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SUMMARY 

 

The main aim of this study is to measure the mental workload of the operators according to the increasing workload 

during simulated ship navigation and it is aimed to contribute to the clarification of upper redline of task demands. Eye 

responses and performance results of twelve participants were recorded during the measurements carried out in bridge 

simulator. In addition, a specific tool (NASA-TLX) was used to assess twelve participants at the end of each step of the 

scenarios. The results showed that mental workload of the participants increased as the task load increased and their 

performance decreased. It was observed that the developed Artificial Neural Network model can predict operator mental 

workload based on eye response indices (accuracy: 79.2%). This study is considered to contribute to the literature by 

defining an upper redline of task demands for an operator and monitoring near real-time mental workload indicators 

based on the physiological data of operators in the presence of autonomous ships and in navigational conditions where 

the automation level of ships gradually increases. 
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NOMENCLATURE 

 

ANN  Artificial Neural Network 

ANOVA   Analysis of Variance 

AUC  Area Under the Curve 

CPA  Closest Point Approach 

CSSI  Cognitive Seafarer-Ship Interface  

F.I.  Fix Interval (minutes) 

IMO  International Maritime Organization 

M   Mean 

MSE  Mean Squared Error 

MWL  Mental Workload 

p  Probability value 

ROC  Receiver Operating Characteristic 

SD  Standard Deviation 

Sig.  Significance 

t  t value 

TCPA  Time to Closest Point of Approach 

XTE  Cross Track Error 

 

 

1. INTRODUCTION 

 

Recent technological developments introduced autonomous 

ship concept that requires less seafarers on board. However, 

having duty persons on board, no matter how small in 

number, still makes human element an important subject for 

autonomous ships of the future. Within the four autonomous 

ship categories projected by IMO, only the fully 

autonomous ships will be operating with no seafarers on 

board. All the other three categories will require seafarers to 

be present either on board or ashore for remote controlling 

(IMO, 2018). This implies even with autonomous ships; 

human element will still be a major concern though the 

number of seafarers on board will be significantly reduced. 

This is because the remaining crew on board will have to 

continuously monitor and if necessary, intervene the 

operation of the ship. This obligation will require the 

seafarers to maintain their high cognitive states and optimal 

behaviours at all times when they are on duty. While human 

error is the primary contributor of accidents where about 

85% of all accidents were caused by human error (Kurt et 

al., 2016), it was stated that 16% of collisions, 30% of 

groundings was related to mental fatigue of watchkeeping 

officers (Akhtar and Bouwer Utne, 2015) in furtherance the 

determination that technology and automation have reduced 

the number of crew and increased the workload of officers 

(Horberry et al., 2008; Louie and Doolen, 2007). This 

clearly indicates that human element related issues will 

continue to be one of the major issues in marine 

transportation assets (Özsever and Tavacıoğlu, 2019). 

 

Workload is defined simplistically as a demand placed 

upon humans. Demand is determined by the aim to be 

achieved by the task performance. So, workload can be 

defined the effect of the demand on the individual in terms 

of the phases used in information processing and 

energetics. More specifically, workload is the amount of 

information processing capacity used for task performance 

(De Waard, 1996). Performance change is based on the 

balance between resource supply that is to say information 

processing capacity, and demand (Embrey et al., 2006). 

When resource demands exceed available supply, 

performance is assumed to be decreased. According to 

Kahneman (1973), the cognitive system has a single pool 

of limited capacity. Large amounts of resources are 

required for difficult tasks, especially when these tasks are 

coupled with concurrent tasks. On the contrary, easy and 
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automated tasks require less resource with time sharing 

efficiency. However, mental workload (MWL) is directly 

neither performance nor task demand. Practice, 

experience, operator’s state can affect the performance. 

Similarly, increasing level of skill can make individual 

need less mental effort (Sheridan and Simpson, 1979). 

 

Mental workload, the effect of demand on operator, is an 

interaction between operator and task structure. Complexity 

and difficulty are the main characteristics of demand. 

Complexity is the number of stages of processing and 

difficulty is processing effort and it is related to amount of 

resources (De Waard, 1996). Mental workload, in terms of 

demand / resource balance, is a product of the resources 

available to meet the task demands (Young et al., 2015). 

Demand is determined by the aim to be achieved by the task 

performance and cannot be linked directly to workload. 

Assessment of workload is combined with task difficulty as 

experienced by the operator since the operator can give 

several reactions to the task demands such as adaptation or 

giving up (Gopher & Donchin, 1986 stated in De Waard 

(1996)). Although task performance cannot alone indicate 

any change in workload, suboptimal workload leads to 

errors and incidents. Suboptimal workload can be described 

either overload or underload. They stated the relationship 

between performance, task demand and resource supply in 

Figure 1. The left region of the red lines is called the 

‘reserve capacity’ (underload) and right region is called the 

‘overload’ region (Figure 1). In underload region task 

demands could be misperceived by operator and it could 

lead to performance decrement. Alternatively, in overload 

region when task demands exceed the resource supply, 

performance could be decreased (Young et al., 2015). 

