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SUMMARY 

This paper proposes a Particle Swarm Optimisation Integrated Genetic (PSOIG) algorithm to define ship pipeline layout, 

where the pipeline layout environment is complex and changeable. The pipeline layout space model includes a cabin 

model, an obstacle model, a pipe model and a regional model of layout. Given the characteristics of ship pipeline layout, 

the direction guidance mechanism for automatic pipeline layout is introduced, and a direction parameter setting are put 

forward to further improve the efficiency of the algorithm. At the same time, the crossover and mutation strategies of the 

genetic algorithm are introduced into the particle swarm optimisation to establish the PSOIG algorithm for ship pipeline 

intelligent layout. This fully optimises the advantages of particle swarm optimisation and genetic algorithms to improve 

the diversity of solutions and the convergence speed of the algorithm. Finally, the simulation results demonstrate the 

feasibility and efficiency of the proposed algorithm. 

NOMENCLATURE 

GA Genetic Algorithm  

PLD Pipeline layout design 

PSO Particle Swarm Optimisation 

PSOIG Particle Swarm Optimisation Integrated Genetic 

SPLD Ship pipeline layout design 

3D Three-dimensional 

1. INTRODUCTION

Pipeline layout design（PLD） is the process of finding

the optimal pipeline layout scheme under the geometry,

topology, technology, rules and other constraints. In a

geometric view, it is to find a non-collision path from the

specified starting point to the ending point in a limited

three-dimensional (3D) layout space, which does not

interfere with other arranged objects (such as bulkheads,

machinery and equipment, aisles, laid pipes.), and

satisfies various constraints such as physical, economic,

and it should satisfy various constraints such as physical,

economic, safety and specification, production and

installation, operation and maintenance constraints. PLD

plays a significant role in industry especially in ship

design (Cao et al., 2019). The research of pipeline layout

design has developed from simple constraints in two

dimensions to multi-objective constraints in 3D space

since 1970s (Nguyen et al., 2016). The conventional

methods include the maze running algorithm (Lee, 1961),

escape algorithm (Hightower, 1969), network

optimisation (Nicholson,1966), network optimisation

algorithm (Wangdahl & Pollock, 1974), dynamic

programming method (Van & Koopmans, 1976), expert

system (Vakil & Zargham, 1988), genetic algorithm

(Ito,1999), ant colony algorithm (Fan et al., 2006), co-

evolutionary algorithm (Jiang et al., 2015), human-

computer cooperation approach (Wang et al., 2015) and 

particle swarm optimisation (Dong & lin, 2017). These 

research results are very helpful and valuable to the 

further research of PLD.  

PLD is one of the main contents of ship design, it is very 

important to the safety, economy, maneuverability, 

maintenance, safe navigation and normal operation of all 

kinds of machinery and equipment. With the 

development of computer technology and intelligent 

algorithm, intelligent layout design of ship pipeline has 

become a hot and difficult problem in ship intelligent 

design. Several intelligent algorithms have been used to 

solve it. To reduce designer workload and human errors, 

Kang et al. (1999) prososed a design expert system to 

automate the ship pipeline design process. Fan et al. 

(2007a) put forward a genetic algorithm of variable 

length coding suitable for 3D layout optimisation of ship 

pipeline. Based on this algorithm, an adaptive annealing 

genetic algorithm was proposed for the layout of ship 

pipeline to improve the diversity of solutions and the 

convergence speed of the algorithm (Fan et al., 2007b). 

