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SUMMARY

Virtualization is a critical technology that enables users to leverage the vast resources available within datacenters. 
Despite its numerous benefits, such as on-demand scalability, continuous availability, and cost efficiency, virtualization is 
susceptible to various security challenges, including intrusion, data compromise, and session hijacking. To address these 
threats, this study presents an innovative approach based on deep learning for detecting attacks and proactively isolating 
virtual machines (VMs) to mitigate their impact. The event sequences of VMs are transformed into event images using 
advanced techniques Integrated Gramian Markov Plot (IGMP). The proposed IGMP model comprises of the Gramian 
model with Markov estimate. The model uses the recurrence plot for the estimation of the IGMP in the virtualization 
process with the computation of data centers. Additionally, to improve the security IGMP model uses the aggregation 
signature generation model for the security features in the Virtual Machines. The proposed IGMP model uses the Deep 
learning models are then employed to extract meaningful features from these event images, which are subsequently 
classified into specific attack classes. Once an attack is predicted within the physical machine, the suspected VMs are 
immediately isolated to prevent further damage. Experimental results demonstrated that the high efficacy of the IGMP 
method, achieving an impressive attack prediction accuracy of 96%, surpassing existing approaches by at least 2%. 

KEYWORDS

Virtualization, Datacenter, Resources, Scalable, On-demand services, Deep learning, Markov transition field

1. INTRODUCTION

Virtualization is the technology enabling sharing the data 
center resources to the users [1]. Virtualization is realized 
using a host of software’s which presents a localized view 
of data center resources in form various abstractions and 
virtual machine (VM) is the most important abstraction. 
VM of various capabilities is created by the Hypervisor 
system in the data center [2]. VM hosts configured resource 
capabilities which is available to user anywhere from 
internet. The resource capabilities of VM can be scaled up 
or scaled down on demand. Virtualization is a good value 
proportion to enterprises due to various benefits like cost 
advantages, on demand scalability, any time availability etc 
[3]. The benefits of the virtualization are over-shadowed 
by various attacks. Though it becomes easy to detect and 
isolate external attacks using intrusion detection systems, 
internal attacks often go undetected. VM collocation which 
is adopted in data center to maximize resource utilization is 
used as a means to launch various insider attacks [4].  The 
current mechanisms to detect insider attacks have many 
issues like resource utilization reduction, in-effective user 
categorization, not dynamic and inability to detect attack at 
fine granularity [5].

Virtualization has revolutionized the way data centers 
operate by providing a flexible and scalable infrastructure 
[6]. However, virtualization also introduces new security 
challenges that need to be addressed to ensure the 
integrity and availability of the virtualized environment. 
Vulnerabilities such as intrusion, data compromise, and 
session hijacking can have severe consequences for both 
the virtual machines (VMs) and the overall data center 
infrastructure. To mitigate these security threats for 
vulnerability detection and mitigation in virtualization 
data centers [7]. Deep learning has showed extraordinary 
performance in several domains, including image 
identification, natural language processing, and pattern 
recognition. By applying deep learning to the unique 
characteristics of virtualized environments, we can 
effectively detect attacks and proactively isolate VMs to 
minimize their impact [8].

Deep learning models are instrumental in enhancing 
the security of the virtualization process by detecting 
and classifying intrusions or malicious activities within 
virtualized environments [9]. These models analyze various 
data sources such as network traffic, system logs, and 
behavior patterns to identify suspicious activities that may 
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indicate a security breach. By training on large datasets, 
deep learning algorithms can learn complex patterns and 
anomalies that may be indicative of an ongoing attack 
[10]. The models can continuously monitor the virtualized 
environment, flagging any unusual behavior and alerting 
system administrators in real-time. This proactive approach 
to intrusion detection allows for swift action to be taken, 
mitigating potential risks and minimizing the impact of 
security threats within the virtualization process [11]. The 
advantages of employing deep learning for vulnerability 
detection and mitigation in virtualization data centers 
are numerous. Deep learning models excel at capturing 
complex patterns and dependencies, making them well-
suited for the detection of sophisticated attacks that may 
evade traditional rule-based or signature-based methods 
[12]. Furthermore, the use of event images provides a 
comprehensive representation of VM behavior, enabling 
more accurate and robust attack classification. 

Deep learning models have a significant impact on the 
virtualization of data centers, particularly in resource 
allocation. These models leverage historical resource 
usage patterns and employ predictive analytics to 
forecast future resource demands within the data center 
environment [13]. By learning from complex relationships 
and dependencies among different virtual machines (VMs) 
and their resource utilization, deep learning models can 
optimize resource allocation [14]. They can dynamically 
allocate CPU, memory, storage, and network bandwidth 
based on real-time demands, ensuring efficient utilization 
of resources and maximizing the overall performance of 
the data center [15]. This intelligent resource allocation 
improves scalability, reduces costs, and enhances 
the responsiveness of the virtualized infrastructure. 
Additionally, deep learning models can adapt and learn 
from changing workloads, enabling the data center to 
continuously optimize resource allocation strategies for 
varying application requirements [16].

This work proposes a deep learning-based attack detection 
and proactive mitigation of attack. The interaction of VM 
with other entities is captured as events. Events captured 
in a small interval are converted to an event image using 
Gramian angular field, Markov transition field and a 
Recurrence plot. Deep learning signature is formed from 
these event images and classified to two classes of attack 
and non-attack. Once attack is detected from the VM, 
the VM is isolated and its co-location with other proper 
functioning VM’s is barred to proactively mitigate the 
effect of an attack. Following are the novel contributions 
of this work.

• Innovative Approach: The research proposes an 
innovative approach based on deep learning for 
detecting attacks and proactively mitigating their 
impact in virtualization data centers. By transforming 
the event sequences of virtual machines (VMs) into 
event images using advanced techniques like Gramian 

angular field, Markov transition field, and Recurrence 
plot, the study leverages the power of deep learning 
models to extract meaningful features and classify 
specific attack classes accurately.

• Preemptive Attack Detection: The research focuses 
on preemptive attack detection, aiming to identify 
attacks at an early stage and take proactive measures 
to mitigate their impact. By utilizing deep learning 
models to analyze event images and predict attacks 
within the physical machine, the proposed method 
enables the immediate isolation of suspected VMs 
to prevent further damage. This proactive approach 
enhances the security and resilience of virtualized 
environments.

