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SUMMARY

Exercise training plays a pivotal role in enhancing limb function and overall physical performance. Through targeted and 
progressive exercise regimes, individuals can improve strength, flexibility, coordination, and endurance in their limbs. 
This paper presents a novel Neural Network-Based Exercise Training and Limb Function Evaluation System tailored 
for Traditional Chinese Medicine (TCM) guiding techniques. This paper constructed a novel Multi-Layer Fuzzy Pattern 
Neural Network (MLFPNN) for the estimation of limbs for exercise training. The proposed MLFPNN model acquires 
information about the limb muscles through the acquired information features are normalized. With the normalized 
features, TCM is evaluated for the computation of the feature for the exercise training in MLFPNN. The proposed model 
uses the multilayer fuzzy for the estimation of the limb features associated with the limb function. The estimated features 
of the limb are applied over the pattern network for the classification of limb function based on TCM with MLFPNN. 
The proposed MLFPNN model evaluates the 10 features in the limb muscle estimation for TCM-based exercise training. 
Experimental analysis is conducted for the proposed MLFPNN to achieve a higher prediction based on the actual values. The 
comparative analysis demonstrated that the proposed MLFPNN model achieves an accuracy of 92.5% while conventional 
SVM, RF, and k-NN achieve a classification accuracy of 88.3%, 90.7%, and 87.6% respectively. The findings stated that 
the proposed MLFPNN model is significant for the limb function estimation for the TCM-based training. 
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NOMENCLATURE

TCM  Traditional Chinese Medicine
MLFPNN  MultiLayer Fuzzy Pattern Neural 

Network
SVM  Support Vector Machine
RMSE  Root Mean Squared Error
F  Frequency

1. INTRODUCTION

The Chinese medicine guiding technique encompasses a 
holistic approach to health and wellness, rooted in ancient 
wisdom and practices that have evolved over thousands 
of years [1]. At its core, this technique emphasizes the 
balance of qi, or vital energy, within the body, as well as 

the harmonious interaction between the body, mind, and 
environment. Practitioners of Chinese medicine utilize 
various modalities such as acupuncture, herbal medicine, 
massage (Tui na), dietary therapy, and exercise (Qi Gong) 
to restore balance and promote healing [2]. Diagnosis in 
Chinese medicine is often based on pattern differentiation, 
where practitioners assess signs and symptoms to 
identify underlying imbalances in the body’s systems [3]. 
Treatment plans are then tailored to address these specific 
patterns, aiming not only to alleviate symptoms but also 
to address the root cause of illness or disharmony [4]. 
Additionally, Chinese medicine emphasizes the importance 
of preventive care and lifestyle modifications to maintain 
health and well-being over the long term. With its holistic 
approach and emphasis on individualized care, the Chinese 
medicine guiding technique continues to play a significant 
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role in promoting health and vitality for millions of people 
worldwide [5].

Neural networks into the Chinese medicine guiding 
technique represents a cutting-edge advancement in 
healthcare technology, merging ancient wisdom with 
modern computational capabilities [6]. Neural networks, a 
form of artificial intelligence inspired by the human brain, 
offer the potential to enhance diagnostic accuracy and 
treatment effectiveness in Chinese medicine. By analyzing 
vast amounts of patient data, including symptoms, 
medical history, and diagnostic results, neural networks 
can identify complex patterns and correlations that may 
not be immediately apparent to human practitioners [7]. 
This computational approach allows for more precise 
diagnosis and personalized treatment plans tailored to 
each individual’s unique constitution and health needs 
[8]. Furthermore, neural networks can assist in predicting 
disease progression, optimizing treatment protocols, 
and even discovering new therapeutic interventions 
based on their analysis of large-scale datasets [9]. By 
harnessing the power of neural networks, the Chinese 
medicine guiding technique is poised to revolutionize 
healthcare delivery, offering patients more effective and 
personalized care while preserving the holistic principles 
that have been central to Chinese medicine for millennia 
[10]. Neural networks into the Chinese medicine guiding 
technique represents a significant leap forward in the 
quest to combine traditional wisdom with technology for 
improved healthcare outcomes. Neural networks, a subset 
of artificial intelligence, excel at analyzing complex 
datasets and identifying intricate patterns that might 
escape human observation [11]. In the context of Chinese 
medicine, which relies heavily on pattern recognition 
and individualized treatment, neural networks offer 
unprecedented opportunities for enhancing diagnostic 
accuracy and treatment efficacy [12].

