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SUMMARY 

 

The aim of this study is to develop a new method for predicting wave-induced hull girder loads acting on ship-shaped 

offshore installations in benign conditions. Unlike in trading ships, current classification society rules provide procedures 

to define the design values of wave-induced hull girder loads for ship-shaped offshore installations in survival conditions 

with site-specific metocean data considering that the installations always remain on site. However, ship-shaped offshore 

units with single-point or turret mooring systems can be disconnected to temporally evacuate from the fields during the 

severe storm. Also, some areas may be fully benign accommodating spread mooring systems. In these cases, their design 

wave-induced hull girder loads may be defined in a similar way to those of trading ships but associated with site-specific 

metocean data. This study proposes a probabilistic approach to determine the site-specific design values of wave-induced 

loads acting on ship-shaped offshore installations in benign conditions that also accounts for the effects of mooring system 

type. Six target regions – the North Sea, Gulf of Mexico, western coast of Africa, eastern coast of South America, south 

eastern coast of Asia and north western coast of Australia – were studied to compare the results corresponding to various 

sea states. A set of wave scenarios representing all possible wave events for each target region were selected using the 

Latin hypercube sampling technique. To demonstrate this method, the design values of the wave-induced vertical bending 

moments were determined for a very large crude oil carrier (VLCC)-class structure with a hypothetical floating, production, 

storage and offloading (FPSO) unit. The effects of the mooring system type (e.g., single-point mooring versus spread 

mooring) on the wave-induced hull girder loads of the ship-shaped offshore installations were also evaluated. A case study 

of the developed method was made by comparison with existing results in the literature and design values provided by 

classification society rules. The novelty of this study is associated with a new approach that can accurately determine 

wave-induced hull girder loads of ship-shaped offshore installations in benign conditions, taking into account the effects 

of site-specific ocean environmental conditions and mooring system type, and its main contribution to industry is to 

provide a practical technology for the safe and economical design of ship-shaped offshore hull structures. 

 

 

1. INTRODUCTION 

 

High structural strength is required to ensure safety and 

withstand loads acting on ship-shaped offshore structures; 

otherwise, the resulting damage can potentially lead to 

catastrophic accidents (Paik, 2020, 2022). Predicting the 

loads on hull girder structures is therefore critical for 

protecting life, property, and the environment in the 

marine industry. However, the determination of wave-

induced hull girder loads, which is a paramount 

consideration in terms of ship-shaped structure types, is 

not straightforward due to the many uncertainties and 

complexities of ocean environmental conditions. 

 

For these reasons, classification society rules provide 

effective guidelines to calculate design values of wave 

loads, considering survival conditions with the most 

probable extreme waves for a return period of 100 years 

as they are considered to always remain on the site for 

their lifetime. However, ship-shaped offshore installations 

with single-point or turret mooring systems can be 

disconnected if extreme environmental loads are 

imminent, sailed to sheltered areas and then returned to 

restart operation when the weather calms (Paik, 2022). In 

addition, a number of ship-shaped offshore installations 

with spread mooring systems are operating in fully benign 

environments such as western coast of Africa. 

 

For such benign conditions, ship-shaped offshore units 

may not require taking into account survival conditions to 

determine wave-induced loads. By doing this, some 

attractive benefits are achieved in terms of safety and 

economy, such as lowering design loads, minimising 

structural scantlings, increasing cargo capacity, reducing 

risk to asset damage, making the production of lost 

infrastructure autonomous and eliminating the need of 

helicopter evacuations (Cabrera-Miranda et al., 2018; 

Daniel et al., 2013; Paik, 2018). Despite the 



TRANS RINA, VOL 163, PART A4, INTL J MARITIME ENG, OCT-DEC 2021 

A-36                        ©2021: The Royal Institution of Naval Architects 

aforementioned advantages, current classification society 

rules provide extreme values of wave-induced hull girder 

loads in survival conditions only.  