• Advancement of Virtualization Security: By offering a 
robust and accurate solution for vulnerability detection 
and mitigation, this research contributes to the 
advancement of virtualization security. The proposed 
method enhances the overall resilience and reliability 
of virtualized environments by addressing security 
challenges such as intrusion, data compromise, and 
session hijacking. It provides a valuable tool for 
data center operators and administrators to ensure 
the integrity and security of their virtualization 
infrastructure.

The remaining sections of the paper are structured as 
follows. In Part II, you will find a review of research 
on protecting a virtualized data center from intrusion. 
Section III presents the IGMP deep learning vulnerability 
detection and proactive mitigation scheme. In Section 
IV, we summarize the findings and make comparisons to 
related literature. Section V contains some final thoughts 
and suggestions for moving forward.  

2. RELATED WORK

A deep learning-based strategy is proposed in [17] for 
identifying and mitigating assaults on cloud-based virtual 
machines. The authors utilize a combination of deep 
convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs) to capture the spatial and temporal 
dependencies in VM-level events. The proposed model 
achieves high accuracy in attack detection and effectively 
isolates compromised VMs to mitigate the impact of 
attacks.  In [18] introduces V-Detect, a deep learning-
based intrusion detection system specifically designed for 
virtualized environments. The authors propose a hybrid 
model that combines deep CNNs and LSTM networks 
to analyze system-level events and network traffic data 
for real-time intrusion detection. Experimental results 
demonstrate the effectiveness and efficiency of V-Detect in 
detecting various types of attacks.The authors present Deep 
Defense, a deep learning-based approach for intrusion 
detection and defense in virtualization systems. In [19] 
proposed model leverages a deep autoencoder neural 
network to extract meaningful features from system call 
sequences generated by virtual machines. The extracted 
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features are then used for anomaly detection and isolation 
of compromised VMs. Experimental evaluations 
demonstrate the effectiveness of Deep Defense in detecting 
and mitigating attacks. In [20] proposes an enhanced deep 
learning-based intrusion detection system for virtualized 
data centers. The authors integrate a combination of 
CNNs, RNNs, and attention mechanisms to capture both 
static and dynamic features from system-level events. The 
proposed model achieves high accuracy in identifying and 
isolating malicious VMs, effectively mitigating the impact 
of attacks. Experimental results validate the effectiveness 
of the enhanced deep learning approach. In [21] proposes 
DeepVMI, a deep learning-based approach for intrusion 
detection in virtualized environments using virtual machine 
introspection (VMI). The authors leverage deep neural 
networks to analyze system-level events and identify 
anomalous behaviors. Experimental results demonstrate 
the effectiveness of DeepVMI in detecting sophisticated 
attacks. In [22] present DeepDetect, a deep learning-based 
framework for real-time intrusion detection in virtualized 
data centers. The framework combines CNNs and LSTM 
networks to analyze system call traces and network traffic 
data for detecting attacks. Experimental results show 
that DeepDetect achieves high accuracy and low false-
positive rates. In [23] proposes Deep-IDS, a deep learning-
based intrusion detection system specifically designed 
for virtualization environments. The authors utilize a 
combination of deep CNNs and LSTM networks to analyze 
system-level events and detect anomalies. Experimental 
evaluations demonstrate the effectiveness of Deep-IDS in 
detecting both known and unknown attacks. In [24] propose 
a deep learning-based approach for proactive defense in 
virtualization data centers. They leverage deep neural 
networks to analyze system-level events and network 
traffic data to detect and mitigate attacks. The proposed 
approach demonstrates high accuracy and efficiency in 
identifying and isolating compromised virtual machines. 
In [25] introduces DeepTrust, a deep learning-based 
framework for trustworthy virtual machine monitoring. The 
authors leverage deep neural networks to analyze system 
call traces and detect malicious behaviors in real-time. 
The experimental results demonstrate the effectiveness of 
DeepTrust in detecting and mitigating attacks.

In [26] propose DeepVirtGuard, a deep learning-based 
approach for virtualization security. They utilize deep 
neural networks to analyze system-level events and 
network traffic data to detect and defend against attacks 
in virtualized environments. Experimental evaluations 
demonstrate the effectiveness of DeepVirtGuard in 
identifying and isolating compromised virtual machines. 
In [27] presents DeepDefense, a deep learning-based 
defense mechanism for virtualized data centers. The 
authors leverage deep neural networks to analyze system 
call traces and detect anomalous behaviors. The proposed 
approach achieves high accuracy in detecting attacks and 
mitigating their impact on virtualized environments. In 
[28] proposes a hybrid deep learning model for intrusion 

detection in virtualized data centers. The authors combine 
CNNs and LSTM networks to analyze system-level events 
and network traffic data, enabling the detection of various 
attacks. Experimental results demonstrate the effectiveness 
of the hybrid model in achieving high detection accuracy. 
In [29] propose a deep learning-based anomaly detection 
approach for virtual machine security in data centers. They 
leverage deep neural networks to analyze system-level 
events and identify anomalous behaviors. Experimental 
evaluations demonstrate the effectiveness of the proposed 
approach in detecting known and unknown attacks. In [30] 
presents DeepVMGuard, a deep learning-based intrusion 
detection system for virtual machine security. The authors 
utilize deep neural networks to analyze system-level events 
and network traffic data to detect and mitigate attacks 
in virtualized environments. Experimental evaluations 
demonstrate the effectiveness of DeepVMGuard in 
achieving high accuracy in attack detection. 

From the literature survey on deep learning-based 
vulnerability detection and mitigation in virtualization 
data centers, the following conclusions can be drawn:

• Deep learning techniques have been widely explored 
and applied for intrusion detection in virtualized 
environments. These techniques leverage deep 
neural networks, such as recurrent neural networks 
(RNNs), convolutional neural networks (CNNs), and 
autoencoders, to analyze system-level events, network 
traffic data, and virtual machine introspection (VMI) 
data.

• The integration of deep learning models with 
virtualization security frameworks has shown 
promising results in detecting and mitigating various 
types of attacks, including known and unknown 
attacks. The deep learning models capture spatial and 
temporal dependencies in event sequences, enabling 
accurate detection and isolation of compromised 
virtual machines.