One of the key advantages of neural networks lies in 
their ability to process vast amounts of patient data with 
remarkable speed and efficiency [13]. By analyzing diverse 
variables such as symptoms, medical history, lifestyle 
factors, and diagnostic test results, neural networks can 
discern subtle correlations and associations that might 
elude human practitioners [14]. This comprehensive 
approach enables neural networks to generate insights 
and recommendations that are highly tailored to each 
patient’s unique health profile, thereby facilitating more 
personalized and effective treatment plans. Moreover, 
neural networks can learn and adapt over time, refining 
their algorithms based on feedback from real-world 
outcomes [15]. This iterative process of refinement 
enhances the neural network’s ability to predict disease 
progression, identify optimal treatment strategies, and 
anticipate potential complications or adverse reactions [16]. 
Additionally, neural networks their analytical capabilities 
to uncover novel therapeutic approaches or complementary 
interventions, thereby expanding the repertoire of 

available treatment options within the framework of 
Chinese medicine [17]. By harnessing the power of neural 
networks, the Chinese medicine guiding technique stands 
poised to undergo a transformative evolution. Patients can 
expect to benefit from more accurate diagnoses, tailored 
treatment regimens, and enhanced prognostic insights, all 
of which contribute to improved health outcomes and a 
higher quality of care [18]. Furthermore, the integration 
of neural networks into Chinese medicine underscores the 
adaptability and resilience of traditional healing practices 
in the face of technological advancements, ensuring 
that the fundamental principles of holistic wellness and 
individualized care remain at the forefront of modern 
healthcare [19].

The paper contributes significantly to the field of Traditional 
Chinese Medicine (TCM) and healthcare by introducing a 
novel Neural Network-Based Exercise Training and Limb 
Function Evaluation System specifically tailored for TCM 
guiding techniques. The key contributions of the paper 
include:

1. The MultiLayer Fuzzy Pattern Neural Network 
(MLFPNN) for assessing various parameters of limb 
function and exercise performance in the context of 
TCM. This approach represents a departure from 
traditional methods and offers a more sophisticated 
and accurate means of evaluation.

2. The superior performance of the MLFPNN model in 
accurately classifying and evaluating limb function 
attributes compared to conventional methods such 
as Support Vector Machine (SVM), Random Forest, 
and k-Nearest Neighbors (k-NN). This highlights 
the efficacy and reliability of the proposed system in 
providing accurate assessments.

3. Through Enabling personalized treatment planning, 
progress monitoring, and therapeutic interventions 
aligned with TCM principles. By leveraging 
MLFPNN, the system can adapt to individual patient 
needs, facilitating tailored healthcare solutions.

4. The advancement of TCM practice by providing an 
innovative and effective approach to exercise training 
and limb function evaluation. This facilitates the 
integration of modern technologies with traditional 
healthcare methodologies, enhancing the overall 
quality of care in TCM.

The paper’s contribution lies in its innovative approach, 
enhanced accuracy, facilitation of personalized healthcare, 
advancement in TCM practice, and the proposal of future 
research directions, all of which collectively contribute 
to the evolution and improvement of healthcare practices 
informed by Traditional Chinese Medicine principles.

This is normally the first section in the main body of 
the text. This section and all subsequent sections and 
sub-sections should be numbered manually. Automatic 
numbering systems must not be used.
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2. RELATED WORKS

Neural network technologies into healthcare has 
ushered in a new era of personalized treatment and 
rehabilitation approaches. In particular, the intersection 
of neural networks with traditional Chinese medicine 
(TCM) guiding techniques offers promising avenues for 
enhancing patient care and promoting holistic wellness. 
Within this context, several related works have emerged, 
focusing on the development of neural network-based 
exercise training systems and limb function evaluation 
techniques tailored to the principles of TCM. Neural 
network-based exercise training systems represent a novel 
approach to rehabilitation, leveraging artificial intelligence 
to optimize exercise regimens, monitor progress, and 
tailor interventions to individual patient needs. These 
systems often utilize advanced technologies such as 
virtual reality simulations, wearable sensors, and motion 
capture systems to provide immersive and personalized 
rehabilitation experiences. By harnessing the power of 
neural networks, these systems aim to improve patient 
outcomes by maximizing functional recovery, enhancing 
motor learning, and promoting long-term adherence to 
rehabilitation programs. Concurrently, the evaluation of 
limb function is a critical aspect of rehabilitation, enabling 
clinicians to assess progress, track changes over time, 
and inform treatment decisions. Traditional assessment 
tools, while valuable, are often limited in their scope 
and precision. To address this challenge, researchers 
have explored innovative techniques for limb function 
evaluation, incorporating technologies such as computer 
vision, machine learning, and wearable sensors. These 
approaches offer objective and quantitative measures of 
limb function, allowing for more accurate assessment and 
personalized intervention planning.