 

Previous studies have presented the evaluation of wave-

induced loads on ship-shaped offshore installations. 

Sogstad (1995) proposed a simplified method to predict the 

wave-induced vertical bending moment during the early 

design stage. Hamdan (2003) analysed the factors affecting 

wave-induced loads on floating, production, storage, and 

offloading (FPSO) units. Guedes Soares et al. (2006) 

compared design values between numerical analysis 

validated by an experiment and DNV rules. Fonseca et al. 

(2010) compared wave-induced vertical bending moments 

obtained from experimental and numerical results under 

extreme wave conditions. Ivanov et al. (2011) discussed the 

probabilistic distribution of wave-induced bending 

moments and its effect on the total bending moment of 

FPSOs. Chen (2016) used a Weibull distribution to describe 

wave-induced bending moments for reliability analysis of 

stiffened panels on FPSOs. Cabrera-Miranda et al. (2018) 

used probabilistic scenario sampling and kriging 

metamodels to estimate exceedance diagrams for the wave-

induced bending moments on FPSOs considering the 

disconnection during severe storms. Ozguc (2020) used 

sink-source theory to estimate wave-induced bending 

moments on a converted-tanker FPSO and discussed the 

effect of trading tanker services and FPSO services on the 

fatigue damage of the hull. 

Table 1. Distribution of floating, production, storage, and 

offloading units (FPSOs) in primary oil and gas fields in 

2021 

Location 
Operating 

FPSO 

Percentage 

(%) 

Worldwide 162 100 

North Sea 20 12 

Gulf of Mexico 5 3 

Western coast of 

Africa 
43 27 

Eastern coast of South 

America 
46 28 

South eastern coast of 

Asia 
22 14 

North western coast of 

Australia 
6 4 

 

Although previous studies have provided estimates 

associated with wave-induced loads, all of the results in 

the literature were obtained considering survival 

conditions. Consequently, determining a practical value 

for ship-shaped offshore structures in benign conditions 

remains a challenge in the industry. This study aims to 

develop a method to determine the wave-induced hull 

girder loads for ship-shaped offshore installations in 

benign conditions. The method is based on a probabilistic 

approach associated with a limited number of credible 

scenarios, representing all possible events at a specific site. 

The scenarios are selected using the Latin hypercube 

sampling (LHS) technique (Paik, 2020; Ye, 1998). 

A hypothetical FPSO representative of a ship-shaped 

offshore installation is used in this paper to demonstrate 

the proposed method. Six regions – the North Sea, Gulf of 

Mexico, western coast of Africa, eastern coast of South 

America, south eastern coast of Asia, and north western 

coast of Australia – are considered as the target locations 

for comparing the sea state results. The geographic 

distribution of FPSOs is listed in Table 1 (Boggs et al., 

2021). 
 

Wave-induced hull girder loads are affected by mooring 

systems (e.g., single-point mooring versus spread-point) 

due to the weathervane effect. Hence, the motion and load 

analysis are performed considering both the presence and 

absence of the weathervane effect. 
 
 

2. PROCEDURE FOR DETERMINING THE 

SITE-SPECIFIC DESIGN VALUE OF 

WAVE-INDUCED HULL GIRDER LOADS 

 

This section provides an overview of the procedure for 

determining wave-induced hull girder loads using a 

probabilistic approach (Paik et al., 2019; Paik, 2020), as 

outlined in Figure 1. 
 

2.1 THREE-DIMENSIONAL FINITE ELEMENT 

MODELLING 
 

The data associated with the principal dimensions, 

structural geometry, material properties, hull form, and 

loading conditions should be initially determined to define 

the target structure. Once the hull data are finalised, a 

three-dimensional finite model can be defined for 

analysing the motion and load. 

