment of ship 
structures (DNVGL-CG-0129) has been considered 
for the analyses. The objectives of the analyses are to 
estimate fatigue rate, defined as the ratio of the measured 
fatigue damage and the budget damage per unit time. The 
stress cycle distribution was calculated using the rain 
flow cycle counting method according to ASTM Standard 
E-1049 by incorporating the MATLAB rainflow function. 
The outputs include amplitude and mean stress levels 
for each cycle, identified through the procedure. More 
discussions on fatigue and stress distributions for high 
speed catamarans are given in [14-16]. The standard was 
considered during the development of the methodology 
for remotely monitoring the motions and structural 
responses of the catamaran, and specific sections were 
implemented as relevant to the project. A combination 
of strain gauges and accelerometers to measure the 
structural responses of the catamaran. The strain gauges 
were used to measure the strain on the structure, and the 
accelerometers were used to measure the acceleration 
of the vessel. The stress was then calculated using 
calibration factors, the strain measurements, and the 
known properties of the structure [17].

Figure 4. MATLAB Production Server on AWS



A-16 ©2023: The Royal Institution of Naval Architects

TRANS RINA, VOL 165, PART A1, INTL J MARITIME ENG, JAN-MAR 2023

4.4 SLAMMING 

Three approaches are mentioned in the rules for slamming 
identification, using (i) pressure transducers, (ii) an 
accelerometer in the bow area, or (iii) whipping responses 
from the global strain sensors. One of objectives of the 
system that was developed and analysed in this study 
is to identify slam-induced bending stresses acting on 
either local or global structures of the ship. Providing an 
early warning due to slamming in terms of probability of 
slamming, reporting the number of slam peaks crossing 
certain thresholds and determining the location of 
slamming are desirable analyses. 

Methods of analysing slam pressures and loads in 
irregular waves can also be found in [18, 19]. Wet-
deck slamming loads pressures, slam induced bending 
moments, and slamming kinematics of wave piercing 
catamarans were investigated in regular waves  
[1, 20-23]. Slamming identification methods for high 
speed crafts are also summarised in [24], from which 
the stress derivative threshold [25, 26], whipping-
based [27] and fatigue-based criteria [24, 28] can be 
highlighted. A ML approach for classifying slamming 
events is also proposed in [3]. 

4.5 STATISTICAL ANALYSES

According to DNV GL, configuring threshold values, alarm 
levels, statistical calculations, probability distribution 
analyses, and trend predictions are other requirements of 
a standard hull monitoring system. For trend predictions 
in our proposed system, the establishment of a sequence 
of all features calculated from each individual sensor was 
considered However, it is important to note that there 
may be alternative predictive capabilities and methods 
that take advantage of the full set of spatially distributed 
measurements. Other analyses include obtaining several 
features such as descriptive statistics for each signal, mean 
zero crossing periods, peak to peak analyses, histogram 
of peaks, and distribution analyses. In addition, extreme 
value analyses and the probability of exceeding certain 
thresholds based on estimated probability curves need to 
be calculated. A method for predicting structural responses 
based on hull monitoring data is given [29]. Such analyses 
should also consider the combined effects of slam-induced 
and wave induced bending moments [30, 31] so that data 
driven models can be supported by Finite Element stress 
analyses and design load determination methods proposed 
in the literature. 

5. LONG SHORT-TERM MEMORY 
NETWORKS 

As mentioned earlier, establishing a sequence of features 
calculated from each individual sensor is required for 
trend predictions. Recurrent Neural Networks (RNNs) 
are for sequencing data and there have been numerous 

successful applications in various domains such as 
automated translation, natural language processing, speech 
recognition and signal processing [32, 33]. The proposal 
is to train Long Short-Term Memory (LSTM) networks, a 
variant of RNNs, by feeding data collected from Hull 091, 
and use MATLAB Production Server to host the LSTM 
classifiers for near real-time predictions. The network 
architecture consists of (i) an input layer (i.e. a sequence 
of data), (ii) an LSTM layer, (iii) a fully connected neural 
network layer and, (iv) an output layer (i.e. a regression 
layer).