 

 
Figure 1. The relationship between task demand and 

resource supply associated with mental workload and 

performance (adapted from Young et al. (2015)) 

 

The maximum capacity of an operator has been limited 

to task circumstance. If the task is low demand task, 

operator cannot cope with any critical situation when 

he/she has suddenly faced with increased demand. 

Malleable Attentional Resource Theory (MART) 

clarifies why mental underload can lead to performance 

deterioration (Young and Stanton, 2002). This theory is 

more acceptable in navigational aspects because of that 

contains automation systems. Watchkeeping officer may 

not cope with the situation in case of any failure in 

automation systems or being exposed to unexpected 

danger when his/her attention decreases in non-traffic 

area with auto-pilot. 

Mental workload measurement is relatively unknown in 

maritime domain, compared to other industries such as 

aviation, rail way, car driving etc. (Özsever and Tavacıoğlu, 

2018). In maritime human factor research, there are several 

data collection methods related to mental workload or 

fatigue. These are physiological, physical (eye movement 

etc.), environmental measures, performance analysis in 

simulator environment, interviews, questionnaires, 

observations and log books, accident / incident analysis and 

computer-aided design / evaluations (Horberry et al., 2008). 

Commonly, physiological-physical, subjective and 

performance measures, which are defined as the 

components of triangulated measurement strategy 

(Wierwille and Eggemeier, 1993), have been used in 

workload measure studies (Embrey et al., 2006). However, 

acceptable level of workload still cannot be defined in 

maritime domain (Orlandi and Brooks, 2018). The studies 

conducted in recent years, have focused the MWL 

measurements in some maritime-specific tasks. Wu et al. 

(2017) associated the EEG and the HRV data, obtained 

from 10 participants in engine control room simulator, with 

MWL as task difficulty increased. Orlandi and Brooks 

(2018) applied similar method to ship pilots and reached 

similar results. Yan et al. (2019) used eye response 

measurement to predict MWL for engine department tasks. 

With the ANN classification success of eye response data 

and subjective ratings together with decreased performance 

results, the authors stated that eye response measurement 

can be used to predict MWL. Fan et al. (2021) evaluated the 

functional connectivity for watchkeeping and decision 

making during routine watchkeeping performance of the 

officers via fNIRS montage and found that the right lateral 

area of the prefrontal cortex has been sensitive to 

watchkeeping and decision making. This has opportunity to 

predict safety-critical performance. 

 

Furthermore, as being one of the components of 

triangulated measurement strategy, performance 

measures of navigational duties have to be clearly 

defined and modelled in order to determine the redlines 

of performance and task load. Watch keeping officer 

experiences different cases those are not be able to 

evaluated with certain rules or limitations in regard to 

safety of navigation. So, the situations and the 

performance of officer on duty should be evaluated 

according to present conditions of traffic density, 

geography, visibility or navigational conditions. In 

literature, Gould et al. (2009) used the TARGETs 

method to assess performances of officers by expert 

evaluations. Task-generated (observable safety-critical 

navigation tasks) and event-generated (responses to 

external objects such as safe passing criteria; these are 

evaluated as “just acceptable or not” by experts) criteria 

were used in evaluation by experts. Besides, course 

deviation (XTE) and ship control (turn rate, rudder angle, 

speed) measures were scored in their study. In another 

study, course changes, rule following, target acquisitions, 

closest point of approach (CPA) and time to closest point 

of approach (TCPA), test manoeuvre, bearings taken, 

headings entered and track keeping were evaluated as 
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task performance parameters (Robert et al., 2003). For 

example, keeping the CPA value more than 1 nm 

(nautical miles) is good performance while less than 0.8 

nm is near miss and less than 0.5 nm is collision. While 

mean speed, mean frequency of engine rudder and course 

orders, mean frequency of fixes, CPA and XTE were 

used as performance measures for the landfall approach 

(Cook et al., 1981), fewer manoeuvring order command, 

fewer communication and more CPA were evaluated as 

better performance results (Grabowski and Sanborn, 

2003). The operators were evaluated in three main 

criteria in a study; degree of deviation, decision making 

time and collision avoidance ability. Look out of other 

vessels, control of ship speed and course, position fixing, 

radio communication, collision avoidance (Embrey et al., 

2006), detection range of targets, COLREG compliance, 

CPA, position report, communication and attention 

(Kircher and Lutzhoft, 2011) have been also used in 

performance measures conducted in the studies. On the 

other hand, Schuffel et al. (1989) used only XTE for 

performance measurement in their study. 

 

Considering the above-mentioned elements, this study 

aims to measure mental workload of officers during the 

increased navigational task demands, adopting the self-

reported and eye responses. With the comparison of 

MWL and the developed dynamic navigation 

performance measure, it is aimed to define upper redline 

of task demands in terms of safety of navigation in this 

study. The following hypothesis are studied: 

 

• Different level of navigation tasks should draw out 

different levels of MWL and performance results. 