 

2.2 PROBABILISTIC SELECTION OF WAVE 

SCENARIOS 

 

Figure 2 illustrates the probabilistic method for selecting 

scenarios, representing all possible events. A number of 

parameters affect the site-specific sea state: 

 

1 2Site-specific sea state = ( , , , , , )i nf X X X X    (1) 

 

For efficient modelling, it is necessary to select the primary 

parameters that affect the wave-induced hull girder loads 

(Paik, 2020). Wave-induced hull girder loads are 

predominantly affected by waves. The following three 

dominant random parameters that affect the hull girder 

loads acting on ship-shaped offshore installations are 

considered here (Henriksen et al., 2008; Paik et al., 2019). 

 

●     X1: Significant wave height, Hs 

●     X2: Average zero-up-crossing wave period, Tz 

●     X3: Wave direction,   
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Figure 1. Proposed procedure for determining the design values of wave-induced hull girder loads on a ship-shaped 

offshore installation in benign conditions (where CFD = computational fluid dynamics) 

 

 

Additional parameters (e.g., wind speed, wind direction, 

current speed, current direction) are available to refine 

the results (Cao et al., 2018). 

 

After acquiring the parameter databases, the probability 

density function (PDF) for individual parameters can be 

defined to perform the scenario sampling. Several different 

types of PDFs are considered: two-parameter gamma; three-

parameter gamma; normal; two-parameter log-normal; three-

parameter log-normal; logistic; two-parameter log-logistic; 

three-parameter log-logistic; exponential; two-parameter 

exponential; two-parameter Weibull; and three-parameter 

Weibull functions. The best-fit PDF, which best represents 

the probabilistic parameter distribution, is determined using 

the goodness-of-fit (GoF) test. 

 

The LHS technique is used to more effectively capture a 

limited number of scenarios. The probability of each 

sample generated by the LHS technique for n parameters 

can be obtained as (Paik, 2020): 

 

1
n

P
m

 
=  
 

                                  (2) 

 

where m is the number of scenarios. 

 

 

 

Figure 2. Probabilistic approach for selecting event 

scenarios (Paik, 2020) 
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2.3 MOTION AND LOAD ANALYSIS 

 

A number of computer programs are available to analyse 

wave-induced motion and loads acting on ship-shaped 

offshore installations. As described in section 3, long-

crested wave simulations are carried out using MAESTRO 

software based on linear frequency domain hydrodynamic 

strip theory using a 3-dimensional finite element model 

(Ma et al., 2012; Paik et al., 2019; Prini et al., 2018a, 

2018b; Zhao et al., 2013; Zhao and Ma, 2016). The strip 

theory is an approximate method based on the potential 

flow theory for ship seakeeping calculation, providing 

good prediction for ship motions and hull girder loads. 

The ship motions and hull girder loads are determined by 

integrating the two-dimensional hydromechanics 

coefficients and wave exciting forces over the ship length. 

 

 

 
Figure 3. Wave-induced vertical bending moment by 

using 90° and 30° phase angle increment in Hs = 6m and 

Tz = 10s: (a) head sea; (b) beam sea 

 

 

Wave-induced hull girder loads are determined for regular 

waves by varying phase angles while keeping the wave 

amplitude. From a screening analysis presented in Figure 

3, it is observed that using a 90° phase angle step results 

in a good approximation compared to more refined 30° 

step. For the sake of computational efficiency and 

following Paik et al. (2019), four phase angles have been 

used in subsequent analyses, namely 0°, 90°, 180°, and 

270°, which are considered to demonstrate the proposed 

method in section 3 as shown in Figure 4. 

In order to determine the wave length, the following 

relationship is used (Chakrabarti, 2005): 

 
2

2

zgT



=                              (3) 

 

where λ is the wave length, Tz is the average zero-up-

crossing wave period, and g is the gravitational 

acceleration (9.8 m/s2). 