Jiang et al. (2014) proposed an improved ant colony 

genetic algorithm to find the optimal layout scheme of 

ship single pipeline. Fan and Lin (2006) introduced the 

ant colony algorithm into ship piping layout optimisation 

design. And then combined the ant colony algorithm with 

the cooperative algorithm to present a multi-ant colony 

cooperative co-evolutionary algorithm model for the 

parallel pipeline layout, which can obtain better results 

(Fan et al. 2009). The Dijkstra’s algorithm with some 

improvements was used to reduce the calculation time, 

occupied memory and the shortest paths which were 

exported by this method would have a minimum number 

of bend and elbow, at the same time, a new algorithm of 



TRANS RINA, VOL 163, PART A2, INTL J MARITIME ENG, APR-JUN 2021 
 

A-92  ©2021: The Royal Institution of Naval Architects 

mesh sizes are not restricted by pipe diameter was 

proposed (Ando, 2011, Nguyen, 2016). Qu and Jiang 

(2011) established a dynamic ant colony algorithm, and 

built dynamic heuristic information with modeling space 

and ant location change. An ant colony-shuffled frog 

leaping algorithm is proposed to optimize the piping 

results of orthogonal pipelines in three-dimensional 

space(Cao et al.,2019). Liu et al. (2009) proposed an 

improved particle swarm algorithm and introduced a 

particle coding mechanism based on the grid to solve the 

problem of ship pipeline layout. Wu et al. (2008) 

introduced the layout of ship branch pipes with co-

evolutionary ant colony algorithm. According to the 

characteristics of ship pipe routing, Jiang et al. (2015) 

presented a multi ant colony optimisation algorithm 

integreted with co-evolution mechanism to solve the 

multi and branch pipe routing problem, and achieved 

good results. Wang et al. (2018) proposed a human-

computer cooperation improved ant colony optimisation 

algorithm for SPLD, it could take full advantages of 

designers’ expertise and experience as well as 

computers’ calculation ability, the simulation results 

demonstrated that the new method can improve the 

convergence speed and the quality of the solution. The 

optimal shortest path A* algorithm is introduced to the 

field of pipeline placement optimisation (Haytham et al., 

2019). To cope with branch-pipe routing widely existing 

in engineering, a new pipe router is put forward using a 

modified Steiner Tree framework in combination, it is 

more versatile and can effectively balance the layout 

quality and time efficiency (Dong et al., 2020). From the 

research results for SPLD, we can find that it is difficult 

to obtain the stable solution which can meet engineering 

requirements. Most studies are only similar to robot path 

optimisation, and do not study the layout environment 

and direction guidance mechanism of ship pipeline 

layout. Further research is needed to improve the 

convergence speed and solution quality. 

 

In this paper, a Particle Swarm Optimisation Integrated 

Genetic (PSOIG) algorithm is presented to solve SPLD 

problem in 3D space. This paper has researched the ship 

pipeline layout space model including a cabin model, an 

obstruction model, a pipe model and a regional model of 

layout. The direction guidance mechanism is introduced 

to further improve the convergence speed. The crossover 

and mutation strategies of GA are introduced into the 

PSO to constitute the PSOIG algorithm, which fully 

optimizes the advantages of PSO and GA to improve  

the diversity of solutions and the convergence speed for 

the SPLD.  

 

This paper is organized as follows: Section 2 introduces 

SPLD optimisation model; Section 3 describes the 

process of PSOIG algorithm for solving the problems of 

SPLD; Section 4 Shows the simulation results to 

demonstrate the feasibility and efficiency of the proposed 

algorithm; Finally, Section 5 contains the conclusion of 

this paper. 

 

2. SHIP PIPELINE LAYOUT DESIGN 

OPTIMISATION MODEL  

 

2.1 SPACE DATA MODEL OF CABIN 

 

The cabin layout space model refers to the mathematical 

model of the cabin space to be arranged by pipeline. In 

this paper, the grid method is used to establish the space 

model of cabin layout. The steps are as follows: 

 

(1) Simplify the cabin space into a regular cuboid 

according to the length, width and height of the 

compartment. 

 

(2) The cuboid model is divided into 3D grid nodes by 

grid method, and a unique coordinate (position) value (x, 

y, z) is given to each grid node by rectangular coordinate 

system identification (Cartesian coordinate system). 

 

(3) The space model is modified according to the actual 

conditions of the cabin space. In fact, most of the cabin 

space is not usually a regular cuboid. For example, the 

side cabin is usually an irregular shape with curved 

bulkhead. At this point, the model should be modified  

to set the space in the model that does not belong to  

the cabin layout space into a forbidden layout area. 