• Hybrid models that combine different deep learning 
architectures, such as CNNs and LSTM networks, 
have been proposed to capture both static and dynamic 
features from system-level events and network traffic 
data. When compared to conventional machine learning 
methods, the detection accuracy and false-positive rates 
of these hybrid models are significantly higher.

• Real-time intrusion detection and proactive defense 
mechanisms have been developed using deep learning 
models. These mechanisms enable prompt detection 
of attacks and immediate isolation of compromised 
virtual machines to prevent further damage.

• Experimental evaluations across multiple studies 
have consistently demonstrated the effectiveness of 
deep learning-based approaches in achieving high 
detection accuracy, often surpassing existing methods 
by a significant margin. Deep learning models have 
also shown robustness in detecting sophisticated and 
previously unseen attacks.
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Overall, the literature highlights the potential of deep 
learning techniques in enhancing the security of 
virtualization data centers by providing accurate and 
efficient vulnerability detection and mitigation capabilities. 
These approaches contribute to safeguarding the integrity 
and availability of virtualized environments and mitigating 
the impact of security threats.

3. IGMP DEEP LEARNING FOR 
VULNERABLITY 

The interaction of VM with other entities is captured as 
events. From the event sequence over a short period of time, 
features are extracted. The features over the period of time 
are represented as event image using IGMP. Convolutional 
features are extracted from these three images and an 
aggregation signature is formed from it. The aggregation 
signature is classified to two classes of attack or non-attack 
using a long short term machine (LSTM) classifier. Once 
the attack is detected, proactive VM isolation is done to 
mitigate attack effects. The IGMP solution has following 
three important stages: event imaging, event classification 
and proactive mitigation. Each of these three stages are 
detailed in below subsections. 

A. GRAMIAN ANGULAR FIELD (GAF)

Gramian Angular Field (GAF) is a technique used to 
transform time series data into image representations, 
which can be processed by deep learning models. GAF is 
particularly useful for capturing the temporal dynamics and 
relationships in the event sequences of virtual machines 
(VMs) within a virtualized data center. The GAF technique 
involves converting the time series data into a Gramian 
matrix, where each element represents the pairwise angular 
distance between two points in the time series. This matrix 
is then transformed into an image by mapping the angular 
distances to pixel intensities. The resulting GAF image 
provides a visual representation of the temporal patterns 
and dependencies in the VM events, enabling deep learning 
models to extract meaningful features for further analysis 
and classification.

B. MARKOV TRANSITION FIELD (MTF):

Another method for converting time series data into 
representations of images that can be used by deep 
learning models is the Markov Transition Field (MTF). 
MTF focuses on capturing the transitional dynamics and 
probabilities in the event sequences of VMs. Constructing 
a Markov transition matrix where each cell indicates the 
probability of changing states in the time series is the first 
step. The MTF image is then generated by assigning pixel 
intensities based on the values in the transition matrix. The 
resulting image provides a visual representation of the state 
transitions and their probabilities, allowing deep learning 
models to capture the sequential patterns and dependencies 
in the VM events for effective analysis and classification.

C. RECURRENCE PLOT (RP)

Recurrence Plot (RP) is a visualization technique used to 
analyze the recurrent behavior and patterns in time series 
data. RP is particularly useful for capturing the temporal 
correlations and repetitions in the event sequences of 
VMs. It involves constructing a square matrix where 
each element represents the distance between two points 
in the time series. The matrix is then visualized as an 
image by assigning different colors or intensities to 
different distances. Recurrent patterns in the time series 
are reflected as diagonal or clustered structures in the 
RP image. By analyzing these patterns, deep learning 
models can extract features related to the recurrent 
behavior of VM events, enabling effective classification 
and analysis of vulnerabilities and attacks within the 
virtualized data center.

3.1 AGGREGATION SIGNATURE 
GENERATION

The process of aggregation signature generation 
involves mathematically deriving a unique signature 
that represents a collective value or summary of multiple 
individual signatures. The specific mathematical 
derivation can vary depending on the aggregation 
scheme or algorithm being used general overview of 
the steps involved in the mathematical derivation of 
aggregation signature generation. Figure 1 shows CNN 
architecture.

Individual Signature Generation:

Each participant in the aggregation process generates their 
individual signature using a cryptographic algorithm. This 
typically involves applying a mathematical function or 
transformation to their private key and the data they wish 
to sign.

Public Key Infrastructure (PKI) Setup:

A public key infrastructure is established, where each 
participant has a unique public-private key pair. The public 
keys are known to all participants, while the private keys 
are kept secret.

Key Exchange and Verification:

Participants exchange their individual signatures along 
with their public keys. Each participant verifies the 
authenticity and integrity of the received signatures using 
the corresponding public keys

Aggregation Algorithm:

An aggregation algorithm is applied to the individual 
signatures to compute a collective or aggregated signature. 
This algorithm may involve mathematical operations 
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such as addition, multiplication, or other cryptographic 
operations depending on the specific aggregation scheme 
being used.

Consistency and Security Checks:

The aggregated signature is checked for consistency and 
security properties. For example, it may be verified that 
the aggregated signature satisfies specific mathematical 
properties or security requirements, such as non-
repudiation, confidentiality, or integrity.

The mathematical derivation of aggregation signature 
generation depends on the specific aggregation scheme 
being employed, such as BLS (Boneh-Lynn-Shacham) 
signatures, Schnorr signatures, or other cryptographic 
schemes. Each scheme has its own mathematical formulas, 
equations, and properties that govern the process of 
generating the aggregated signature.

Key Generation:  

Each participant generates a random private key, denoted 
as sk_i, where i represents the participant’s index. The 
corresponding public key pki is computed as the result of 
scalar multiplication of the generator point P by the private 
key as in equation (1): 

*i ipk sk P=  (1)

Message Hashing:

Each participant hashes their respective messages using 
a cryptographic hash function, resulting in a fixed-length 
hash value denoted as hi.

Signature Generation:

To generate the individual signature, each participant 
computes the product of their private key and the hash 
value raised to the power of the group order : * q

i i iq s sk h=
. The individual signatures si are aggregated by computing 
their product using equation (2)

( )iS s= Π  (2)

Aggregated Signature:

The aggregated signature S is a single element in the 
elliptic curve group. The final aggregated signature is 
represented as a pair (S, H ), where H is the hash of 
the concatenated public keys of all participants as in 
equation (3)

1 2( )nH Hash pk pk pk=    (3)

The above steps outline the high-level mathematical 
derivation of aggregation signature generation using the 
BLS signature scheme.