Figure 5 shows an overview of an LSTM layer with LSTM 
blocks. Such a layer represents C number of features or 
channels, each with S length, where S represents the number 
of time steps. The LSTM layer has S LSTM blocks, with 
the first block requiring the feature vector at the first-time 
step and the initial state of the network to output D number 
of hidden units. Figure 5 also shows four components 
of each LSTM block: input gate (i), forget gate (f), cell 
candidate (g) ( ) g  and output gate (o). The mathematical 
operation of each component is given in Table 3. There are 
two activation functions: gate activate function, denoted 
by σ g, and state activation function, denoted by σ c .

Table 3: LSTM block components and formula

Component Formula

Input gate ( )t 1σ −= + +t g i t i ii W R bx h (2)

Forget gate  ( )t 1σ −= + +t g f t f ff W R bx h (3)

Cell candidate ( )t 1σ −= + +t c g t g gg W R bx h (4)

Output gate ( )t 1σ −= + +t g o t o oo W R bx h (5)

Each component has its own input weights (W), recurrent 
weights (R) and bias (b) and they are referred to as learnable 
parameters of an LSTM layer. The cell and hidden states 
at time step t are, 

 1 t−= + t t t tc f c i g  (6)

 ( )c tc ,t th σ= σ  (7)

where ⊙ denotes element-wise multiplication of vectors, 
Ct and ht denote cell state and hidden state at time t 
and other variables are defined in Table 3. The default 
activations functions in MATLAB LSTM layer are a 
hyperbolic tangent function (tanh) and sigmoid function 
for σg and σc, respectively. Hyper parameters are learning 
rates, L2 regularization factors for input weights, recurrent 
weights and biases and different initializers can be set for 
each W, R, and b matrices. The number of hidden units 
needs to also be specified by the user.

The sequence input layer can perform some standard 
or customised normalisation and by default this is a 
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Figure 5. (a) LSTM Layer architecture and, (b) LSTM block architecture [34]

channel-wise normalisation in the recent version of 
MATLAB. The number of features is a user input. A 
fully connected layer means all neurons within a layer 
are connected to all neurons of the previous neurons 
where inputs are multiplied by a weight matrix and then 
added by a bias vector. In a fully connected layer, hyper 
parameters are learning rates and L2 regularization for 
input weights and biases. The output layer is a regression 
layer in which the loss function is defined (i.e. mean 
squared error function).

It should be noted that the normalisation performed 
by the sequence input layer is designed to improve the 
convergence and stability of the algorithm during training. 
However, this process should not significantly affect the 
ability of the algorithm to capture the underlying physics 
of the system, as long as it assumed the normalisation does 
not introduce bias into the training data.

Deeper networks can be designed by adding either 
LSTM layers or fully connected layers in combination 
with dropout layers. A dropout layer is required to avoid 
overfitting during training stage. The input of a dropout 
layer is a threshold probability that determines how many 
input elements are set to zero randomly. 

It should be noted that the network architecture for 
classification is slightly different from regression problems 
with a classification layer as the output layer, which is 
preceded by a softmax layer that follows the last fully 
connected layer of the network. The classification layer 
takes the outputs of the softmax function, computes 
the cross-entropy loss, and maps each input to one of 
the K mutually exclusive classes, where K is the number of 
classes in a multi-class classification problem. MathWorks 
documentation [34] provides a full list of functions and 
layers available in MATLAB for RNNs. 
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6. CASE STUDY

6.1 TRAINING AND TESTING

Short-term predictions of vessel speed and rms weighted 
acceleration are considered in this section as examples of 
using RNNs for the Hull 091 remote monitoring system. 
The aim is to train individual LSTM networks for each 
parameter, predict next step values and update the network 
state at each time step for improved predictions. An 
initial dataset consisting of all voyages in a month was 
selected and partitioned (i.e. the first 90% for training 
and the last 10% for testing the network). The window 
size for calculating the most frequent (i.e. modal) speed 
and rms weighted acceleration was 5 minutes, which 
is the length of each individual file received from the 
Hull 091 monitoring system. The rms weighted vertical 
acceleration was calculated using ISO standard 2631-1. 
Data preparation involved filling out missing data using 
1-dimensional interpolation technique. Both parameters 
were standardized so that they have unit standard deviation 
and zero mean. 