Figure 1 shows the process of building spatial data model 

of side cabin. 

 

 

Figure 1: The side cabin data model 

When dividing grids, grid size is an important factor to 

determine the quality of space data models. If the grid is 

too large, the space division is not detailed enough, 

which will lead to the difficulty of automatic layout. If 

the grid is too small, it will increase the amount of data in 

the model space, and then increase the time of 

subsequent automatic optimisation layout calculation. 

Therefore, the grid size should be set according to the 

following key elements: 

 

(1) Radius of the pipe. Because the center line of the pipe 

will be used to replace the pipe in the automatic layout, 

the size of the grid should not be less than the radius of 

the pipe, otherwise, the layout will be wrong, for 

example, side-by-side pipelines will interfere. 

 

(2) Reserved interval between pipelines. A gap should  

be left between two adjacent pipes and pipe fittings  

for insulation, installation, maintenance, etc.. So the grid  

size should not be less than the sum of the pipe radius 

and the reserved clearance between the pipes. When 

multi-pipe layout, the grid size can be selected, then  



TRANS RINA, VOL 163, PART A2, INTL J MARITIME ENG, APR-JUN 2021 
 

©2021: The Royal Institution of Naval Architects  A-93 

the actual arrangement can be adjusted according to the 

pipe diameter. 

 

2.2 PIPE MODEL 

 

Central line theory is used in pipeline layout design, that 

is, the radius and wall thickness of pipeline are reduced 

to 0, and the central line of pipe is used to represent the 

line of pipe in the intelligent layout design (Park & 

Richard, 2002). Figure 2 shows the pipe model. 

 

 
Figure 2: The pipe model 

 

 

2.3 OBSTACLE MODEL 

 

Obstacle model refers to the model established according 

to the layout of machinery and equipment, bulkhead, 

aisle, laid pipeline and hull structure in the cabin, which 

are defined as prohibited areas. The shape of most 

obstacles is not regular. If the model is built based on the 

actual shape, it will not only have a large modeling 

workload, but also increase computational workload in 

the optimisation, so most researchers simplify obstacles 

to regular shape modeling. However, this simplification 

usually only considered the geometric size of the 

obstacle in modeling, and did not take into account the 

inherent characteristics and maintainability of the 

obstacle itself. Therefore, this paper proposes a pose 

space modeling method: the obstacle is completely 

included by establishing one or more regular cuboids, 

and posture space should be built on the following 

principles. 

 

(1) The posture space is an envelope of the obstacle, that 

is, the obstacle is completely contained in the posture 

space, and there is no part outside the posture space. 

 

(2) The posture space should be set according to the 

inherent properties of the obstacle. The obstacle, for 

example, is a cable and requires a distance of at least 

100mm between the cable and the pipeline, so the 

posture space of the cable should contain 100 mm of 

space around the cable. 

 

(3) The posture space should consider the 

maneuverability and maintainability of the mechanical 

equipment. That is, it can also be calculated in the 

envelope of the posture space when a certain operation 

and maintenance space is reserved around the obstacle. 

 

 

 

 

 

2.4 DIRECTION GUIDANCE MECHANISM 

 

In the pipeline intelligent layout design, each individual 

in the initial population corresponds to a pipe path which 

must go from the starting point to the end point. In the 

layout space model established by the grid method, there 

are six directions to choose when the path enters the next 

node through one node. If the path is generated 

completely randomly in the layout space, the probability 

of selecting the six directions is the same, which may 

cause the direction of the path to deviate from direction 

of the end point (Fan et al., 2007a). 

 

In this paper, a direction guidance mechanism is 

established to guide the direction of the path. When the 

initial path is generated, the probability of setting 

forward to the end point is greater than that in the 

opposite direction, so as to improve the convergence rate 

of the initial individual. The six directions (Figure 3) are 

divided into two groups: the three directions consistent 

with the end point direction are P1 group, and the other 

three directions deviate from the end point direction are 

P2 group. The probability of P1 group is greater than that 

of P2 group, and the probability of direction in the same 

group is same. The ratio of P1 to P2 is defined as 

direction parameter P. 