• The developed performance measure for navigation 

tasks with eye response measurement is reliable for 

safety of navigation and can indicate the red lines of 

task demand. 

 

2. METHODS 

 

2.1 PARTICIPANTS 

 

12 participants (5 female) were recruited to perform 

navigation scenario in bridge simulator in this study. At 

least, participants must have had an Oceangoing 

Watchkeeping Officer certificate and one contract sea 

experience as officer in merchant ships. The mean age was 

28.4 (SD = 4.8) and the mean period of service of 

participants was 12.4 months (SD = 7.9). All participants 

gave informed consent form to be participant before 

performing the tasks in simulator. This study was approved 

by Medical and Engineering Sciences Human Research 

Ethics Committee of Istanbul Technical University. 

 

2.2 EXPERIMENTAL TASK 

 

The study was conducted in bridge simulator of Piri Reis 

University with navigation tasks based on Malacca 

Straight passage. 

 

2.2 (a) Bridge Simulator 

 

Participants performed the navigation tasks in bridge 

simulator (Figure 2a) located in Piri Reis University 

Seaside Campus Simulator Centre. The ship which was 

used for trials is a chemical tanker which has 183.0m 

length over all, 32.2m breadth with 60976.0t 

displacement and 13.0m maximum draft. The simulator 

has three screens which are ECDIS, RADAR and 

Conning Display that contains visual settings and auto 

pilot panel adding to one engine telegraph, one steering 

wheel. Navigational data was sampled at 1 Hz 

(TRANSAS, 2014). Additionally, the whole performance 

of participant as tracks on charts and other variables were 

recorded as video format from the computer located in 

control room (Figure 2b). 

 

 
 

Figure 2. Bridge simulator (a), recording the participant 

performance (b) 

 

2.2 (b) Tasks 

 

Navigation scenarios have been varied being used 

different level of difficulties in mostly visibility, traffic 

density and geography parameters. Gould et al. (2009) 

used the variables as geography, visibility and traffic 

density for navigation scenario with 4 different levels of 

difficulty. Collision threat, target behaviour and traffic 

were used as variables for navigation scenario, which 

was conducted as 6 minutes and 18 times, in another 

study (Robert et al., 2003). Similar to the study of Gould 

et al. (2009), visibility, traffic density, geography, 

equipment condition and speed restriction were 

determined as difficulty variables in the study of 

Grabowski and Sanborn (2003). In this study, the 
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difficulty level of navigation scenario was gradually 

adjusted according to traffic density, visibility and 

geography by combining in 4 steps as: 

• Step 1; high visibility, low traffic density, easy 

geography 

• Step 2; high visibility, moderate traffic density, easy 

geography 

• Step 3; moderate visibility, high traffic density, 

moderate geography 

• Step 4; low visibility, high traffic density, hard 

geography 

Participants performed the navigation scenario according 

to the procedures stated in Table 1, in Malacca Strait, 

Singapore (Figure 3) because of that area has heavy 

traffic and there are lots of fishing boats and vessels 

making short cuts, make the passage more difficult. 

 

 
Figure 3. Navigation area used in simulator with route legs and performance measurement areas as stated in steps. Image 

obtained from Admiralty Chart BA 3833. 

Table 1. Navigation in Malacca Strait procedure 

Step Task (sec.) Task description 

1 

T1 (0-300) Proceed to next waypoint with minimum XTE and detect the target on starboard bow side 

T2 (300-420) React for collision avoidance 

T3 (420-570) Make visible course change to starboard 

T4 (570-780) Proceed with safe CPA 

T5 (780-1020) Return to planned course 

2 

T1 (0-120) Proceed to next waypoint with minimum XTE and detect the targets on head 

T2 (120-240) Alter the course for safe CPA and for avoiding the fishing nets 

T3 (240-360) Proceed with safe CPA and detect the target on starboard bow side 

T4 (360-480) Proceed with safe CPA 

T5 (480-800) Proceed with safe CPA and not be out of the traffic separation  

T6 (800-1020) Alter the course to port for next waypoint and detect the fishing boat targets 

3 

T1 (0-240) Proceed to next waypoint with minimum XTE by considering the fishing nets, detect the 

targets on port bow side 

T2 (240-300) Alter the course for safe CPA and for avoiding the fishing nets 

T3 (300-420) Proceed with safe CPA and not be out of the traffic separation 

T4 (420-540) Proceed with safe CPA in decreased visibility and not be out of the traffic separation 

T5 (540-840) Proceed with safe CPA and detect the target on starboard bow side 

T6 (840-1200) Detect the target on starboard bow side and react for collision avoidance 

4 

T1 (0-360) Proceed to next waypoint with minimum XTE, detect the targets on port bow side 