The individual networks were trained so that they can learn 
to predict the vessel speed and rms weighted acceleration 
at the next time step. Hyperparameters are learning rate, 
number of LSTM layers, number of hidden units in each 
layer, number of iterations or epochs, mini batch size, 
and threshold values for drop out layers. Over 20 initial 
combinations of network were selected, and the networks 
were trained on a single CPU to evaluate the performance of 
each, including the variations of training loss and training 
RMSE as a function of iterations during the training 
phase and also testing RMSE. A table hyperparameter 
was then created to perform hyperparameter tuning in a 
more systematic way by using MATLAB Experiment 
Manager on AWS by considering a P3 instance (i.e. a GPU 
accelerated computing resource). 

A larger dataset was considered compared to the initial 
dataset by including voyages from September 2019 to 
June 2020. The train-test split ratios were 0.9-0.1 for this 
case study. Table 4 shows the range of hyperparameters 
considered. In the first experiment, a network with 200 

hidden units, 3 LSTM layers, 0.002 learning rate and 200 
epochs was the champion net among 24 trained networks. 
A second experiment with 12 options was then 

designed to select the final net as listed in Table 3. 
The networks were trained using the speed dataset. 
Hyperparameter tuning was not performed for rms 
weighted acceleration since it was seen that the final net 
was also a good choice for that. 

The training times on the single GPU varied from 53 
seconds to 9 minutes depending on the training options 
considering about 24000 training datapoints. The choice 
for the optimiser was “Adam” [35] for all training 
experiments. 

6.2 PREDICTION PERFORMANCE 

Figure 6 compares predicted speeds and rms weighted 
accelerations with that observed. The predicted values 
in this figure are based on the observed values of the 
immediately previous time step, with a duration of 5 
minutes between each time step. The predictions are 
generally consistent with those observed except for a few 
points in each voyage, particularly when the ship speed 
reaches the maximum level during the voyage. RMSE 
achieved for rms weighed accelerations and speeds were 
approximately 5% and 9% of the max values observed 
on the test dataset, respectively. It was found that RMSEs 
can be minimised by data clustering techniques, but the 
discussion on the approach is beyond the scope of the 
present study. Further investigations are recommended 
to benchmark the best possible performance of LSTM 
networks for various types of monitoring data as required 
by DNV GL guidelines in terms of trend predictions and 
sequencing. 

6.3 DEPLOYMENT DISCUSSION  

The deployment of DL trained regression models 
discussed earlier can be useful for two reasons relating to 
the influence of vertical accelerations on motion comfort. 
First, it can provide an early awareness of expected MSI 
and predicted speed so the ship captains can adjust the 

Table 4: Hyperparameter tuning details

Hyperparameters First experiment Second experiment Final 
1 Learning rate 0.001, 0.002 0.002, 0.003 0.003

2 Number of hidden units 100, 200 200 200
3 Number of LSTM Layers 1,3,5 3 3
4 Max epoch 100, 200 200 200
5 Dropout Layer Threshold 0.25 0.25, 0.5 0.25
6 Minibatch Size 1 1,5,10 1
Total trained net 24 12 1
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speed accordingly. They may decide to speed up, slow 
down or maintain speed based on the projected MSI and 
previous records. Second, a recommender system can be 
developed so that a suggested speed is returned according 
to a MSI threshold, which can either be a constant value or 
a dynamic value calculated for each voyage. The suggested 
speed needs further investigation to find an optimum. 

In relation to the second point, a simplistic approach might 
be to suggest a lower speed (e.g. 5-10 %) than that projected 
if the expected MSI is above the threshold according to 
the industry standard threshold for passenger/vehicle 
ferries). If, for example, a 5% speed reduction is suggested 
when the predicted MSI is above the 95th percentile of all 
time MSI (i.e. for 5% of the time), this could affect the 
operational efficiency, so another consideration could be 
when to recommend a higher speed. On the other hand, 
how recommended speeds will improve rms weighed 
accelerations and the motion comfort due to the vertical 
accelerations should be evaluated. The exposure time, 
encounter wave frequency, relative vessel heading with 
respect to waves, arrival time, fuel efficiency and other 
operational factors are also important factors, and thus 
a full analysis needs to be conducted. Therefore, further 
research is required to find an optimal speed for passenger 
comfort by also considering ride control performance on 
MSIs at various speeds and headings. The optimal strategy 
is to be formulated as a solution to a multi-criterion 
optimisation problem.