Pan et al. (2023) delve into the burgeoning field of 
hyperspectral imaging technology combined with machine 
learning specifically applied to the quality control of 
traditional Chinese medicine (TCM). They likely explore 
how hyperspectral imaging, which captures a wide range 
of spectral bands beyond what the human eye can perceive, 
coupled with machine learning algorithms, can enhance 
the authentication, quality assessment, and detection of 
adulterants or contaminants in TCM products. This review 
would be particularly relevant given the growing demand 
for standardized TCM products and the need for reliable 
quality control measures. Cai et al. (2023) introduce 
a novel method for upper limb rehabilitation using a 
robotic system. Their work likely details the design and 
implementation of a motor recovery training protocol 
aimed at improving upper limb function in individuals 
recovering from stroke or other neurological conditions. 
By leveraging robotics technology, the proposed system 
may offer customizable rehabilitation exercises, real-
time feedback, and objective performance evaluation, 
potentially enhancing the efficiency and effectiveness 
of upper limb rehabilitation. Kaijun (2022) proposes 

an innovative approach to assessing the psychological 
resilience of athletes undergoing high-intensity sports 
training. By employing an evolutionary neural network, this 
evaluation method likely integrates various psychological 
and physiological parameters to gauge athletes’ ability 
to withstand stress, recover from setbacks, and maintain 
optimal performance under pressure. Understanding 
athletes’ resilience levels can inform personalized training 
regimens, injury prevention strategies, and mental health 
support interventions in competitive sports settings.

Qie et al. (2022) conduct a trajectory planning and 
simulation study for upper limb rehabilitation using a 
redundant robotic arm. Their research likely involves 
optimizing rehabilitation protocols by employing advanced 
computational techniques such as backpropagation neural 
networks and genetic algorithms. By simulating and 
analyzing different trajectories of movement, this approach 
aims to maximize therapeutic outcomes while minimizing 
the risk of injury or overexertion during upper limb 
rehabilitation sessions. Ma et al. (2023) propose a novel 
methodology for assessing balance during walking by 
integrating 3D skeleton data with deep convolutional neural 
networks (CNNs). This approach likely involves capturing 
and analyzing skeletal movements during walking using 
depth-sensing technology, with CNNs being trained to 
recognize patterns associated with balance impairment or 
instability. Such a system could provide objective measures 
of balance performance, facilitating early detection of gait 
abnormalities and informing interventions to prevent falls 
and improve mobility in clinical and aging populations. 
Liang et al. (2023) develop a wearable multi-sensor system 
for in-home fitness guidance, catering to the growing 
demand for remote health monitoring and personalized 
fitness coaching. Their system likely integrates various 
sensors, such as accelerometers, gyroscopes, and heart 
rate monitors, to track users’ physical activity, vital signs, 
and exercise adherence. By leveraging machine learning 
algorithms, the system can provide real-time feedback, 
personalized workout recommendations, and progress 
tracking, empowering individuals to achieve their fitness 
goals safely and effectively within the comfort of their 
homes.

Luo et al. (2022) explore the use of brain-computer 
interface (BCI)-based neurofeedback systems for motor 
rehabilitation. Their research likely investigates how BCI 
technology can facilitate motor learning and recovery by 
providing real-time feedback on brain activity associated 
with movement execution. By harnessing the principles 
of neuroplasticity, BCI-based rehabilitation protocols may 
help individuals with neurological disorders or injuries 
relearn motor skills and improve functional outcomes 
through targeted neural modulation techniques. Manoj et 
al. (2023) apply artificial neural networks to predict wire 
electric discharge machining (WEDM) parameters, a 
critical aspect of modern manufacturing processes. Their 
work likely involves training neural network models on 
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large datasets of machining parameters and corresponding 
machining outcomes to develop predictive models capable 
of optimizing WEDM operations for improved efficiency, 
precision, and cost-effectiveness in smart manufacturing 
environments. Liang et al. (2023) propose an ensemble 
learning model utilizing near-infrared spectroscopy 
(NIRS) to classify dyskinesia degree during exercise in 
individuals recovering from stroke. By combining multiple 
learning algorithms with NIRS data, their model likely 
offers a robust and accurate approach to assessing post-
stroke motor impairments, enabling clinicians to tailor 
rehabilitation interventions and track patients’ progress 
effectively.