 

2.4 DETERMINING THE SITE-SPECIFIC 

DESIGN VALUE OF WAVE-INDUCED 

HULL GIRDER LOADS 

 

In the proposed method, the design values of the wave-

induced hull girder loads are determined using the 

probability of exceedance. A probability of exceedance 

diagram is useful for the design value corresponding to the 

acceptable level of exceedance probability (Kristoffersen 

et al., 2021; Liu et al., 2016; Nubli and Sohn, 2021; 

Youssef et al., 2016; Zhao and Dong, 2020). 

 

The probabilities of individual wave-event scenarios 

should be defined to establish the probability of 

exceedance diagrams. The probability of a wave scenario 

is defined as: 

 

w hp aP P P=                                (4) 

 

where Pw is the probability of a wave event, Php is the joint 

probability between a significant wave height and an 

average zero-up-crossing wave period, and Pa is the 

probability of the wave heading angle. Pa is defined as: 

 

*1
a a

a

P P
N

=                                  (5) 

 

where Pa
* is the occurrence probability of a given wave 

heading angle determined from the wave direction data 

and Na is the occurrence number of the wave heading 

angle, which can be established from the wind direction 

changes. Setting a duration of 3 h for each sea state and 

100 years for the return period, Na can be defined as 100 

× 365 × 24/3 = 292,000. 

 

After the wave-induced hull girder loads corresponding to 

individual scenarios are obtained, the probability of 

exceedance diagram can be established as follows (Paik et 

al., 2019; Paik, 2020). 

 

● Step 1: Establish a table of frequencies (probabilities) 

and wave-induced hull girder loads, including the highest 

loads of the different phase angles. 
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Figure 4. Four phase angles when the wave length equals the vessel length 

 

 

● Step 2: Rearrange the order of scenarios so that the 

scenarios with the smallest and largest hull girder load 

become the first and last, respectively. 

 

● Step 3: Calculate the cumulative probabilities (frequencies) 

from the bottom row associated with the largest hull girder 

load. 

 

● Step 4: Determine the design value of the wave-induced 

hull girder load corresponding to an acceptable level of 

exceedance probability from the probability of 

exceedance diagram. 

 

The acceptance level of the exceedance probability is 

defined using the expected number Np of wave peaks 

during the design lifetime (100 years). If a wave peak 

occurs every 6–10 s, Np is estimated as 100 × 365 × 24 × 

60 × 60/10 = 315,360,000 or 100 × 365 × 24 × 60 × 60/6 

= 525,600,000. Thus, the occurrence of the maximum 

wave peak is in the probabilistic range of 1.90 × 10−9 to 

3.17 × 10−9 (
1

p

P
N

= ). In this regard, the design value of 

the hull girder loads can be calculated based on the lower 

end of the acceptance range (1.90 × 10−9), which 

represents the most unfavorable load. The acceptance 

level of the exceedance probability presented here is a 

representative example, and it can be modified as more 

refined database becomes available.  

 

 

 

 

 

3.  APPLIED EXAMPLE 

 

3.1 THREE-DIMENSIONAL FINITE ELEMENT 

FPSO MODEL FOR A VLCC-CLASS 

HYPOTHETICAL FPSO UNIT HULL 

 

In this study, the data related to operating FPSOs built 

since 2000 were used to create a three-dimensional finite 

element model, as shown in Figure 5. Table 2 indicates the 

principal dimensions of the hypothetical FPSO model. 

The principal dimension ratio of the hypothetical FPSO 

model is similar to the results from a worldwide survey of 

newly built FPSOs conducted in 2021, as shown in Table 3. 

The weights at the topside and living quarters are assumed 

as 30,000 tons and 3,500 tons, respectively (Ha et al., 2016, 

2017; Hwang et al. 2010). FPSOs are generally subjected 

to severe hull girder loads under fully loaded conditions. 