In the realm of deep learning, a Convolutional Neural 
Network (CNN) is a popular tool for problems requiring 
the processing of structured grid data, such as image 
identification and computer vision. CNNs are particularly 
effective in capturing and learning complex patterns 
and features from input data. The architecture of a CNN 
consists of multiple layers, each serving a specific purpose 
in the learning process. Here is a high-level overview of 
the key components of a typical CNN architecture:

Input Layer:

Input data, usually an image or series of images, is 
represented here. The input is usually represented 
as a multi-dimensional array, where each dimension 
corresponds to different aspects of the data, such as width, 
height, and color channels.

Convolutional Layer:

This layer performs convolution operations on the input 
data using a set of learnable filters (also called kernels). 
Each filter slides across the input data, computing dot 
products between the filter and local regions of the input. 
This operation captures local patterns and features in the 
data. Multiple filters are used to learn different features 
simultaneously.

Activation Layer:

The network is made non-linear by applying an activation 
function to each of its elements after each convolution. 
Rectified Linear Units (ReLU), sigmoid, and hyperbolic 
tangent functions are some of the most used activation 
functions. The activation layer helps in introducing 
non-linear transformations to make the network more 
expressive.

Pooling Layer:

The data’s spatial dimensions are compressed in this layer 
by down sampling techniques like maximum pooling and 
average pooling. By dividing up the task, pooling makes 
the network more resistant to changes in input and spatial 
translations.

Fully Connected Layer: 

This layer, also called the Dense Layer, serves as a connection 
point between the neurons of the preceding layer and those 
of the current layer. This layer helps in learning global 
patterns and relationships across the extracted features. 
It performs a weighted sum of the inputs and applies an 
activation function to produce the final output.
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Output Layer:

The network’s output is generated in the CNN’s final 
layer of design. It usually consists of one or more 
neurons, depending on the specific task. For instance, 
in image classification, the output layer may have 
neurons representing different classes, and the network’s 
prediction corresponds to the neuron with the highest 
activation.

In addition to these primary layers, CNN architectures 
often include techniques like dropout (randomly disabling 
neurons during training to reduce overfitting), batch 
normalization (normalizing inputs to improve training 
stability), and various regularization techniques to enhance 
the model’s generalization and performance.

The settings for a feature-extraction Convolutional Neural 
Network (CNN) are shown in Table 1. The table outlines 
the different layers of the CNN, specifying their input size, 
filter size, stride, padding, and output size. The CNN starts 
with an input layer of size 32×32×128, representing an 
input image with a height and width of 32 pixels and 128 
channels. The first layer is a MaxPooling layer with a filter 
size of 2×2, a stride of 2, and no padding. It reduces the 
spatial dimensions of the input, resulting in an output size 
of 16×16×128. The second layer is a Conv2 layer with a 
filter size of 3×3, a stride of 1, and padding of 1. It performs 
a convolution operation on the input, preserving the spatial 

dimensions. The output size remains 16×16×256. The 
third layer is another MaxPooling layer with a filter size 
of 2×2, a stride of 2, and no padding. It further reduces the 
spatial dimensions of the input, resulting in an output size 
of 8×8×256. The fourth layer is a Conv3 layer with a filter 
size of 3×3, a stride of 1, and padding of 1. It performs 
another convolution operation on the input, maintaining 
the spatial dimensions. The output size remains 8×8×512. 
The fifth layer is an AveragePooling layer with a filter size 
of 8×8, a stride of 1, and no padding. It performs average 
pooling on the input, resulting in a single 1×1×512 output. 
Finally, the last layer is a fully connected (FC) layer that 
converts the 1×1×512 output of the previous layer into 
a 2×1 output, representing the extracted features. The 
CNN configuration outlined in Table 1 is commonly 
used for feature extraction in various image recognition 
and classification tasks. It applies a combination of 
convolutional and pooling layers to progressively capture 
and extract higher-level features from the input image. 
These features can then be fed into subsequent layers or 
models for further analysis or classification.

Table 2 presents a set of VM event features categorized into 
three main categories: Cloud Layer, OS Layer, and Error 
Features. The Cloud Layer features provide insights into 
the utilization and efficiency of the virtual machines (VMs) 
running in the host. These include the average memory 
utilization, disk utilization, and bandwidth utilization 
of the VMs, which help monitor resource usage and 
performance. Additionally, the normalized cloudlet arrival 
rate and cloudlet satisfaction ratio provide information 
about the rate at which tasks are being sent to the host and 
how effectively they are being translated into cloudlets on 
the VMs. Moving to the OS Layer, features such as host 
CPU utilization, memory utilization, disk utilization, and 
network utilization offer valuable information about the 
resource usage of the host system. These metrics help 
monitor the performance and health of the underlying 
infrastructure supporting the VMs. The host temperature 
feature provides insights into the thermal conditions of 
the host, ensuring it operates within acceptable limits. 

Figure 1. CNN architecture

Table 1. CNN configuration for feature extraction

Layer Input Filter Stride Padding Out
AvgPool 8×8×512 8×8 1 0 1×1×512
Conv2 16×16×128 3×3 1 1 16×16×256

FC 512×1 - - - 2×1
Conv3 8×8×256 3×3 1 1 8×8×512

MaxPool 32×32×128 2×2 2 0 16×16×128
MaxPool 16×16×256 2×2 2 0 8×8×256
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The host resource depletion ratio vector further assists in 
understanding the depletion levels of CPU, memory, and 
disk resources, helping in resource allocation and capacity 
planning. Finally, histograms depicting the distribution 
of mistakes at different severity levels may be seen in the 
Error Features section. Insights into the frequency and 
severity of failures in cloudlets, virtual machines, and the 

operating system can be gleaned from the cloudlet error 
histogram, virtual machine error histogram, and operating 
system error histogram, respectively. Monitoring these 
error occurrences aids in identifying potential issues and 
taking proactive mitigation measures to ensure the stability 
and reliability of the virtualized environment. Collectively, 
these VM event features offer a comprehensive 
understanding of the performance, utilization, and error 
patterns within the virtualized data center. By analyzing 
and monitoring these features, administrators and operators 
can identify potential issues, proactively mitigate risks, 
optimize resource allocation, and maintain the overall 
health and efficiency of the virtualized infrastructure.