 

1

2

P
P

P
=

                                （1） 

1 2 1P P+ =                                （2） 

 

 
Figure 3: Six directions  and relative positions of 

starting and end point of the pipe 

The choice of direction parameter P should be 

appropriate. If it is too small, the direction guidance is 

not obvious, and the convergence rate can’t be 

effectively improved. If it is too large, the diversity of the 

initial population will decrease, which is not conducive 

to the evolution of the population. After multi-test, we set 

the direction parameter P to 16 and obtained good 

experimental result (Wang & Lin, 2017). 
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Let the U(ux, uy, uz) be the starting point coordinate and 

the V(vx, vy, vz) as the goal point coordinate. The spatial 

position of any two points in the layout space can be 

summarized into 8 cases shown in Table 1. Table 2 lists 

the probability values of each position in different 

direction when the direction parameter P=16. 

Table 1: Relative positions of starting point and goal 

point of SPLD 

Position X direction Y direction Z direction  

1 ux ≤ vx uy ≤ vy uz ≤ vz 

2 ux ≤ vx uy ≤ vy uz ≥ vz 

3 ux ≤ vx uy ≥ vy uz ≤ vz 

4 ux ≤ vx uy ≥ vy uz ≥ vz 

5 ux ≥ vx uy ≤ vy uz ≤ vz 

6 ux ≥ vx uy ≤ vy uz ≥ vz 

7 ux ≥ vx uy ≥ vy uz ≤ vz 

8 ux ≥ vx uy ≥ vy uz ≥ vz 

Table 2: Probabilities of six running directions 

Position x  -x y  -y  z  -z  
1 16/51 1/51 16/51 1/51 16/51 1/51 

2 16/51 1/51 16/51 1/51 1/51 16/51 

3 16/51 1/51 1/51 16/51 16/51 1/51 

4 16/51 1/51 1/51 16/51 1/51 16/51 

5 1/51 16/51 16/51 1/51 16/51 1/51 

6 1/51 16/51 16/51 1/51 1/51 16/51 

7 1/51 16/51 1/51 16/51 16/51 1/51 

8 1/51 16/51 1/51 16/51 1/51 16/51 

2.5 REGIONAL MODEL OF LAYOUT 

The regional model of a ship pipeline layout consists of a 

state value model and an energy value model. The state 

value model is used to determine whether the pipeline 

can be arranged in this region. The energy value model is 

used to determine whether the region is suitable for the 

layout of the pipeline. In the pipeline layout design, the 

cabin space to be arranged is usually divided into two 

categories: the layout region and the forbidden layout 

region. In the cabin space, the forbidden layout region 

refers to the area which can not be arranged because of 

the cabin environment or the pipeline functional 

characteristics. The mentioned areas outside the cabin 

space and obstacles are prohibited regions. 

 

In order to distinguish the forbidden area from the 

configurable area, each grid node is given a state value. 

The size of the grid node state value is used to determine 

whether the grid node is located in the forbidden layout 

area, and then to determine whether the pipeline can  

pass through the area. In this paper, the state value of the  

grid node in the forbidden layout area is set to 1, while 

the state value of the grid node in the configurable  

region is 0. 

 

According to the layout requirements and functional 

characteristics of the pipe to be arranged, as well as the 

cabin space environment, the energy value method 

divides the cabin space to be arranged into different 

energy regions, and gives these energy regions different 

energy values. Then based on the energy value, the 

computer can judge whether the area is suitable for 

pipeline layout. In this paper, the energy region model is 

established by giving each grid node energy value. In the 

design of pipeline layout, the smaller the energy value, 

the greater the priority weight of the node; and the 

smaller the energy value of the grid node, the more 

suitable it is to arrange the pipeline. Because the pipeline 

is usually arranged along the bulkhead or obstacle, the 

energy value of the area near the bulkhead or obstacle is 

smaller than that of other areas. According to the layout 

rules and constraints of the pipeline, the layout space can 

be divided into dominant area, transition area, general 

area and forbidden area according to the difference of 

energy value. The energy value increases gradually from 

the minimum energy value of the dominant area to the 

maximum value of the general area, and the state value 

of the grid node is set at the same time. 