Thus, a hypothetical FPSO under fully loaded conditions 

was assumed for the wave simulations. 
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Figure 5. Three-dimensional finite element model of the 

hypothetical floating, production, storage, and offloading 

unit hull: (a) overall view; (b) body plan view; (c) profile 

view; (d) plan view 

Table 2. Principal dimensions of the hypothetical 

floating, production, storage, and offloading unit model 

Parameter Dimension 

Length Between Perpendiculars ( L ) 305.0 m 

Breadth ( B ) 60.0 m 

Depth ( D ) 32.0 m 

Design Draught ( T ) 23.3 m 

Block Coefficient ( bC ) 0.975 

 

In addition, DNV (2019) provides worldwide wave scatter 

diagrams expressed by a two-parameter Weibull 

distribution for significant wave height and log-normal 

distribution for average zero-up-crossing wave periods. 

However, this may be less accurate than the best-fit 

distribution corresponding to the historical wave data 

because DNV gives the worldwide sea states using only 

one distribution type for each parameter.  
 

Table 3. Comparison of the principal dimension ratios 

between average values of worldwide floating, 

production, storage, and offloading units (FPSOs) and 

the hypothetical FPSO (Boggs et al., 2021) 

Type L/B B/D T/D B/T 

Newly-built FPSO worldwide 5.1 1.9 0.7 2.8 

Hypothetical FPSO 5.1 1.9 0.7 2.6 
 

Table 4. Specific locations of the target regions based on 

the floating, production, storage, and offloading units 

(FPSOs) in service 

Site Target FPSO Latitude Longitude 

North Sea 
PETROJARL 

KNARR 
61.78°N 2.83°E 

Gulf of Mexico 
YÙUM K'AK' 

NÁAB 
19.60°N 92.30°W 

Western coast of 

Africa 
EGINA 3.05°N 6.70°E 

Eastern coast of 

South America 
PETROBRAS67 25.33°S 42.69°W 

South eastern 

coast of Asia 
PFLNG SATU 6.45°N 115.44°E 

North western 

coast of Australia 
PRELUDE 13.79°S 123.31°E 

 

 

3.2 SCENARIO SELECTION 

 

3.2 (a) Site-specific sea states 
 

Six target regions were selected, as described in section 1. 

The exact locations of the actual FPSOs in service were 

used in this study. Table 4 provides the specific latitudes 

and longitudes of the target FPSOs. Historical wave data 

from 1979 to 2019 were derived from the DHI MetOcean 

Data Portal (https://www.metocean-on-demand.com, 

accessed 29 January 2021), where a spectral wave model 

known as MIKE 21 is used to predict site-specific wave 

characteristics (DHI, 2019). 

 

3.2 (b) Probability density functions 

 

The PDF must be defined to select wave scenarios. To 

determine the best-fit distributions, the Anderson-Darling 

test is applied for the GoF (Abyani et al., 2018). Table 5 

depicts the best-fit distributions of the six regions for the 

significant wave height, average zero-up-crossing wave 

period, and wave heading angle determined by one of the 

following two PDF types (Paik, 2022).  

 

Weibull distribution: 
2 21

3 32

1 1 1

( ) exp

C C

x C x CC
f x

C C C

−     − −
 = −   
     

        (6) 

 

where C1 is the scale parameter, C2 is the shape parameter, 

and C3 is the location parameter. 

 

Log-normal distribution: 

( )
2

1

2

22

ln1
( ) exp ,  0

22

x C
f x x

Cx C

 −
= −  

  

       (7) 

 

where C1 is the mean and C2 is the standard deviation. 

(a)

(b)

(c)

(d)

https://www.metocean-on-demand.com/
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Figure 6. Probability density function of a wave heading 

angle for a turret mooring with the weathervane effect 

The wave heading angle is defined by the site-specific 

wind direction in this paper because wave direction 

closely correlates with wind direction (Fontaine et al., 

2013; Olsen et al., 2006; Sha et al., 2018). To evaluate 

the effects of the mooring system on the hull girder 

loads, different PDFs of wave heading angles were used 

to select the wave scenarios. The PDFs of a spread 

mooring without the weathervane effect are defined by 

the site-specific wind direction data. In contrast, the 

PDF of a turret mooring with the weathervane effect are 

defined following the normal distribution, thus the 

hypothetical FPSO primarily experiences head sea 

conditions, as shown in Figure 6 (Zangeneh et al., 2017; 

Zhao et al., 2012). 