T2 (360-540) Alter the course to port for next waypoint and proceed with safe CPA 

T3 (540-800) Alter the course to starboard for safe CPA 

T4 (800-1100) Return to planned course considering the current and detect the targets on port bow side 

T5 (1100-1250) Proceed with safe CPA to fishing targets in more decreased visibility, detect the target on 

starboard side 

T6 (1250-1350) Detect the fishing targets and proceed with safe CPA 

T7 (1350-1600) Detect the fishing targets and proceed with safe CPA 

T8 (1600-1800) Proceed to Loading Port with minimum XTE 
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The speed of own vessel is 10 to 13 knots and the XTE is 

0.05 nm during the whole steps. Participants performed 

the navigation with auto pilot, but they can use hand 

steering for big course alterations and in emergency 

cases. 

 

2.3 MEASUREMENT PROCEDURE 

 

Before the measurements, the participants signed a 

consent form. The instructions of the scenarios were told 

to participants that they would be completing a 

navigation from middle of the Malacca Strait to entrance 

of Singapore Port as 4 steps in total 84 minutes. They 

were to navigate as they would in real-life, they 

communicated with simulator control room as if they 

communicate with other vessel and vessel traffic 

services. The performances of the participants were 

recorded via the computer located in simulator control 

room for the performance parameters. At the same time, 

eye measures were recorded. Additionally, the 

participants evaluated the their subjective MWL levels 

with NASA-TLX after the end of each step. To validate 

the performance scores of the participants, one ocean 

going Master expert evaluated the performances of the 

participants to assess the actions “just acceptable or not”. 

 

2.3 (a) Performance Measurement 

 

Navigation performances were evaluated using the 

targeted acceptable responses to generated events or 

tasks (TARGETS) method (Fowlkes et al., 1994). 

Differently, targets corresponding to the events were 

weighted according to the degree of importance in 

related event / task. Moreover, the performance results of 

the participants were scored as 0, 0.5 and 1 against the 

evaluation “just acceptable or not”. By the way, it was 

aimed to make performance measurement quantify in this 

study. In literature, Kim et al. (2010) tried to make 

performance measurement quantify, but they used 

constant limits for performances and that evaluation was 

not sufficient for variable navigational conditions. In a 

similar way stated in the study of Gould et al. (2009), 

tasks were evaluated separately as safety critical and 

track keeping in this study. Those were stated as task 

generated activities which are “observable safety-critical 

navigation tasks” and event-generated activities which 

are “responses to external objects”. Differently, 

performance scores were equal to the weighted sum of 

the scores of all criteria of both activities in this study. 

 

Performance criteria were determined according to issues 

stated in literature and the opportunities of simulator 

environment (Table 2). 3 experts weighted the 

importance of each criteria for each step and for each 

task with fuzzy numbers because of that the level of 

importance of navigation criteria can vary to the 

navigational conditions. 

 

Eventually, the performance score of the participant was 

calculated with the weighted sum of the score values: 

(1) 

where γα and ην are the score values (0, 0.5 and 1) for 

safety critical navigation tasks and trackkeeping tasks 

respectively, where wα and wν are the weights of safety 

critical navigation tasks and trackkeeping tasks 

respectively. 

Table 2. Performance criteria for navigation scenario 
Type of task Main task Detailed task Symbol  

Safety critical 

navigation 

tasks 

Collision avoidance 

Keeping a safe CPA γ11 

Rule following (COLREG) γ12 

Detection range of targets γ13 

Time to response γ14 

Communication & true reaction γ15 

Identify and communicate 

navigation landmarks 
 γ2 

Identify hazards 

(report & action) 
 γ3 

Trackkeeping 

tasks 

Crosstrack variability (XTE)  η1 

Time to return to course  η2 

Ship control 
Rudder angle η31 

Turn radius η32 

Radar performance  η4 

 

To validate the performance scores of the participants, 

one ocean going Master expert evaluated the 

performances of the participants to assess the actions 

“just acceptable or not”. These evaluations were matched 

with the performance scores. The rates of true positive 

and false positive were analysed in ROC curves with the 

help of the thresholds set to performance score value. It 

was expected to assess the performances of officers with 

the help of the statistically significant threshold value of 

performance score. A receiver operating characteristic 

(ROC) is a technique for evaluating classifiers based on 

their performance (Fawcett, 2006). Graphical plot of 

sensitivity (true positive rate which is the ratio of 

positives correctly classified to total positives) is used to 
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analyse the tendency of true positive and false positive 

rates (the ratio of negatives incorrectly classified to total 

negatives). The area under the ROC curve (AUC) has 

been used as statistical metric to show the accuracy of 

the classification (Fawcett, 2006). AUC value represents 

the classification performance - excellent (AUC > 0.9), 

good (0.8 < AUC < 0.9), fair (0.6 < AUC < 0.8) and 

failed (below 0.6) test (Singh et al., 2013). 