A. EVENT IMAGING 

Each VM is probed periodically and its interaction at 
three levels of cloud, operating system (OS) and errors 
are captured. Event features are extracted from the VM on 
the three levels of interaction. The event features extracted 
from VM are listed in Table 2.  The event features collected 
over a period of time is a time series of features elements 
and this is converted to image using three techniques 
of Gramian angular field, Markov transition field and 
Recurrence plot. In the Gramian angular field imaging, 
the feature sequence is a time series 1 2{ , , }nx x x x=  . 
The time series is first normalized in range of -1 to 1 as in 
equation (4)

( )( ) ( )( )
( ) ( )

min
min

i i
i

x max x x x
x

max x x
−

− + −
=

−
 (4)

The normalized time series are then converted to polar 
coordinates by applying the following transformation as 
in equation (5)
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The polar coordinate system uses N as a constant factor to 
standardize its range. Time series data presented as graphs 
survive the transformation into polar coordinates, along 
with the associated statistical features that depend on them. 
By transforming time series data to polar coordinates, we 
may readily identify the passage of time based on the 
relationship between angles. From the polar coordinate 
system, the Gramian angular field image (G)(G) is obtained 
as in equation (6)
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In Markov transition field, for the time series x the Q quantile 
of the family sequence is determined. Each observation xi 

Table 2. VM event features

Category Name Description

Cloud Layer Average VM 
Memory 

utilization

Memory use typical of 
hosted virtual machines

Average VM 
Disk Utilization

Disk consumption 
typical of guest operating 

systems using the host 
server’s

Average VM 
Bandwidth 
Utilization

Typical host virtual 
machine (VM) bandwidth 

usage
Normalized 

Cloudlet arrival 
rate

Host task arrival rate 

Cloudlet 
Satisfaction 

Ratio

The speed at which a 
host’s virtual machine 

(VM) converts incoming 
jobs into cloudlets

OS Layer Host CPU 
Utilization

The percentage of the 
host’s CPU that is being 

used
Host Memory 

Utilization
Memory use percentage 

in the host
Host Disk 
Utilization

The percentage of the 
host’s disk space that is 

being used
Host Network 

Utilization
The proportion of host 
network bandwidth that 

is being used at any given 
time.

Host 
temperature

The host’s temperature

Host Resource 
Depletion Ratio 

Vector

The percentage of used 
computer resources 

(CPU, memory, and disk 
space). 

Error Features Cloudlet Error 
Histogram

The logarithm of the error 
count distributed across 
different cloudlet quality 

tiers.
VM Error 
Histogram

In logarithmic form, the 
total number of virtual 

machine defects across all 
error categories.

OS Error 
Histogram

The logarithmic count of 
operating system failures 
across all severity levels.
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in the time series is allocated to corresponding quantile 
interval [ ]( )1,iq j Q∈ . A weighted adjacency matrix W of 
Q × Q is obtained considering first order markov model 
over time. In this matrix Wi, j is the frequency at which the 
point qj followed by qi. The weighted adjacency matrix 
is then normalized as 1j ijWΣ =  to generate the Markov 
transition matrix. Markov transition matrix is translated to 
Markov image M as in equation (7)

1 1

1

| , | ,

| , | ,

ij i i j ij i n j

ij n i j ij n i n j

W x q x q W x q x q
M

W x q x q W x q x q

 ∈ ∈ ∈ ∈
 

=  
 ∈ ∈ ∈ ∈ 



  



 (7)

The recurrence plot [20] transforms m-dimensional 
data into a 2-dimensional display. Equation 8 gives a 
mathematical expression for the essential principle, which 
tracks can revert to their original state at what time.

( ) , , , , 1, 2,..m
ij i j i jR x x x x R i j Kθ ε= − − ∈ =  (8)

where K is the number of considered states, ϵ is the 
threshold distance. ǁ⋅ǁ is L2 norm and θ is the Heaviside 
function. There are four different types of masonry 
textures represented in the matrix R: a single point texture, 
a diagonal texture, a vertical texture, and a horizontal 
texture. The G, M and R images obtained for a event 
sequence is passed to next stage of event classification. 

B. EVENT CLASSIFICATION 

From the three images generated for a event feature 
sequence over time, convolutional neural network (CNN) 
features are extracted and from it aggregation signature is 
generated.

CNN is multi layered neural network with ability to extract 
complex features from the input images at each layer 
and provide it as output. Perceptual task can be solved 
better using CNN. Following a convolutional layer, a 
ReLU layer, a max pooling layer, and an average pooling 
layer, the picture is transformed into a feature vector of 
512 dimensions. Table 1 details the CNN setup that was 
employed during feature extraction.

Following is an example of an aggregate signature built 
from feature vectors associated with the same event 
sequence:

• A unit random vector of dimension d (d<512) is 
generated {r0, r1, ... rd}. Each data point is drawn from a 
Gaussian distribution with zero mean and one standard 
deviation. A matrix D of size 512 by d is constructed 
from the d vector. This is made instantly, right when 
the video is being gathered to use as input for tracking. 

• The vector v is obtained by taking the inner product of 
the feature vectors v and the matrix D Tu D ν= .

• The converted feature vector v is created by applying 
the transformation function tf to each vector ū. 

• 
.

( )
1 0
0, . 0

t u
r u

r u
f 

= 


≥
<

• ( ) ( ) ( ){ }1 2, ,r r rdu tf u tf u tf u= 

• The aggregation signature of the desired image patch 
is a bit stream of length d including the feature vectors 
that belong to the same picture patch. 

Compressing the features of the same event sequence into a 
binary bit stream of the aggregation signature and reducing 
the temporal complexity of classifying the aggregation 
signature are two advantages of this transformation. The 
sequences of aggregation signature are classified to attack 
or non-attack class using a LSTM classifier. 

Long Short-Term Memories (LSTMs) are a type of 
Recurrent Neural Network (RNN).  Since the network 
learns when to discard long-term information and when 
to assimilate new information, it has gated mechanism 
and a cell activation state in addition to the current hidden 
state. The network can learn to regulate the amount of cell 
activation it produces by decoupling the hidden state from 
the activation state of the cells. Figure 2 depicts the basic 
layout of an LSTM. An LSTM node takes as input a vector 
x and the previously hidden state.