 

For SPLD in 3D space, main constraints are obstacles 

divided into two categories shown in Figure 4. Figure 

4(a) is obstacle surface with low node energy value e 

such as wall, supporter and pipe routes laid. Figure 4(b) 

is obstacle surface with high node energy value e 

including heat sensitive region. Pipe route is expected to 

lay closely to the former obstacle surface and keep away 

from the latter.  

 

 
（a）                             （b） 

Figure 4: Energy zone around obstacles for pipeline 

to (a) desire and (b) reject 

 

2.6 LAYOUT OPTIMISATION MODEL  

 

Pipeline layout design is automatically searching a path 

with minimum length from the start location to the 

ending locationm, meanwhile, different kinds of 

constraint conditions in aspects of physics, economy, 

safety and regulations, manufacture and installation, 

operation and maintainance are satisfied. For single 

pipeline, main task is to find a path with minimum length 

and elbows (Kimura, 2017). Besides, state value o of all 

nodes should be 0 and energy value e should be kept as 

lower as possible. So the path is determined around 

obstacles of the first category. A fitness function is 

defined for single pipe optimisation design as the 

following: 

( ( ) ( ) ( ) ( ))( ) a L p b B p c E p d O pfitness p e−  +  +  + = （3） 

Where 

1

1

( ) ( , )
n

i i

i

L p node node +

=

= ,     

1

( )
n

i

i

E p e
=

=  



TRANS RINA, VOL 163, PART A2, INTL J MARITIME ENG, APR-JUN 2021 
 

©2021: The Royal Institution of Naval Architects  A-95 

L(p) denotes the path length. B(p) denotes the number of 

elbows on path. E(p) represents the total energy value of 

path p, and ei is the energy value on node i of path p. 

O(p) is penalty function, representing the number of 

nodes located on the forbidden regions (namely 

obstacles) on path p. a, b, c, d are their weights 

respectively. According to the fitness function 

introduced, the pipe route is more preferred when fitness 

value is higher. 

 

3. THE PSOIG ALGORITHM FOR SHIP 

PIPELINE LAYOUT DESIGN  

 

3.1 THE PSOIG ALGORITHM 

 

Particle Swarm Optimisation (PSO) is an unconstrained 

optimisation algorithm proposed by Kennedy and 

Eberhart (1995). It uses the characteristics of bionics to 

simulate the trajectory of birds in nature when looking 

for food. Scientists have found that birds can find food 

efficiently and quickly in the process of foraging, that is, 

first find the area around the individual closest to the 

food, through the cooperation of the group, constantly 

adjust, correct the location and direction of flight, until 

the location of the food is found (Wang et al., 2013). 

This behaviour among birds provides a powerful 

biological basis for human to construct of PSO 

framework. Because of its simple concept and few 

parameters, PSO is a convenient and efficient group 

search optimisation method with fast convergence speed, 

it has been paid more attention by many scholars. The 

mathematical description of PSO is generally as follows. 

 

Suppose the solution space of the solved problem is D 

dimension, the number of particles is N, they are 

initialized as ),...,,( 321 Nxxxxx = , the position of the particle i  

in the iteration k  process can be expressed as a vector 

),...,,( 321 iDiiii xxxxx = , the speed is expressed as a vector 

),...,,( 321 iDiiii vvvvv = , each iteration requires a new round 

of evaluation of the fitness values of individual particles. 

Define the position of the optimal fitness value of the 

particle i  at the moment T as the individual extremum 

),...,,( 321 iDiiii pbestpbestpbestpbestpbest = .
At this time, the 

position of the entire population with historical optimal 

fitness value during evolution is defined as the global 

extremu ),...,,( 321 iDiiii gbestgbestgbestgbestgbest = . The specific 

calculation formula is as follows. 