 

2.3 (b) Subjective Rating 

 

NASA-TLX was used in this study to evaluate the MWL 

levels of participants. This scale has been widely used in 

many human-machine interaction studies such as 

maritime (Gould et al., 2009; Orlandi and Brooks, 2018, 

Wu et al., 2017, Yan et al., 2019), aviation (Lehrer et al., 

2010, Sirevaag et al., 1993), automobile (Sauer et al., 

2013), traffic control centre (Fallahi et al., 2016), nuclear 

power plant (Gao et al., 2013) and mental task 

experiment (Miyake et al., 2009). 

 

NASA-TLX is a multidimensional task load assessment 

tool, developed by Hart and Staveland (1988). NASA-

TLX has 6 sub-scales which are mental, physical and 

temporal loads (task related), performance and effort 

(behavioural and skill related) and frustration (individual 

related). Participants weight the sub-scales to determine 

the intensity of each factor to total workload. Each sub-

scale is evaluated independently from 0 to 20 and the 

sub-scales are weighted from 0 to 5. Finally, the 

weighted sum of the task load assessment is found as a 

score between 0 and 100 (Hart, 1986). 

 

2.3 (c) Eye Response Measurement 

 

Eye measures have been widely used in MWL studies. 

Pupil dilation occurs when task demand increases 

(Causse et al., 2010), but gives insufficient data to state 

the magnitude of arousal (Embrey et al., 2006). Pupil 

dilation is an autonomic sympathetic nervous system 

response that covers attention, interest or emotion 

(Bergstrom et al., 2014). Pupil diameter change is also 

correlated highly with error rate (Gao et al., 2013). Eye 

blink rate decreases when continued monitoring is 

required (Brookings et al., 1996; Ryu and Myung, 2005, 

Sirevaag et al., 1993; Veltman and Gaillard, 1996; 

Wilson, 2002) while closure duration and eye blink 

latency decrease with increased task demand (De Waard, 

1996; Embrey et al., 2006). In high MWL, eye blink 

interval is longest and blink duration is shortest 

(Borghini et al., 2014; Hwang et al., 2008; Lean and 

Shan, 2012; Veltman and Gaillard, 1996). 

 

Eye responses of the participants were recorded by Pupil 

Core eye tracking headset (Pupil Labs, Germany) 

including 1 eye camera with a rate of 200Hz at 192x192 

px, 1 world camera with a rate of 60 Hz at 720p. Pupil 

Player Software version 2.1.0 was used to import data. 

Calibration of the device was carried out for each 

participant at the beginning of the performances. With 

the help of the headset, standard deviation of pupil 

diameter (Eq. 2), percentage of large pupil dilation 

(PerLPD) (Eq. 3), blink rate as frequency (Eq. 4), 

average eye closure duration (Eq. 5) and percentage of 

eye closure (PERCLOS) (Eq. 6) were analysed as the 

features of eye response in this study. 

 

(2) 

 

(3) 

 

where Di is the diameter of pupil andD is the mean of 

pupil diameter.  

 

(4) 

 

(5) 

 

(6) 

 

where b is the total number of blinks, t is the total 

duration,d is the mean of the closure durations of blinks 

and di is the closure duration of blink. 

 

2.4 STATISTICAL ANALYSIS AND 

ARTIFICIAL NEURAL NETWORK MODEL 

 

To correlate the relation between task load level and 

performance of officer and between task load level and 

eye responses data, correlation analysis was used. t-Test 

was used to test the difference of performance of officers 

and eye responses data at two workload levels. 

Additionally, ANOVA test was implemented to test the 

difference of NASA-TLX scores among 4 navigation 

steps. In all cases, α level of 0.05 was used to find out 

statistically significance. The statistical analysis was 

conducted using SPSS software, version 24. 

 

ANN has been often used for classification in literature. 

This classifier has lots of advantages such as feedforward 

and backpropagation options, high processing speed, 

generalization ability. The classifier has a structure like a 

neuron (perceptron) which consists of similar input and 

output structure (Fausett, 1994; Polikar, 2006). The 

process of perceptron training includes the modifying the 

weights (connections between neurons) and finding the 

best weight. In literature, there are several training 

algorithms to form the relationship of input and output. 

Each neural network consists of the nodes, input layer, 

hidden layers and output layer. The number of hidden 

layers and nodes vary to the structure of the problem 

(Fausett, 1994). In this study, while five eye responses 

data form the input layer, two task load levels (low and 

high) form the output layer. In ANN structure, 2 hidden 

layers have been used (Figure 4). The data have been 

divided to training, validation and test in the ratio of 0.7, 

0.1 and 0.2 respectively. ANN has been trained with 

random training data set. A tansig transfer function (Figure 

5) have been used for hidden layers. In ANN structure, 

trainlm (Levenberg-Marquardt backpropagation) training 
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function has been used as training method. To determine 

best classification structure of ANN, MSE values have 

been noted corresponding to the number of neurons (from 

1 to 22) of hidden layers. ANN model has been structured 

and analysed in MATLAB R2014a. 