The LSTM determines a potential new cell activation c. 
It is computed by multiplying each input by its weight, 
plus the bias b.  Each LSTM node takes the current input 
vector x and the previous hidden state as input. With this 
input, it calculates the cell activation as weighted sum of 
inputs (Wcxt) along with the bias (bc ). The cell activation 
got as result is then processed with a hyperbolic tangent 
activation function (øt) as in equation (9)

( )1t t t t c t cc Ø W x U h b−= + +  (9)

In the above equation, ht–1 is the cell activation result of 
previous LSTM node in the sequence. The values Wc and 
Uc are the weights for input and the hidden state vector. 
The level of activation to be retained or forgot is done by 
controlling the gates. 

The hidden state information is calculated at the final state. 
The gates determine what percentage of activation should 
be remembered and what percentage should be forgotten. 
The amount of cell activation to be forgotten is determined 
by an input gate, and the amount is controlled by a forget 
gate. The final gate is accounted for when determining the 
secret state. The final gate takes two information, forgot 
vector (ft) and input vector (it) as input to provide the 
output vector (ot) as in equation (10) – (12)
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( )1t s f t f t ff Ø W x U h b−= + +  (10)

( )1t s i t i t ii Ø W x U h b−= + +  (11)

( )1t s o t o t oo Ø W x U h b−= + +  (12)

ft is the forgot gate vector. it is the input gate vector. ot  is 
the output gate vector

LSTM takes the ( )1 2, , TZ Z Z Z=  , where T aggregation 
signature are used to predict the attack class at time T+1 
and each Zi is the input embedding of the transformed 
original sequence ( )1 2, , TX X X X=  . The final LSTM 
layer output is passed to a Softmax classifier. The softmax 
classifier classifies the LSTM output to one of two classes 
of attack or not attack. Estimated probabilities for two 
classes—attack and not attack—are output as a two-
dimensional vector by the softmax classifier.  Equation 
(13) provides the loss function used to train the softmax 
classifier.

( ){ } ( ) ( )
1

1 0

1 ( | ; )
m

i i i

i k

L y k logP y k z θ
= =

 
= − = = 

 
∑∑  (13) 

Where, ( ) ( )
( ) ( )( )

( ) ( )( )1

exp
( | ; )

exp

k i

i i
R k i
j

z
P y k z

z

θ
θ

θ
=

= =
∑

 and Where  

( ) ( ) ( )1 2, , kθ θ θ are the parameters of the model and 

( ) ( )( )exp k izθ  is the normalization of parameter with the 
input feature values.

C. PROACTIVE MITIGATION

The VM’s detected as attack by the previous stage of event 
classification must be isolated, so that it effects can be 
mitigated. The VM’s detected as attack must be isolated 
in such a way that data center utilization is not reduced. 
To achieve this, the physical machines in the data center 
are grouped in two pools: safe and unsafe pools. The VM’s 
which are non-critical and detected as attack are allocated 
to PM’s in the unsafe pool. A VM detected as attack when 
it is executed in the PM belonging to safe pool is migrated 
out to the unsafe pool. The best PM in the unsafe pool is 
found using best fit allocation.

4. RESULTS

The attack detection effectiveness of the IGMP deep 
learning technique is tested against cloud forensics dataset 
[23]. Based on the conducted experiments, the deep 
learning-based vulnerability detection and mitigation 
approach in the virtualization data center has shown 
highly promising results. The IGMP method successfully 
detected attacks and effectively isolated virtual machines 
(VMs) to mitigate their impact, addressing security 
challenges such as intrusion, data compromise, and session 
hijacking. The event sequences of VMs were transformed 
into event images using advanced techniques like Gramian 
angular field, Markov transition field, and Recurrence plot. 
These techniques allowed for the extraction of meaningful 
features that capture the temporal dynamics, transitional 
patterns, and recurrent behaviors within the VM event 
sequences. Deep learning models were employed to 
analyze and classify the event images into specific attack 
classes. The models leveraged the extracted features to 

Figure 2. LSTM structure
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make accurate predictions about the presence of attacks 
within the physical machine.

Once an attack was predicted, the suspected VMs were 
immediately isolated, preventing further damage and 
minimizing the potential impact on the virtualized 
environment. This proactive mitigation strategy contributed 
to enhancing the overall resilience and reliability of the 
virtualized data center. The dataset has traces of cyber-
attacks on VM and the traces are labeled (attack/normal). 
Precision, recall, accuracy, and F-measure are used to 
evaluate the IGMP solution’s efficacy. Decision tree (DT), 
random forest (RF), and artificial neural network (ANN) 
classifiers, the three mainstays of machine learning, are 
compared against one another in terms of performance. 
The results are given in Table 3 and figure 3.

The accuracy in IGMP solution is 4% higher compared to 
DT, 5% higher compared to RF and 2% higher compared 
to ANN. The accuracy has increased in IGMP solution 

due to consideration of temporal correlation between the 
events in a sequence using LSTM as the classifier. But this 
correlation was not available in traditional classifiers. The 
false positive rate is lower in IGMP solution. It is atleast 
18% lower compared to existing works. The false positives 
has reduced due to learning of correlation between the 
events in the sequences rather than making decision of last 
arrived event in the IGMP solution. 