( )
2

1

2

22

1
( ) exp

22

x C
f x

CC

 −
= − 

  

                 (8) 

where C1 = 180 and C2 = 45.
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(b) 

 

 

 

 

 
(c) 

 

Figure 7. Selected scenarios with the historical and best-fit PDF for six operational regions: (a) significant wave height; 

(b) average zero-up-crossing wave period; (c) wave heading angle 
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Figure 8. Four phase angles in the MAESTRO software: (a) 0°; (b) 90°; (c) 180°; (d) 270° 
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(b) 

 

Figure 9. Distribution of total and wave-induced vertical bending moments of the hypothetical FPSO hull: (a) scenario 

23 in the North Sea; (b) scenario 29 in the western coast of Africa 

 

3.2 (c) Scenarios selection 

 

Fifty wave scenarios are selected with the LHS technique 

using the marginal PDFs, as depicted in Figure 7. In 

general, FPSOs with spread moorings are also installed to 

generate head sea conditions as much as possible (Xu et 

al., 2019). For this reason, the wave heading angle in the 

spread mooring scenarios are adjusted to achieve the 

highest probability of the wave heading angle for head 

seas (180°). Some PDFs representing the wave heading 

angle are greater than 360° in Figure 7; thus 360° must be 

subtracted. 

 

3.3 MOTION AND LOAD ANALYSIS 

 

Wave-induced hull girder loads consist of different load 

types including the vertical bending moment, horizontal 

bending moment, torsional moment, and shearing force 

(Gaspar et al., 2016; Rörup et al., 2017; Tanaka et al., 2015). 

In this paper, the design value of the vertical bending 

moment is selected as an example of the proposed method. 

The design values of the other hull girder loads can be 

determined following identical processes. 

 

MAESTRO software is used for the hydrodynamic 

analysis. Figure 8 shows four phase angles considered in 

the MAESTRO computations, as described in section 2.3. 

Only vertical bending moments at the midship region 

(0.3𝐿 ≤ 𝑥 ≤ 0.7𝐿) are considered in the results, where L is 

the ship length. Figure 9 shows the total vertical bending 

moment and wave-induced vertical bending moment of 

the hypothetical FPSO model. The total bending moment 

is the sum of the still-water bending moment and wave-

induced bending moment. 

 

 

4. SITE-SPECIFIC DESIGN VALUES OF THE 

WAVE-INDUCED VERTICAL BENDING 

MOMENT 

 

4.1 PROBABILITY OF WAVE SCENARIOS 

 

The probability of a wave event is defined from Eq. (4). 

To consider the interacting effects between the significant 

wave height and zero-up-crossing wave period, Php can be 

calculated using interpolation or extrapolation of a site-

specific wave scatter diagram as a joint probability. To 

estimate the probability of exceedance diagram, the 

cumulative probabilities should be calculated using steps 

2 and 3 in section 2.4. 
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4.2 WAVE-INDUCED HULL GIRDER LOADS 

 

The design values of the wave-induced vertical bending 

moments are determined using the probability of 

exceedance diagrams, as shown in Figure 10. The 

resulting design values are presented in Table 6, which are 

calculated based on the lower acceptance range of the 

probability of exceedance, i.e., 1.90 × 10−9 (see section 

2.4). All of the design vertical bending moments obtained 

are negative values because FPSOs are generally deployed 

in sagging conditions. 