( 1), ( ( )) ( ( 1)

( ), ( ( )) ( ( 1)

i i i

i

i i i

pbest k f x k f pbest k
pbest

x k f x k f pbest k

−  −
= 

 −

）(4) 

 1( ) arg min ( ( 1)), ( ( )),... ( ( ))Ngbest k f gbest k f x k f x k= −  (5) 

The following two expressions are used to update the 

speed and position of each particle separately. 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))ij ij ij ij j ijv k wv k c r pbest k x k c r gbest k x k+ = + − + −  (6) 

( 1) ( ) ( 1)ij ij ijx k x k v k+ = + +           (7) 

Where: w  represents the inertia weight; 1c and 2c  

represents learning factors or accelerating factors, 

generally set to constants in the interval (0, 2), 

respectively representing the ability of the particles to 

self and social cognition; 1r , 1r usually referred to as a 

random number in the interval [0,1], used to maintain 

diversity during evolution; k is the current number of 

iterations. 

Genetic Algorithm (GA) is based on natural selection. 

GA is an optimisation method in line with the law of 

survival of the fittest in species’ evolution. It’s proposed 

first by Holland in 1975 (Holland, 1975). Due to its vast 

search field, strong search capability, simplified 

calculation process, parallelism and expandability, GA is 

widely applied in various engineering field (Dong et al., 

2020). 

PSO is simple, fast and easy to realize, convergence 

occur early in the later stage (Das et al., 2016, Hu et al., 

2020). GA has a unique efficiency in the search of global 

optimal solution, but it has a deficiency in local search 

ability (Zhang & Zhang, 2020). PSO and GA have strong 

complementary in optimisation. GA has strong 

exploration accuracy and variable ability, and good 

global search ability, but its local search ability is 

insufficient, while PSO algorithm has random 

characteristics in the global optimisation algorithm, and 

the function of the optimisation objective does not 

require analytic ability. In this paper, an improved 

particle swarm optimisation-PSOIG algorithm is 

presented. The crossover operator of GA is introduced 

into PSO, so that the paired particles can exchange 

information with each other, and make particles have the 

ability to fly to new search space. At the same time, in 

order to enhance the ability of PSO to jump out of local 

solution, the mutation operation of GA is introduced into 

PSO. This new method not only enhances the global 

search ability of particles, but also improves the 

convergence rate. 

3.2  ENCODING  

In SPLD, work space model of cabin is divided into 3D 

cubic grid cells. Each node has a unique special 

coordinate sequence number (x, y, z). Pipelines from start 

point to goal points will go through these nodes, and in 

return, these nodes line up together to form these 

pipelines. Therefore, float-point number encoding is 

selected in the PSOIG algorithm. Each particle swarm 

includes a string of coordinates and represents a pipeline. 

The encoding of particle swarm is shown in Figure 5. 

x1,y1,z1 x2,y2,z2 x3,y3,z3 xn,yn,zn...
  

Figure 5: Particle swarm encoding 
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3.3  INHERITANCE STRATEGY  

In this paper, the solution for each pipeline is obtained 

using PSOIG algorithm. The PSOIG algorithm selects 

operators through roulette and elitism selection rules. 

Each particle selected performs crossover operations 

with the global and local optimal particles in PSO. Then 

the two hybrid particles are randomly selected for 

mutation operation. 

Crossover operation adopts the random point crossing 

method, shown in Figure 6, which based on asymmetric 

single point hybridization strategy to prevent the creation 

of illegal individuals. Asymmetry means that the 

individual chromosome length of the individual 

hybridization does not have to be equal, and the 

hybridization does not have to be in the same position. 

Individuals with greater fitness after crossover operation 

will be selected into the next generation population. 

 

Figure 6: Crossover mode 

Mutation operator can determine the way of chromosome 

transforms, and mutational operation is an important 

means to keep colony diverse and avoid premature. The 

PSOIG algorithm proposed in this paper adopts random 

point mutation mode, viz. randomly choose two nodes 

except start point and goal points, and then replace the 

sub-pipeline between to achieve mutational operation, 

shown in Figure 7. 