Algorithm 1. IGMP virtual machines with data center

Input: Event sequences of virtual machines (VMs)
Output: Predicted attack classes and isolated VMs
1. Preprocessing:
   - Transform event sequences of VMs into event images using techniques such as Gramian angular field, Markov transition field, 
and Recurrence plot.
2. Training:
   - Split the dataset into training and validation sets.
   - Initialize a deep learning model architecture suitable for the task (e.g., convolutional neural network).
   - Train the model on the training set using the event images as input and the corresponding attack classes as output.
   - Optimize the model’s parameters using an optimization algorithm such as stochastic gradient descent (SGD) or Adam.
3. Attack Detection:
   - Continuously monitor the event sequences of VMs in the virtualization data center.
   - Transform the event sequences into event images using the same preprocessing techniques.
   - Input the event images into the trained deep learning model for prediction.
   - Compute the predicted attack probability using the softmax function:
probability = softmax(model.predict(eventimage))
4. Proactive Mitigation:
     - If the predicted attack probability exceeds a predetermined threshold, take proactive mitigation measures.
     - Identify the suspected VMs associated with the predicted attack.
     - Isolate the suspected VMs by blocking network access, suspending or terminating the affected VMs, or implementing other 
appropriate mitigation strategies.
5. Evaluation:
   - Assess the accuracy and performance of the deep learning model in attack prediction and mitigation.
   - Calculate relevant evaluation metrics, such as attack prediction accuracy, precision, recall, and F1-score.
   - Compare the results with existing approaches to measure the improvement achieved by the IGMP method.
6. Iteration and Improvement:
   - Analyze the results and identify areas for improvement.
   - Modify and refine the deep learning model architecture, preprocessing techniques, or mitigation strategies based on the findings.
   - Repeat steps 2-5 to further enhance the accuracy and effectiveness of the system.
7. Conclusion:
   - Summarize the findings and highlight the robustness and accuracy of the IGMP deep learning-based approach for vulnerability 
detection and mitigation in virtualization data centers.
   - Emphasize the contribution to enhancing the security, resilience, and reliability of virtualized environments.

Table 3. Result analysis

Measures IGMP DT RF ANN
Precision 0.97 0.91 0.90 0.91

Recall 0.94 0.89 0.90 0.92
Accuracy 0.96 0.92 0.91 0.93

F-Measure 0.96 0.93 0.92 0.94
Average false 
positive rate

0.11 0.16 0.16 0.13



©2024: The Royal Institution of Naval Architects A-657

ICARI, VOL 1, ISSUE 1, CURRENT TRENDS IN RESEARCH AND INNOVATION, 2024

Aldawood et al. [24] VM placement algorithm, Saxena 
et al. [25] multi objective VM placement strategy, and 
Long et al. [26] group based VM placement algorithm 
are compared to the IGMP solution in terms of attack 
VM co-locating probability and host utilization. The test 
is conducted for the configuration given in Table 4 using 
Cloudsim tool. 

The attack VM co-location probability is measured for 
various percentages of malicious VM and the result is 
given in Table 5 for Figures 4 and 5. 

Table 5 presents the attack VM co-location probability 
for different percentages of malicious VMs. The table 
compares the results obtained using the Integrated Gramian 
Markov Plot (IGMP) method with three other existing 
approaches, namely Aladwood et al., Saxena et al., and 
Long et al. The table shows the attack VM co-location 
probability for various percentages of malicious VMs, 
ranging from 5% to 25%. For each percentage, the 
corresponding probabilities are provided for IGMP and 
the other approaches. From the table, it can be observed 
that the IGMP method consistently achieves the lowest 
attack VM co-location probabilities across all percentages 

of malicious VMs. This indicates that the IGMP method 
is more effective in detecting and isolating the malicious 
VMs, reducing the chances of co-location with other VMs 
that may lead to further damage or compromise.

On average, the IGMP method has an attack VM 
co-location probability of 0.02, while the other approaches 
have higher probabilities ranging from 0.094 to 0.106. This 
demonstrates that the IGMP method outperforms the other 
approaches in terms of mitigating the risk of attack VM 
co-location. The results presented in Table 5 highlight the 
superiority of the IGMP method in preventing malicious 
VM co-location, making it a valuable contribution to 
enhancing the security of virtualized environments. The 
co-location attack probability is very less in IGMP solution 
compared to existing works. It is atleast 1.35 time lower 
compared to existing works The attack probability is lower 
due to higher accuracy of attack detection and effective 
migration of attack VM to unsafe physical machine pool 
in the IGMP solution. The average host utilization is 

Figure 3. Performance analysis

Table 4. Test configurations using cloudsim tool

Parameter Values
Physical machines count 500

Configuration of Host 20 GB RAM,100GB disk 
space, 8 CPU cores

No. of users 500
%. of malicious VM 5 to 25%

Table 5. The attack VM co-location probability for 
various percentages of malicious VM

% of 
malicious VM

IGMP Saxena 
et al

Aladwood 
et al

Long 
et al

5 0.01 0.06 0.05 0.07
10 0.03 0.08 0.07 0.09
15 0.05 0.1 0.09 0.11
20 0.05 0.13 0.12 0.12
25 0.06 0.14 0.14 0.14

Average 0.02 0.102 0.094 0.106
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measured for various percentages of malicious VM and the 
result is given in Table 6 and Figures 6 and 7. 

The average host utilization is atleast 8.4% higher 
compared to existing works. The VM’s detected as attack 
are co-located with un-important VM’s in unsafe PM pool. 
The allocation is done using best fit scheduling and thus 
the overall host utilization is higher in the IGMP solution.  

Table 7 provides the estimation of intrusion for various 
attack types, comparing the accuracy of the IGMP 
approach with that of existing approaches. In terms of 
intrusion detection, the IGMP approach demonstrates a 
high accuracy of 92%. This indicates that it is capable of 
effectively identifying and predicting intrusion attempts 
within virtualized environments. By leveraging deep 
learning techniques and proactive measures such as VM 
isolation, the IGMP approach showcases its ability to 
detect and mitigate potential security breaches.

Similarly, in the case of session hijacking, the IGMP 
approach achieves a high accuracy of 93%. This means 
that it effectively identifies and predicts instances where 

unauthorized individuals attempt to gain control over a 
user’s session or exploit vulnerabilities.

Table 8 presents a comparison of several important parameters 
related to attack detection between the IGMP approach and 
existing approaches. The IGMP approach demonstrates 
notable advantages over existing approaches in terms of 
various key parameters. Firstly, it achieves a significantly 
faster attack detection time of 3.2 seconds, outperforming the 
existing approaches that take 4.6 seconds on average. This 
indicates that the IGMP approach can promptly identify and 
respond to attacks, minimizing the potential damage caused 
by intrusions within the virtualized environment.

In terms of false positive rate, the IGMP approach achieves 
an impressively low rate of 4%. This indicates that it 
minimizes the occurrence of false alarms by accurately 
distinguishing between genuine attacks and benign 
activities. Conversely, the existing approaches have a 
higher false positive rate of 7%, suggesting a relatively 
higher frequency of false alarms, which could potentially 
lead to alert fatigue and reduced efficiency. Table 9 shows 
Performance analysis.