 

 

Figure 4. ANN structure used in this study. 

 

 
Figure 5. Tangent sigmoid (tansig) transfer function. 

 

3.            RESULTS 

 

3.1 THE VALIDATION OF PERFORMANCE 

SCORES OF THE PARTICIPANTS 

 

ROC curve analysis has been performed for validation of 

developed officer performance model. Recorded 

performances of the participants were evaluated as “just 

acceptable or not” for each task by one ocean going 

Master expert. According to the analysis, the value of 

AUC is 0.984 (p < 0.0001) (Sensitivity; 97.67, 

Specificity; 93.12) and the cut-off value is 52 for these 

performance scores (Figure 6). 

 

3.2 PERFORMANCE DATA 

 

Performance data show that there is a negative 

significant correlation between performance score and 

task load (p < 0.01). Correlation analysis are shown in 

Table 3. The results of performance measurement 

showed that the performance scores are significantly 

different (t = 3.967; p < 0.01) in low and high task loads. 

Table 4 presents the t-Test of performance data between 

low and high task load. 

 

3.3 NASA-TLX SCORES 

 

The NASA-TLX scores of each step evaluated by the 

participants have been statistically analysed and 

summarized in Table 5. ANOVA results show that there 

are significant differences in the NASA-TLX scores of 5 

different dimensions and in total, among 4 steps which 

have different task load levels, i.e., MD (p < 0.01), P (p < 

0.05), TD (p < 0.01), E (p < 0.01), F (p < 0.01) and total 

(p < 0.01). 

 

 
Figure 6. ROC curve analysis for developed officer 

performance model. 

 

3.4 EYE RESPONSES DATA 

 

Table 6 presents the correlation analysis between eye 

responses data and task load level. According to the 

analysis, large pupil dilation (pd_lpd) and lower average 

eye closure duration (br_aecd) are significantly 

correlated with higher task load. Table 7 shows the t-Test 

of eye responses data between low and high task load. 

According to the t-Test, there is a significant difference 

in only large pupil dilation (t = -2.618; p = 0.009). 

However, there are no significant differences in standard 

deviation of pupil diameter (pd_std), blink frequency 

(br_freq), average eye closure duration (br_aecd) and 

percentage of eye closure (br_perclos). 

 

3.5 ANN MODEL ON EYE RESPONSES DATA 

TO CLASSIFY MWL 

 

Data set was trained with various network structures. 

After the training the data set with all network structures 

(from 1 to 22 neurons for 2 hidden layers), 5-20-20-1 

network structure was found to have minimum training, 

test and validation errors. The MSE values of all network 

structures are presented in Figure 7. Therefore, 5-20-20-1 

ANN structure was selected for this model. 

 

According to results of ANN model, the classification 

success was found as 79.2% (all data). ROC curve 

analysis and error matrix of training, test, validation and 

all data are given in Figure 8. Although there is no high 

classification success, ANN model used in this study has 

sufficient classification accuracy between high and low 

task load. This indicates that the prediction of MWL of 

officers can be realized based on eye responses data. 
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Table 3. Correlation between performance score and task load level 
  Performance score Task load level 

Performace score Spearman’s rho Correlation 1.000  

 Sig. (1-tailed)   

Task load level Spearman’s rho Correlation -0.484** 1.000 

 Sig. (1-tailed) <0.001  

         **. Correlation is significant at the 0.01 level (1-tailed). 

 

Table 4. t-Test of performance data between low and high task load. 
 Low task load (M ± SD) High task load (M ± SD)  p 

Performace score 80.33 ± 19.099 68.48 ± 25.204 <0.001** 

             **. p ≤ 0.01. 

 

Table 5. ANOVA of NASA-TLX scores among 4 navigation steps. 
 Step 1 (M ± SD) Step 2 (M ± SD)  Step 3 (M ± SD) Step 4 (M ± SD) p 

Mental demands 3.33 ± 2.15 10.22 ± 4.04 14.28 ± 5.71 20.03 ± 6.34 <0.001** 

Performance 5.61 ± 5.16 5.17 ± 2.94 6.89 ± 4.21 10.00 ± 5.04 0.045* 

Temporal demands 0.83 ± 1.19 6.36 ± 7.11 9.72 ± 7.21 14.53 ± 10.53 <0.001** 

Efforts 3.33 ± 2.56 6.97 ± 4.89 9.39 ± 4.89 14.72 ± 5.68 <0.001** 

Frustration 1.50 ± 1.27 6.31 ± 5.89 7.08 ± 5.23 13.75 ± 10.41 0.001** 

NASA-TLX score 14.61 ± 8.97 35.03 ± 16.16  47.36 ± 14.24 73.03 ± 10.20 <0.001** 

       *. p ≤ 0.05, **. p ≤ 0.01. 