 

Figure 7: Mutation mode 

Two methods can be used as the stopping criterion: One 

is to use the maximum iteration number as the stopping 

criterion of PSOIG algorithm, and another is to use the 

no-evolutionary generations as the stopping criterion.  

The flowchart of proposed PSOIG algorithm is shown in 

Figure 8. 

 Parameters initialization 

Initialize particle swarm,  k=1

Calculate fitness value 

F(Pi1
k) > F(Pi2

k)

Stopping criteria 

satisfied?

N

Y

k= k+1

End

Begin

Mutation

Find out the individual extremum of each particle Pi
k;

Find out the globle Extremum of  particle swarm Pg
k;

Selection

Particle Pi  and Pi
k perform crossover 

operations to get Pi1
k and Pi2

k
Particle Pi and Pg

k perform crossover 

operations to get Pig1
k and Pig2

k

F(Pi
g1

k) > F(Pig2
k)

Pic1=Pig1
k Pic1=Pig2

k

Y N

Pic2=Pi1
k Pic2=Pi2

k

Y N

Rand>0.5

Pic=Pic1

Y

Pic=Pic2

N

Output optimal solution

Figure 8: Flowchart of PSOIG algorithm 

4. SIMULATION AND RESULTS 

The proposed PSOIG algorithm for SPLD is simulated 

with two kinds of tested model spaces using the Matlab 

compiler on an Intel-i3 3.5GHz computer. In order to test 

and observe the feasibility and effectiveness of the 

proposed algorithm, this section selects two numerical 

models used in similar subject papers (Fan et al., 2007c) 

as the research object to facilitate the comparison of 

experimental results.  

4.1 SIMULATION MODEL DESCRIPTION 

Two model spaces are used in this simulation, namely 

Model A and Model B which were used in literature Fan 

et al. (2007c). Their diagonal coordinates are (0,0,0), 

(19,19,19) and (0,0,0), (49,49,49), respectively. The first 

one is divided into 19×19×19 cube units, and the second 

49×49×49. In Model A, eight obstacles are scattered. The 

diagonal coordinates of them are (0,2,0), (2,8,5); (4,2,0), 

(10,8,5); (2,11,0),(9,17,10); (13,8,0), (19,14,8); (13,17,0), 

(19,19,5); (0,3,14), (3,10,17); (16,0,11), (19,9,16); 

(0,16,16), (7,19,19), respectively. Points (0,19,0) and 
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(19,0,19) are the coordinates of the starting point and 

ending point of the pipeline. Seven obstacles are set in 

Model B which is larger than Model A. The diagonal 

coordinates of these obstacles are (0,4,0), (20,16,10); 

(30,0,35), (49,15,49); (4,30,0), (18,40,25); (30,10,0), 

(45,24,20); (26,38,0), (38,46,25); (0,0,34), (10,20,49); 

(40,20,30), (49,49,40), respectively. The would-be-

routed pipe will travel from the starting point (0, 0, 0) 

toward the ending point (49, 49, 49). The parameters of 

simulation experiments are obtained by experience (Fan 

et al. 2007c) and a large number of experiments, shown 

in Table 3. In this simulation, experiments are 

implemented 10 times for each algorithm. The maximum 

number of iterations o is set as 150 for Model A, and 500 

for the Model B.  

Table 3: Parameters of calculation for the test algorithm 

Parameter Values 

Fitness function parameters 
a=0.003,b=0.003, 

c=0.004, d=20 

Number of particles N=50 

Number of runs of each algorithm 10 

Maximum number of iterations 
Model A: 150,  

Model B: 500 

Fixed non-evolution generation 20 

Mutation probability parameters 0.05 

 

4.2 SIMULATION RESULTS 

The overall results obtained are listed in Table 4 and 

Table 5. The best value means the best solution found in 

the 10 runs, and the averaged value collects the average 

of 10 best solutions generated in the 10 trials. The 

averaged convergence number of generations represents 

the average times of iteration when the algorithms 

converge to the best across the 10 conducted trials. The 

percent of convergence to optimum indicates the times  

of the algorithms converging to the optimal solutions out 

of the 10 trials. The average running time of each 

algorithm per 150 (500) generation is provided by the 

averaged CPU time (sec)/150 (500) generation. Figure 9 

and Figure 10 showed the final results of the ship 

pipeline layout. 