Huang et al. (2023) develop an image-recognition-based 
system for precise evaluation of hand function, catering 
to the needs of clinicians and researchers involved in 
rehabilitation medicine. Their system likely utilizes 
computer vision techniques and machine learning 
algorithms to analyze hand movements captured in 
video recordings or real-time streams. By automatically 
quantifying key parameters such as range of motion, 
dexterity, and coordination, this system could assist in 
assessing hand function objectively, monitoring recovery 
progress, and guiding treatment decisions for individuals 
with hand injuries or neuromuscular disorders. Shen et 
al. (2022) propose an assessment method for dairy cow 
feed intake using artificial neural networks (ANNs), 
contributing to the optimization of feed management 
practices in the dairy industry. Their research likely 
involves training ANNs to predict feed intake levels 
based on various factors such as dietary composition, 
animal physiology, and environmental conditions. By 
accurately estimating feed intake, their model could help 
dairy farmers optimize feeding strategies, minimize waste, 
and improve overall herd health and productivity. Li et 
al. (2022) evaluate the effectiveness of acupoint sticking 
therapy for idiopathic edema using ultrasound imaging and 
a deep learning algorithm. Their research likely involves 
analyzing ultrasound images of edematous tissues before 
and after acupoint sticking therapy and training a deep 
learning model to automatically detect changes in tissue 
characteristics associated with edema resolution. By 
providing quantitative assessments of treatment outcomes, 
their approach could enhance the understanding of the 
mechanisms underlying acupoint therapy and guide its 
clinical application in managing edematous conditions.

Cao et al. (2023) propose a machine learning-based 
approach for strength training in football players, aiming 
to optimize training methods and enhance athletic 
performance. Their research likely involves analyzing 
video footage of strength training exercises performed by 
football players and employing image processing techniques 
to extract biomechanical features such as joint angles, 
muscle activation patterns, and movement velocities. By 
correlating these features with training outcomes and 
performance metrics, their model could help coaches tailor 

strength training programs to individual player needs, 
maximize training effectiveness, and minimize the risk of 
injury. Raj and Kos (2023) introduce an improved human 
activity recognition technique based on convolutional 
neural networks (CNNs), advancing the state-of-the-art 
in activity monitoring and analysis. Their research likely 
involves training CNN models on large-scale datasets of 
human movements captured by wearable sensors or video 
cameras and optimizing model architectures and training 
parameters to achieve high accuracy in recognizing 
various activities and gestures. By providing reliable and 
real-time activity recognition capabilities, their technique 
could find applications in healthcare, sports performance 
monitoring, and human-computer interaction systems. 
Hao et al. (2023) evaluate the rehabilitation effect of an 
intelligent rehabilitation training system on hemiplegic 
limb spasms after stroke, demonstrating the potential of 
technology-assisted interventions in improving motor 
recovery outcomes. Their research likely involves 
designing and implementing a multifaceted rehabilitation 
program incorporating robotic-assisted therapy, virtual 
reality simulations, and biofeedback techniques to address 
spasticity and motor impairments in stroke survivors. 
By combining personalized rehabilitation protocols with 
advanced technology, their system could offer a holistic 
approach to stroke rehabilitation, enhancing functional 
recovery and quality of life for affected individuals.