Furthermore, it should be noted that the MSI should be 
calculated for various locations to better estimate the 

overall MSI. Ideally, the overall MSI should be as close 
as possible to the overall value obtained when the exact 
locations of seated passengers are known. This is because 
the interior design of the passenger deck can entice some 
passengers to be seated in specific locations or in the VIP 
section, and some may prefer to seat at extreme ends for 
better view of the sea. 

The ISO equation for motion comfort due to whole body 
vibration is also questionable as it is a recommended metric 
for the general population. Frequent travellers may likely 
have better performance against possible sea sickness, in 
particular for a short exposure time (less than 2 hours). 

The connectivity to the ship to the cloud cannot always 
be presumed and therefore the onboard monitoring system 
should be used as alternative when the connection to the 
production server is not available. However, cloud-based 
predictions and online reports are feasible at the beginning 
and at the final stages of each voyage. Such reports and 
dashboards can be valuable for day to day operations at sea 
in terms of motion comfort.

7. CONCLUSION

A system for hull monitoring from a remote location was 
proposed as an alternative to standard hull monitoring 
systems of high-speed catamarans and that can also apply 
to monohulls. This should be of interest to ship designers 
and builders. Although the paper does not explicitly address 
the topics of design load estimations and extreme values 
analysis of global bending moments, the proposed system 
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Figure 6. Observed speeds and rms weighted accelerations and predicted values for test voyages  
using trained LSTM networks



A-20 ©2023: The Royal Institution of Naval Architects

TRANS RINA, VOL 165, PART A1, INTL J MARITIME ENG, JAN-MAR 2023

has the potential for future integration of these methods 
due to the scalability of its cloud-based analytical model. 
This can lead to improved design load estimations and 
extreme values analysis of both global bending moments 
and slamming based on full-scale in-service measured 
data in random seas. In addition, motion comfort and 
operational efficiency can be of importance to passenger/
vehicle operators for day to day operations. 

Several options are available for data engineering on a 
cloud computing environment. The data processing method 
proposed in this paper incorporated MATALB products 
on Amazon Web Services (AWS) including MATLAB 
Production Sever and Parallel Processing toolboxes, as 
well as other toolboxes for signal processing, machine 
learning and statistics. 

A case study for trend predictions using Recurrent Neural 
Network (RNNs) was presented, in which sequences of 
speed and rms weighted acceleration were learned from 
measured data for the particular operational route of 
Hull 091. Due to the size of the dataset, GPU accelerated 
resources on AWS were used. Using MATLAB Experiment 
Manager, several Long Short-Term Memory (LSTM) 
network architectures were trained to obtain a final model. 

Some data processing requirements and methods for 
slamming, fatigue and motion comfort were highlighted, 
mainly from DNV GL guidelines and published papers 
relevant to high-speed catamarans. Although MSIs can 
be used for motion comfort predictions as discussed, an 
optimal strategy is yet to be formulated as a solution to 
a multi-criterion optimisation problem, which includes 
vessel speed, rms vertical and lateral accelerations, 
encounter wave frequency, relative vessel heading with 
respect to waves, arrival time, fuel efficiency and other 
operational factors. 

A complete data processing framework for high-speed 
vessels in random waves can be sophisticated. Although 
not all monitoring systems may benefit from the use of ML 
approaches, ML approaches can be useful for improving 
data processing and analysis in the proposed system, as 
well as in future monitoring systems that do not rely on 
cloud computing. Such approaches require investigations 
on feature engineering techniques too. A recommender 
system for improved motions and fuel efficiency is 
of interest for future investigation. Exploring novel 
techniques for onboard motion sickness evaluations, such 
as using deep neural networks and image processing, could 
also merit further considerations. 

It appears that the classifier should be remotely deployed 
to an onboard system. However, it is important to note 
that the training phase of the classifier may still require 
cloud-based resources. Therefore, the use of shipboard 
alternatives to address connectivity issues is highly 
recommended which may lead to further research into the 

development of more lightweight and efficient approaches, 
and/or the use of hybrid approaches that combine shipboard 
and cloud resources for optimising and providing a more 
robust monitoring system. 
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