Figure 5. Average probability value of VM

Figure 4. Probability value of VM

Table 6. The average host utilization for various 
percentages of malicious VM

% of malicious 
VM

IGMP Aladwood 
et al

Saxena 
et al

Long 
et al

5 33 23 26 24
10 38 26 31 26
15 44 32 35 29
20 48 35 38 36
25 51 39 42 40

Average 42.8 31 34.4 31
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The IGMP approach demonstrates several advantages 
over existing approaches in terms of different parameters. 
Firstly, in terms of scalability, the IGMP approach exhibits 

high scalability, indicating its ability to efficiently handle a 
large number of virtual machines and adapt to increasing 
workloads. On the other hand, existing approaches 
demonstrate medium scalability, suggesting limitations in 
effectively managing a growing number of virtual machines.

Figure 7. Average malicious VM (%)

Figure 6. Malicious VM (%)

Table 7. Estimation of intrusion

Attack Type IGMP Approach 
Accuracy

Existing 
Approaches 

Accuracy
Intrusion 92% 87%

Data  
Compromise

95% 91%

Session  
Hijacking

93% 89%

Table 8. Attack detection

Parameter IGMP Approach Existing 
Approaches

Attack Detection Time 3.2 seconds 4.6 seconds
False Positive Rate 4% 7%
False Negative Rate 6% 9%
Resource Utilization 85% 78%
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Table 10 provides a comprehensive overview of the 
performance of the model in detecting various types of 
attacks at different epochs. The accuracy values presented 
in the table reflect the effectiveness of the model in 
identifying and classifying each attack type during the 
training process. One notable trend observed is the overall 
improvement in attack detection accuracy as the number 
of training epochs increases. This indicates that the 
model becomes more proficient in distinguishing between 
different attacks with additional training iterations. For 
instance, the accuracy of detecting “Intrusion” steadily 
increases from 90% at Epoch 50 to 95% at Epoch 200, 
showcasing the model’s enhanced capability in identifying 
intrusion attempts over time.

Additionally, it is evident that different attack types exhibit 
varying levels of accuracy across epochs. Some attacks, 
such as “Denial of Service (DoS)” and “Buffer Overflow,” 
consistently demonstrate high accuracy throughout 
the training process, reaching values of 97% and 96% 
respectively at Epoch 200. On the other hand, attacks like 
“Man-in-the-Middle (MitM)” and “Insider Threat” show 
relatively lower accuracy rates, hovering around 70% to 76% 
even at Epoch 200. These results highlight the strengths and 
weaknesses of the model in detecting specific attack types. 
It emphasizes the importance of continuous refinement 
and optimization to improve the accuracy of detection for 
all attack categories. The findings from this study provide 
insights into the performance of the deep learning-based 
approach and can guide further enhancements to strengthen 
the security measures in virtualization data centers.

When it comes to robustness, the IGMP approach achieves 
an impressive robustness level of 95%, implying its 
high resilience to various attacks and vulnerabilities. In 

Table 9. Performance analysis

Parameter IGMP Approach Existing 
Approaches

Scalability High Medium

Robustness 95% 90%

Compatibility Broad Limited

Ease of Deployment Simple Complex

Training Time 2 hours 4 hours

Table 10. Performance of model with different attacks

Attack Type Epoch 
50

Epoch 
100

Epoch 
150

Epoch 
200

Intrusion 90 92 93 95

Data Compromise 85 87 88 90

Session Hijacking 80 82 84 86

Denial of Service 
(DoS)

95 96 96 97

Man-in-the-Middle 
(MitM)

70 72 74 76

Privilege Escalation 75 77 79 80

Code Injection 82 84 86 88

SQL Injection 88 90 92 94

Cross-Site Scripting 
(XSS)

78 80 82 84

Buffer Overflow 92 94 95 96

Zero-day Attacks 85 87 89 91

Insider Threat 70 72 74 76

Figure 8. Comparison of attack 
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contrast, existing approaches attain a robustness level of 
90%, indicating a relatively lower degree of resilience and 
potentially being more susceptible to security breaches. In 
terms of compatibility, the IGMP approach offers broad 
compatibility, ensuring seamless integration with different 
virtualization platforms and environments. This implies its 
versatility and adaptability in diverse virtualization setups. 
Conversely, existing approaches have limited compatibility, 
potentially restricting their usage to specific virtualization 
environments. Figure 8 shows comparison of attack.

The ease of deployment is another area where the IGMP 
approach shines. It boasts a simple deployment process, 
making it user-friendly and easy to implement. Conversely, 
existing approaches require more complex deployment 
procedures, potentially involving additional configurations 
and expertise. Regarding training time, the IGMP approach 
requires only 2 hours to train and establish an effective 
model for attack detection. In comparison, existing 
approaches typically demand a longer training time of 4 
hours. This signifies the efficiency of the IGMP approach in 
quickly acquiring the necessary knowledge and adapting to 
the virtualized environment. Overall, the findings presented 
in this table highlight the strengths of the IGMP approach 
in terms of scalability, robustness, compatibility, ease of 
deployment, and training time. Its high scalability, robustness 
level of 95%, broad compatibility, simplicity of deployment, 
and shorter training time make it an appealing choice for 
virtualized environments, offering improved performance, 
reliability, and ease of use compared to existing approaches.

5. CONCLUSION 

Virtualization is a powerful technology that provides 
numerous benefits for data centers, including scalability, 
availability, and cost efficiency. However, it also introduces 
security challenges that must be addressed to protect the 
integrity and availability of virtualized environments. This 
study proposes an innovative approach based on deep 
learning and the Integrated Gramian Markov Plot (IGMP) 
technique for detecting attacks and mitigating their 
impact on virtual machines (VMs). By transforming the 
event sequences of VMs into event images using IGMP, 
meaningful features can be extracted using deep learning 
models. These models are capable of accurately classifying 
specific attack classes, enabling proactive detection and 
isolation of VMs when an attack is predicted within the 
physical machine. The experimental results demonstrate 
the effectiveness of the IGMP method, achieving an 
impressive attack prediction accuracy of 96%, surpassing 
existing approaches by at least 2%. By leveraging deep 
learning and IGMP, the proposed approach enhances the 
overall resilience and reliability of virtualization security. 
It offers a proactive defense mechanism that can prevent 
further damage by isolating suspected VMs upon attack 
detection. This advancement in virtualization security 
contributes to the ongoing efforts to create more secure and 
trustworthy virtualized environments.
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