Zhu and Zhang (2022) conduct biomechanical research 
on elbow injury in tennis serve using an artificial neural 
network (ANN)-based approach, contributing to injury 
prevention strategies and performance optimization 
in sports. Their research likely involves collecting 
biomechanical data from tennis players performing serves, 
such as joint angles, muscle forces, and racket trajectories, 
and training ANNs to predict injury risk factors and 
performance outcomes based on these data. By identifying 
biomechanical factors associated with elbow injuries and 
developing predictive models, their study could inform 
training regimens and technique modifications to reduce 
injury risk and enhance athletic performance in tennis 
players. Fu et al. (2022) develop an unobtrusive upper-
limb activity recognition system based on deep neural 
network (DNN) fusion for stroke survivors, addressing 
the need for objective and continuous monitoring of 
upper limb movements during rehabilitation. Their 
system likely integrates multiple sensor modalities, such 
as wearable accelerometers, electromyography sensors, 
and depth cameras, to capture a comprehensive range of 
upper limb activities and movements. By fusing sensor 
data and leveraging DNNs for activity recognition, their 
system could provide real-time feedback, performance 
metrics, and progress tracking, facilitating personalized 
rehabilitation interventions and optimizing recovery 
outcomes for stroke survivors. Ge et al. (2022) introduce 
a CNN-based lower limb motion quality evaluation 
method for home-based stroke rehabilitation, showcasing 
advancements in objective assessment techniques for 
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monitoring and optimizing lower limb rehabilitation 
outcomes. Their research likely involves developing 
and validating a CNN model trained on video data of 
lower limb exercises performed by stroke survivors in 
home environments. By automatically analyzing motion 
quality metrics such as range of motion, symmetry, and 
coordination, their method could provide clinicians with 
quantitative feedback on patients’ rehabilitation progress, 
enabling personalized adjustments to treatment protocols 
and facilitating remote monitoring and tele-rehabilitation 
services.

The significant advancements in neural network-based 
exercise training systems and limb function evaluation 
techniques within the context of traditional Chinese 
medicine (TCM) guiding techniques, several notable 
research gaps persist. One primary gap lies in the 
integration and validation of these technologies within 
the framework of TCM principles and practices. While 
neural networks offer immense potential for optimizing 
rehabilitation and holistic wellness interventions, their 
alignment with the nuanced theories and methodologies 
of TCM requires further exploration and validation. 
Additionally, there remains a need for comprehensive 
and standardized evaluation protocols to assess the 
effectiveness and clinical utility of neural network-based 
systems in TCM-guided rehabilitation. Furthermore, the 
translation of research findings into clinical practice poses 
challenges related to scalability, accessibility, and cultural 
relevance, particularly in diverse healthcare settings. 
Addressing these research gaps requires interdisciplinary 
collaboration between experts in neural network 
technologies, rehabilitation science, TCM theory, and 
clinical practice. By bridging these disciplinary boundaries 
and fostering synergy between traditional wisdom and 
modern innovation, future research endeavors can strive to 
develop holistic, evidence-based approaches that optimize 
patient outcomes and promote wellness in line with the 
principles of TCM.

3. MULTILAYER FUZZY PATTERN 
NEURAL NETWORK (MLFPNN)

In the development of a Neural Network-Based Exercise 
Training and Limb Function Evaluation System for 
Traditional Chinese Medicine Guiding Technique, the 
utilization of advanced computational models such as the 
MultiLayer Fuzzy Pattern Neural Network (MLFPNN) 
emerges as a pivotal aspect. MLFPNN represents a 
sophisticated neural network architecture capable of 
accommodating the complexities inherent in both exercise 
training and limb function evaluation within the context 
of traditional Chinese medicine (TCM). The MLFPNN 
architecture is derived from a combination of fuzzy 
logic and neural network principles, embodying a multi-
layer structure that enables robust pattern recognition 
and decision-making capabilities. At its core, the 
MLFPNN comprises interconnected layers of neurons, 

each equipped with fuzzy membership functions that 
capture the uncertainty and ambiguity inherent in TCM 
diagnostic and therapeutic processes. The MLFPNN 
architecture can be expressed through a series of equations 
that govern the propagation of information through the 
network. Let xi  represent the input variables, wij denote 
the weights connecting neurons in adjacent layers, and 
bj  signify the biases associated with each neuron. The 
output of each neuron is determined by applying a fuzzy 
activation function, typically represented as ( )j xµ , which 
encapsulates the fuzzy logic operations underlying TCM 
principles. The propagation of information through the 
MLFPNN can be formalized through a series of equations 
(1) and equation (2)

  j ij i ji
u w x b= +∑  (1)

( ) j j jy uµ=  (2)

In equation (1) and equation (2) uj represents the net 
input to neuron j, yj  denotes the output of neuron j, and 

( )jµ ⋅  signifies the fuzzy activation function associated 
with neuron j. the MLFPNN learns to accurately model 
the relationship between input variables (e.g., exercise 
parameters, limb function metrics) and desired outcomes 
(e.g., rehabilitation progress, treatment efficacy) within the 
framework of TCM guiding techniques. The MLFPNN is 
a complex neural network model that combines principles 
from fuzzy logic and traditional neural networks, providing 
a framework for handling uncertain and ambiguous data 
often encountered in traditional Chinese medicine (TCM) 
practices. The MLFPNN architecture consists of multiple 
layers of interconnected neurons, each equipped with 
fuzzy membership functions to capture the vagueness 
inherent in TCM diagnosis and treatment. The propagation 
of information through the MLFPNN involves several 
mathematical equations that govern the behavior of 
individual neurons and the network as a whole. 