 

Table 4: Comparison of simulation results for model A 

Subjects PSOIG 
Literature algorithms 

AS ACS ACOIPU 

Best value of the Obj(p) 61 61 61 61 

Averaged convergence 

number of generation 
19.5 67.1 39.9 41.2 

Percent of convergence to 

optimum (%) 
80 60 60 90 

The averaged CPU time 

(sec)/150 generation 
17.53 129.2 26.5 23.2 

AS=Ant System; ACS=Ant Colony System; ACOIPU= Ant Colony 

Optimisation with Iterative Pheromone Updating 

 

  

(a) (b) 

Figure 9: The top view (a) and front view (b) of Model A 

pipe layout by PSOIG algorithm 

Table 5: Comparison of simulation results for model B 

Subjects PSOIG 
Literature algorithms 

AS ACS ACOIPU 

Best value of the Obj(p) 151 151 151 151 

Averaged convergence 

number of generation 
42.5 233.3 224 228.7 

Percent of convergence to 

optimum (%) 
80 80 70 90 

The averaged CPU time 

(sec)/500 generation 
448.9 2137 591.3 517.2 

AS=Ant System; ACS=Ant Colony System; ACOIPU= Ant Colony 

Optimisation with Iterative Pheromone Updating 

 

  
(a) (b) 

Figure 10: The top view (a) and front view (b) of Model 

B pipe layout by PSOIG algorithm 

From Table 4 and Table 5, it is evident that the results 

obtained by the proposed algorithm are much better than 

those of AS, ACS and ACOIPU. These algorithms all 

could find the optimal solutions during the set times of 

iterations for the 10 time trials, but the averaged 

convergence number of generation and the averaged 

CPU time from the proposed PSOIG algorithm are best 

ones among them. It is illustrated that the optimum 

search efficiency of the proposed algorithm is highest. At 

the same time, the percentage of convergence to 

optimum of the proposed algorithm is stable and good, 

namely 80%. 

By analyzing the simulation results and performance 

comparison of ship pipeline layout, it can be seen that the 

PSOIG algorithm has good operation effect, the pipeline 

can effectively avoid obstacles, maintain orthogonal 

attitude, and can meet the constraints of pipeline layout. 

The optimal solution can be found quickly within the set 

number by the proposed algorithm. Through the 

comparison with the results of similar topic papers, we 

can see that the average convergence iteration of PSOIG 
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algorithm is greatly improved compared with other 

algorithms. Combined with the simulation results, 

PSOIG algorithm is good in terms of search performance 

and convergence speed. 

5. CONCLUSIONS 

With the development of computer technology and 

intelligent algorithm, there is a strong demand for 

intelligent layout design of ship pipeline in order to 

further improve the quality and efficiency of ship design. 

Ship pipeline layout design in 3D space is a multi-

objective combination optimisation problem with various 

constraints of performance. In this paper, a layout space 

model, an obstacle model, and a regional model of layout 

are established for ship pipeline layout space structure, 

and the direction guidance mechanism of ship pipeline 

automatic layout is introduced. Then the crossover and 

mutation strategy of genetic algorithm is introduced into 

PSO to form a new PSOIG algorithm. Finally, the 

feasibility of the presented algorithm in solving the 

pipeline layout problem is verified by simulation 

experiments, and through the comparison and analysis of 

the results with the similar research literature, such as the 

averaged CPU time (sec)/150 generations saved more than 

24%. The advantages of the proposed algorithm are 

verified. The research results of this paper can be used 

for reference in the future research of ship intelligent 

design. The future work will aim to improve the 

proposed method and apply it to the intelligent layout of 

ship branch and parallel pipelines to meet the needs of 

practical engineering design. 
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