 

 

 

 

Table 5. Best-fit distribution with wave parameter coefficients for the six investigated regions 

Location 

Significant wave height 
Average zero-up-crossing wave 

period 
Wave heading angle 

PDF C1 C2 C3 PDF C1 C2 C3 PDF C1 C2 C3 

North Sea Lognormal 0.874 0.561 - Weibull 4.732 2.545 2.441 Weibull 238.3 3.634 61.33 

Gulf of Mexico Lognormal -0.055 0.474 - Lognormal 1.323 0.246 - Weibull 310.3 7.830 123.5 

Western coast of 

Africa 
Weibull 1.347 3.440 0.243 Lognormal 1.660 0.181 - Weibull 210.2 29.06 - 

Eastern coast of 

South America 
Weibull 1.428 2.172 0.722 Weibull 2.921 2.155 3.451 Weibull 142.7 2.562 -6.438 

South eastern coast 

of Asia 
Weibull 1.191 1.836 - Lognormal 1.388 0.303 - Weibull 5666 95.02 -5283 

North western coast 

of Australia 
Weibull 1.111 2.139 0.249 Weibull 2.718 2.566 2.478 Weibull 11481 277.2 -11237 
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(e) 

  
(f) 

 

Figure 10. Probability of exceedance diagrams of the wave-induced vertical bending moment: (a) North Sea; (b) Gulf of 

Mexico; (c) Western coast of Africa; (d) Eastern coast of South America; (e) South eastern coast of Asia; (f) North 

western coast of Australia 

 

Table 6. Design values of wave-induced vertical bending moment 

Location Spread mooring (GN·m) Turret mooring (GN·m) 

North Sea −3.884 −4.343 

Gulf of Mexico −0.416 −0.586 

Western coast of Africa −1.383 −1.193 

Eastern coast of South America −2.481 −1.848 

South eastern coast of Asia −0.454 −1.430 

North western coast of Australia - −0.505 
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Table 7. Comparison of wave-induced vertical bending moment between the present method and the existing results 

Method  L × B × D / T (m) Cb 
WBM 

(GN·m) 
αL 

Scaled WBM 

(αL
4 WBM) 

(GN·m) 

Remark 

Present A 305.0 × 60.0 × 32.0/23.3 0.975 −4.34 1.00 -4.34 Figure 1 

Sogstad (1995) 

B 200.6 × 36.8 × 20.8/14.0 0.84 −4.05 1.52 -21.64 Linear strip theory 

C 227.6 × 44.0 × 26.6/15.2 0.83 −5.72 1.34 -18.45 Linear strip theory 

D 242.0 × 41.0 × 25.0/18.7 0.79 −6.12 1.26 -15.44 Linear strip theory 

Maerli et al. (2000) E 233.0 × 42.0 × 21.3/14.7 - −3.05 1.31 -8.96 Linear strip theory 

Guedes Soares et al. 

(2006) 

F 259.8 × 46.0 × 27.0/16.7 0.87 −7.30 1.17 -13.87 
Linear long-term 

prediction 

G 259.8 × 46.0 × 27.0/16.7 0.87 −8.10 1.17 -15.39 
Nonlinear transfer 

function 

H 3.47 × 0.6 × 0.3/0.2 0.87 −5.10 1.17 -9.69 

1/81-scaled physical 

model testing in the 

wave tank 

where 𝐿 = length between perpendiculars; 𝐵 = breadth; 𝐷 = depth; 𝑇 = design draught; 𝐶𝑏 = block coefficient; and 

WBM = wave-induced bending moment; αL = length scale factor. 

 

 

The results show that the proposed method effectively 

determines the design value depending on the site-specific 

sea state. Figure 11 compares the design values for ship-

shaped offshore installations under the sea states of the six 

investigated regions. As expected, the maximum wave-

induced bending moment is observed in the North Sea due 

to prevailing harsh environmental conditions. 