 

Table 6. Correlation between eye responses data and task load level. 
  Task load pd_std pd_lpd br_freq br_aecd br_perclos 

Task load Spearman’s rho Correlation 1.000      

 Sig. (2-tailed)       

pd_std Spearman’s rho Correlation 0.009 1.000     

 Sig. (2-tailed) 0.900      

pd_lpd Spearman’s rho Correlation 0.189** -0.212** 1.000    

 Sig. (2-tailed) 0.005 0.002     

br_freq Spearman’s rho Correlation -0.009 -0.024 0.119 1.000   

 Sig. (2-tailed) 0.893 0.723 0.078    

br_aecd Spearman’s rho Correlation -0.133* 0.279** -0.092 0.221** 1.000  

 Sig. (2-tailed) 0.05 <0.001 0.173 0.001   

br_perclos Spearman’s rho Correlation -0.075 0.138* -0.011 0.834** 0.633** 1.000 

 Sig. (2-tailed) 0.269 0.040 0.868 <0.001 <0.001  

   **. Correlation is significant at the 0.01 level (2-tailed). 

   *. Correlation is significant at the 0.05 level (2-tailed). 

 

Table 7. t-Test of eye responses data between low and high task load. 

 Low task load (M ± SD) High task load (M ± SD)  p 

pd_std 2.412 ± 0.752 2.445 ± 0.716 0.741 

pd_lpd 0.006 ± 0.065 0.031 ± 0.076 0.009** 

br_freq 0.227 ± 0.094 0.229 ± 0.107 0.900 

br_aecd 0.268 ± 0.144 0.248 ± 0.114 0.239 

br_perclos 0.062 ± 0.041 0.058 ± 0.040 0.533 

                           **. p ≤ 0.01. 
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Figure 7. The MSE values corresponding to network structure. 

 

 
Figure 8. ROC curve analysis and error matrix of ANN classifier. 

 

 
Figure 9. The performance – task load graphic of a participant. 
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4.            DISCUSSION 

 

This study aims to measure MWL of officers during the 

increased navigational task demands, adopting the self-

reported and eye responses. The navigation scenario was 

created with different difficulty levels being gradually 

adjusted according to traffic density, visibility and 

geography by combining in 4 steps. Task load level (1-

10) were determined according to the frequency of 

cognitive task transaction and the human information 

processing resources used in navigation tasks. This 

approach was adapted from OFM-COG analysis 

developed by Lee and Sanquist (2000). The results of 

developed officer performance model shows that there is 

a negative significant correlation between performance 

and task load. Figure 9 shows the task load-performance 

graphic of a participant. For all participants, when the 

task load is 7 and more, the performances of the 

participants have more tended to be evaluated as “not 

acceptable” by experts during the measurements. For this 

reason, the tasks which task load level is greater than or 

equal to 7, have been evaluated as “high task” and the 

tasks which task load level is less than 7, have been 

evaluated as “low task”. Moreover, the performance 

scores are significantly different in low and high task 

loads according to the statistical analysis. 

 

Due to fact that the task performance cannot alone 

indicate any change in MWL (Young et al., 2015), the 

other measures (of triangulated measurement strategy) 

should be analysed. The results of NASA-TLX scores 

show that when task load increases, MWL perceived by 

the participants significantly increases. The score of 

physical demand that is one of the six dimensions of the 

scale has been evaluated as “0” because of that the 

participants haven’t perceived any physical demand 

during the steps of scenario. According to the results, 

mental demand is more dominant than others. The effect 

of temporal demand and effort follow mental demand. 

The reason for the low frustration effect compared to the 

others is thought to be due to the measurements being 

carried out in the simulator environment. This 

distribution of weights of the dimensions contributed 

NASA-TLX results can predict MWL for the navigation 

scenario. 

 

Eye responses measurement have been widely used in 

MWL studies. Although the selectivity of eye blinks and 

pupil diameter to MWL is low (De Waard, 1996) and 

pupil dilation gives insufficient data to the magnitude of 

arousal (De Waard, 1996), it is stated in literature that 

pupil diameter and endogenous eye blinks are related to 

workload and ocular activity is more sensitive to visual 

demands. Hwang et al. (2008) stated in their study, 

which is conducted by simulated nuclear power plant 

tasks, eye blink interval is longest and blink duration is 

shortest when MWL is high. Similarly, in another study 

eye blink rate decreases when MWL increases during air 

traffic control tasks (Wilson and Russell, 2003). 

 

In this study, the decrease of average eye closure 

duration was significantly correlated with the increase of 

MWL. This result contributed to literature. Additionally, 

large pupil dilation occurred when MWL increased. In 

maritime related studies, similar results have been stated. 

Pupil dilation occurred and blink duration decreased 

when task difficulty increased in engine room tasks (Yan 

et al., 2019). Similarly, pupil diameter of the participants 

increased when the complexity of berthing operations 

increased in a study which is conducted by marine pilots 

(Orlandi and Brooks, 2018). 