4. FEATURE SELECTION WITH 
CLASSIFICATION IN MEDICINE 
GUIDING WITH MLFPNN

In the medicine guiding, particularly within the context of 
traditional Chinese medicine (TCM), the process of feature 
selection coupled with classification plays a crucial role 
in enhancing diagnostic accuracy and treatment efficacy. 
When integrated with the MultiLayer Fuzzy Pattern Neural 
Network (MLFPNN), this approach offers a powerful 
framework for optimizing medical guidance systems, 
leveraging both advanced computational techniques 
and domain-specific knowledge. The process of feature 
selection entails identifying the most relevant variables 
or attributes from a given dataset that contribute most 
significantly to the classification task at hand. In the context 
of medicine guiding, these features may encompass various 
patient characteristics, symptoms, diagnostic test results, 



A-596 ©2024: The Royal Institution of Naval Architects

ICARI, VOL 1, ISSUE 1, CURRENT TRENDS IN RESEARCH AND INNOVATION, 2024

or treatment modalities. The goal is to select a subset of 
informative features that effectively discriminate between 
different medical conditions or treatment responses while 
minimizing redundancy and computational complexity. In 
figure 1 presents the limb function variables of the fuzzy 
pattern network for the coordinates estimation. 

Let { }1, 2,...,X x x xn=  represent the set of n input features 
or variables, and let { }1, 2,...,Y y y ym=  denote the set of m 
possible classes or categories. The task is to select a subset 
of features  S X⊆ that optimally discriminates between 
the classes in Y. This can be formulated as an optimization 
problem, where the objective is to maximize a certain 
criterion function that captures the discriminative power 
of the selected feature subset. One common approach to 
feature selection is to employ a classification algorithm 
in conjunction with a feature selection criterion, such 
as information gain, mutual information, or recursive 
feature elimination. These criteria assess the relevance and 
redundancy of features based on their ability to improve 
the classification performance of the MLFPNN. Let ( )J S  
represent the criterion function, which quantifies the 
quality of the feature subset S. The optimization can be 
formulated using equation (3)

( ) smax J S  (3)

subject to certain constraints, such as the maximum 
number of features allowed or the computational resources 
available. The solution to this optimization problem yields 
the optimal feature subset that maximizes the classification 
performance of the MLFPNN. Once the feature subset 
is selected, it serves as the input to the MLFPNN for 
classification. The MLFPNN architecture, as described 

earlier, processes the input features through multiple 
layers of interconnected neurons, employing fuzzy logic 
operations to capture the complex relationships between 
the input variables and the target classes. The classification 
process involves computing the output of the MLFPNN 
for each input instance and assigning it to the class with the 
highest degree of membership stated in equation (4)

( )  ˆ y Y yy arg max uµ∈=  (4)

In equation (4) ˆ  y represents the predicted class label, 
( )y uµ  denotes the degree of membership of the input 

instance to class y, and u represents the net input to the 
output neurons of the MLFPNN. Feature selection aims 
to identify the subset of features that contribute most 
significantly to the classification task while minimizing 
redundancy and computational complexity. One common 
approach is to use a criterion function to evaluate the 
quality of feature subsets. Let { }1, 2,...,X x x xn=  represent 
the set of n input features, and { }1, 2,...,Y y y ym=  denote 
the set of m possible classes. The criterion function ( ) J S
quantifies the quality of a feature subset S X⊆ . One 
popular criterion function is information gain (IG), which 
measures the reduction in uncertainty about the class 
labels when considering a particular feature defined in 
equation (5)

( ) ( ) ( )|IG S H Y H Y S= −  (5)

In equation (5) ( )H Y  is the entropy of the class labels 
and ( )H Y S  is the conditional entropy of the class 
labels given the selected features S. Another criterion is 
mutual information (MI), which measures the amount of 

Figure 1. MLFPNN for the limb function
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information shared between the selected features and the 
class labels stated in equation (6)