 

 
Figure 11. Comparison of the design values for ship-

shaped offshore installations under the sea states of the 

investigated six regions 

 

A comparison of the proposed method with different 

results considering survival conditions for FPSO unit hulls 

in the North Sea are presented in Figure 12. The results of 

B to H were obtained in the literature and scaled up 

corresponding to the length of a hypothetical FPSO based 

on Froude scaling laws. Hull dimensions and method for 

hydrodynamic analysis of those studies are indicated in 

Table 7. There are of course considerable differences, 

since the proposed method aims to predict the design value 

of wave-induced hull girder loads in benign conditions, 

while the existing results of B to H were obtained 

considering survival conditions. 

 

The results of I to L were calculated by classification 

society rules of ABS (2021), BV (2016), DNV (2021) and 

LR (2021), respectively. The rules provide procedures for 

direct hydrodynamic analysis, and equations based on 

environmental factors and the IACS Common Structure 

Rules (CSR) to determine the design value of wave loads 

(IACS, 2021). Table 8 and Figure 13 indicates a 

comparison of the present method with the classification 

society rules for the six investigated regions. As expected, 

the present method solutions are greatly smaller than the 

rule results. This is because that the classification society 

rules estimate the extreme values of wave-induced hull 

girder loads for survival conditions, while the present 

method calculates the design values for benign conditions 

considering that single-point or turret mooring systems are 

disconnected if extreme environmental loads are 

imminent, sailed to sheltered areas and then returned to 

restart operation when the weather calms. 

 

The proposed method can also be used to determine a 

suitable mooring system in terms of the wave-induced hull 

girder loads. For the spread mooring case on the north 

western coast of Australia, the design wave-induced 

bending moment becomes infinite and cannot be 

determined from the probability of exceedance diagram. 

However, a few design values do not match with the 

mooring type distribution at the sites. This is because the 

determination of the mooring system is affected not only 

by the wave-induced loads but also other variables, such 

as the stability of the ship motion and riser. 
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Figure 12. Comparison of the wave-induced vertical bending moments between the present method and the existing 

results in survival conditions for FPSO unit hulls in the North Sea 

 

 

 

 

Table 8. Comparison of the design wave-induced vertical bending moments between the present method and 

classification society rules for the six investigated regions 

 

 
Design Wave-induced Vertical Bending Moments 

(GN·m) 

Location Present ABS (2021) BV (2016) DNV (2021) LR (2021) 

North Sea -4.343 -19.536 -19.536 -21.025 -17.720 

Gulf of Mexico -0.586 -9.414 -9.950 -11.075 -5.538 

Western coast of 

Africa 
-1.138 -9.414 -8.844 -11.075 -5.538 

Eastern coast of South 

America 
-2.481 -9.414 -8.844 -11.075 -6.645 

South eastern coast of 

Asia 
-1.430 -9.414 -8.844 -11.075 -5.538 

North western coast of 

Australia 
-0.505 -9.414 -9.950 -11.075 -5.538 
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Figure 13. Comparison of the design wave-induced vertical bending moments between the present method (for benign 

conditions) and classification society rules (for survival conditions) for the six investigated regions 

 

 

5. CONCLUDING REMARKS 

 

The primary aim of this study was to present a new 

probabilistic method for determining the design value of 

wave-induced hull girder loads acting on ship-shaped 

offshore installations in benign conditions. To demonstrate 

the proposed method, a hypothetical FPSO model was used 

to analyse the motion and loads for calculating the wave-

induced vertical bending moments. A series of hydrodynamic 

analyses was performed for the selected credible wave 

scenarios generated by the LHS technique using best-fit 

PDFs of the site-specific metocean data. 

 

The results demonstrate that the proposed method is useful 

for determining the design value of wave-induced hull 

girder loads for ship-shaped offshore installations in 

benign conditions corresponding to different site-specific 

sea states and an acceptable level of exceedance 

probability. The method can also be used to determine an 

appropriate mooring system type in terms of wave-

induced hull girder loads. A sequel to this paper is ongoing 

to present a method for determining design values of 

wave-induced hull girder loads of ship-shaped offshore 

installations in survival conditions.  
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