 

According to classification efforts of eye responses on 

high task load and low task load levels and performance 

scores of the subjects, the red lines of task demand 

became apparent in this study. Continuing from the aim 

of Orlandi and Brooks (2018) and the contributions to 

MWL prediction in marine engine operations of Yan et 

al. (2019), the red lines of task demand in ship 

navigation was determined in this study. Classification 

of eye responses and the distinction of the task loads 

according to the performances of the subjects have 

ensured the task load to be separated as high task load 

and low task load. 

 

As a future perspective, Seafarer-Centric Safety 

System focuses mainly the safety of the ship by taking 

the considerations of operational parameters and 

physiological parameters of the responsible operator. 

Therefore, the system needs the operational data from 

related equipment and the physiological data of the 

operator. Figure 10 presents the sample design for 

future Seafarer-Centric Safety System. The inputs of 

the Cognitive Seafarer-Ship Interface (CSSI) were 

formed with the outputs of high task load details for 

navigation and the eye responses given as features 

(classified in this study). CSSI processes the task 

loading together with physiological data of the officer 

and gives an output as “Risky” for safety of navigation 

in “The future Seafarer-Centric Safety System design” 

to be used on ships or at the Shore Control Centre for 

autonomous ships in future. It should be noted that 

this design can be used in all autonomous levels 

except the last level, the fully autonomous ship. 

Monitoring and evaluation of the officer in charge will 

be important for ship safety, as the workload will be 

present during navigation (which will vary according 

to the system design) at the autonomous levels where 

the human is in the system by operating or monitoring.  
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Figure 10. The detailed future Seafarer-Centric Safety System design (created in Matlab 2020a Simulink). 

 

According to the design, task load estimator processes 

the data which are the possible combinations of the 

outputs from ECDIS, Radar and manual input. These 

combinations stated in this design, are the high task load 

indicators which have been tested in this study. 

Therefore, the combinations that can be evaluated as high 

task load should be increased in future studies. At the 

same time, neural network stated in CSSI, process the 

inputs which are physiological features extracted from 

physiological sensors and gives an output according to 

the structure of ANN. When the output of neural network 

is 1 (indicated as “High task load” in this study) and one 

of the possible combinations exists in task load estimator, 

CSSI gives an output for early warning system to be 

activated. It was stated before that similar study for 

aircraft was conducted by Liu et al. (2016). One 

cognitive pilot-aircraft interface was designed with 

environmental variables of flight and physiological 

variables of the pilot. The cognitive pilot-aircraft 

interface can give an output to adjust the level of auto 

pilot considering the mental strain of pilot and the task 

load of environmental variables of flight. 

 

However, the method stated in this study has some 

limitations and assumptions to be underlined. Simulator 

environment was chosen for measurements due to fact 

that measurement on real environment on board is 

dangerous and is difficult to obtain repeatable results of  

 

 

operator errors. The sample group for this research 

consists of junior deck officers who have minimum one 

contract sea service. Although it is known that most of 

maritime accidents result from the deficiencies in 

cooperation of Master-Pilot-Officer during pilotage or 

manoeuvres, in one-third of all accidents one officer 

keeps watch at the bridge (Yıldırım et al., 2019). On the 

other hand, experience is a major contributor for coping 

with stressor factors (Jeżewska and Iversen, 2012; Salyga 

and Kusleikaite, 2011). Considering all of above-

mentioned reasons, junior officers are selected for this 

research and the measurements were taken from the 

subjects in simulators as if they keep watch alone at the 

bridge. One of the limits of the study is that the sample 

group consists of only junior deck officers. Universal 

usability of the method stated in this study, for all ranks 

of seafarers and for all specified seaborn operations has 

to be researched in future studies. 

 

5.            CONCLUSIONS 

 

MWL, the effect of demand on operator, is an interaction 

between operator and task structure. Under conditions 

where this interaction is unstable, human errors occur. It 

is known that these errors have serious consequences, 

especially in maritime. In this study, it was aimed to 

measure the MWL of the operators according to the 
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increasing workload during simulated ship navigation 

and it was aimed to contribute to the clarification of 

upper redline of task demands. Apart from the 

performance measurement methods used in the literature, 

a dynamic officer performance measurement method has 

been developed and validated. Eye responses and NASA-

TLX results taken during the measurements showed that 

the MWL of the participants increased as the task load 

increased and their performance decreased. According to 

the ANN model developed in the study, it was seen that 

the eye responses values can be divided into two classes 

(as “safe” and “risky” in terms of safety of navigation). 

 

The results of this study also showed that the task 

demand, whose upper red line became apparent, drew a 

set of projections and possibilities in which navigation 

conditions could not be performed by a single operator. 

This study will contribute to the literature in terms of 

defining an upper redline of task demands for an operator 

and monitoring near real-time MWL indicators based on 

physiological data of operator in the presence of 

autonomous ships and in navigational conditions where 

the automation level of ships gradually increases. 
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