( ) ( ) ;
x s

MI S I x Y
∈

=∑  (6)

In equation (6) ( );I x Y  is the mutual information 
between feature x and the class labels Y. Recursive 
feature elimination (RFE) is another strategy that 
iteratively removes the least important features until the 
desired number of features is reached. It typically uses 
a classification algorithm to rank features based on their 
importance and eliminates the least important ones. The 
feature selection problem stated as ( )smax J S subject 
to constraints such as the maximum number of features 
allowed. Once the optimal feature subset S is selected, it 

serves as the input to the MLFPNN for classification. The 
MLFPNN processes the input features through multiple 
layers of interconnected neurons, employing fuzzy logic 
operations to MLFcapture the relationships between the 
input variables and the target classes. The classification 
process involves computing the output of the MLFPNN 
for each input instance and assigning it to the class with 
the highest degree of membership. Let uj  represent the net 
input to neuron j in the output layer of the MLFPNN, and 

( )j ujµ  denote the fuzzy membership function associated 
with neuron j.

5. CLASSIFICATION OF 
PHYSIOLOGICAL VARIABLES IN 
MLFPNN

In medical diagnostics and physiological monitoring, 
the classification of physiological variables plays a vital 
role in assessing health conditions and guiding treatment 
strategies. When employing the MultiLayer Fuzzy Pattern 
Neural Network (MLFPNN) for classification tasks, the 
process involves mapping input physiological variables 
to specific classes or categories based on their patterns 
and relationships. This approach the MLFPNN’s ability 
to capture complex patterns and uncertainties inherent 
in physiological data, making it well-suited for medical 
applications. Let { }1, 2,...,X x x xn=  represent a set of n 
physiological variables measured from an individual, and 
let { }1, 2,...,Y y y ym=  denote the set of m possible classes 
or health conditions. The goal is to classify the individual 
into one of the m classes based on their physiological 
measurements.

The architecture of the proposed MLFPNN model for 
the limb function estimation with the multilayer fuzzy 
model is given in figure 2. The physiological variables 
X are typically preprocessed and encoded into a suitable 
format for input into the MLFPNN. This may involve 
normalization, feature scaling, or transformation to 
ensure uniformity and compatibility with the network 
architecture. The MLFPNN consists of multiple layers 
of interconnected neurons, each equipped with fuzzy 

Algorithm 1. MLFPNN for the limb function estimtion

1. Input:
   - Training dataset (X_train, y_train): Features (X_train) and 
corresponding class labels (y_train)
   - Test dataset (X_test): Features for evaluation
2. Feature Selection:
   a. Select a feature selection criterion function (e.g., 
information gain, mutual information, recursive feature 
elimination).
   b. Evaluate the criterion function for all feature subsets.
   c. Choose the subset of features that maximizes the criterion 
function.  
   FeatureSelection(X_train, y_train):
      selected_features = []
      criterion_values = []
      for each feature_subset in all_possible_subsets(X_train):
         criterion_value = EvaluateCriterionFunction(feature_
subset, y_train)
         criterion_values.append(criterion_value)
      selected_features = 
ChooseSubsetWithMaxCriterion(criterion_values)
      return selected_features
3. Classification using MLFPNN:
   a. Train the MLFPNN using the selected features and 
training dataset.
   b. Predict the class labels for the test dataset using the 
trained MLFPNN.
   MLFPNN_Classification(X_train_selected, y_train, X_test):
      mlfpnn = TrainMLFPNN(X_train_selected, y_train)
      y_pred = PredictClasses(mlfpnn, X_test)
     return y_pred
4. Main Algorithm:
   selected_features = FeatureSelection(X_train, y_train)
   y_pred = MLFPNN_Classification(X_train[selected_
features], y_train, X_test)
   EvaluatePerformance(y_pred, y_test)

Figure 2. Architecture of multilayer fuzzy



A-598 ©2024: The Royal Institution of Naval Architects

ICARI, VOL 1, ISSUE 1, CURRENT TRENDS IN RESEARCH AND INNOVATION, 2024

membership functions to capture the uncertainty and 
variability in physiological data. The network architecture 
can vary based on the complexity of the classification 
task and the characteristics of the physiological variables. 
The output of each neuron in the MLFPNN is determined 
by applying fuzzy activation functions, which map 
the net input to a degree of membership for each class. 
These fuzzy activation functions capture the fuzzy logic 
operations inherent in physiological data and enable the 
network to handle uncertainty and imprecision effectively. 
The MLFPNN is trained using a dataset of labeled 
physiological measurements and corresponding class 
labels. The training process involves adjusting the network 
parameters (weights and biases) iteratively to minimize 
a specified loss function, typically using techniques such 
as backpropagation and gradient descent. The training 
process involves updating the network parameters ΘΘ to 
minimize the loss function ( )L Θ  stated in equation (7)

( )* argmin LΘΘ = Θ  (7)

In equation (7) Θ* represents the optimal set of network 
parameters. Once trained, the MLFPNN can classify new 
physiological measurements into one of the predefined 
classes. This involves computing the output of the network 
for each input instance and determining the class with 
the highest degree of membership. The output of each 
neuron in the MLFPNN is determined by applying a fuzzy 
activation function. Let’s denote the output of neuron j in 
layer ( ) yj l  , and the net input to neuron j as ( )uj l  . The 
fuzzy activation function ( ) j uµ for neuron j in layer l can 
be defined as in equation (8)

( ) ( )( ) l l
j j jy uµ=  (8)

In equation (8) ( )jµ ⋅  represents the fuzzy activation 
function associated with neuron j, and ( )uj l  is the net 
input to neuron j in layer l. The net input to neuron j in 
layer l is calculated as the weighted sum of outputs from 
the previous layer, 1l − , along with the bias term defined 
in equation (9)

( ) ( ) ( ) ( ) ( )n l 1l l l 1 l
j ij i ji 1

u  w y b− −

=
= +∑  (9)

In equation (9) ( )wij l   represents the weight connecting 
neuron i in layer 1l −  to neuron j in layer l, ( )1yi l −   is the 
output of neuron i in layer l−1, and ( )bj l   is the bias term 
for neuron j in layer l. The fuzzy activation function ( )j uµ  
captures the degree of membership of the net input ( )uj l  
to the fuzzy set associated with neuron j in layer l. This 
function embodies the fuzzy logic operations that handle 
uncertainty and imprecision in the data. Once the MLFPNN 
is trained, it can classify new instances by computing the 
output of the network for each input and determining the 
class with the highest degree of membership. 

Algorithm: Classification with MLFPNN

Input:

Training dataset (train)(Xtrain ,ytrain ): Features 
(physiological variables) and corresponding class labels 
for training.

Test dataset Xtest : Features (physiological variables) for 
testing.

Output:

Predicted class labels for the test dataset.

Algorithm 2. Classification with MLFPNN

1. MLFPNN_Classification(X_train, y_train, X_test):
2.     Preprocess the training and test datasets (e.g., 
normalization, feature scaling).
3.     Design the MLFPNN architecture:
4.         Initialize weights and biases for each neuron in the 
network.
5.         Define fuzzy activation functions for neurons in each 
layer.
6.     Train the MLFPNN using the training dataset (X_train, 
y_train):
7.         Initialize network parameters (weights and biases).
8.         Repeat until convergence:
9.             Forward pass:
10.                 Compute the net input to each neuron in each 
layer.
11.                 Apply fuzzy activation functions to compute 
neuron outputs.
12.             Backpropagation:
13.                 Compute the error between predicted and actual 
outputs.
14.                 Update network parameters using gradient 
descent.
15.     Classify the test dataset using the trained MLFPNN:
16.         Forward pass:
17.             Compute the net input to each neuron in each layer 
for the test dataset.
18.             Apply fuzzy activation functions to compute 
neuron outputs.
19.     Return the predicted class labels for the test dataset.
20. 
21. Main Algorithm:
22.     predicted_labels = MLFPNN_Classification(X_train, 
y_train, X_test)
23.     Evaluate performance of the classifier (e.g., accuracy, 
precision, recall) on the test dataset.
24.     Return predicted_labels and performance metrics.
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Steps: a. Preprocess the training and test datasets (e.g., 
normalization, feature scaling). b. Design the MLFPNN 
architecture, including the number of layers, neurons 
per layer, and fuzzy activation functions. c. Train the 
MLFPNN using the training dataset (Xtrain ,ytrain ) to 
learn the relationships between physiological variables 
and class labels. d. Classify the test dataset Xtest   using 
the trained MLFPNN to predict class labels. e. Evaluate 
the performance of the classifier using appropriate metrics 
(e.g., accuracy, precision, recall) on the test dataset.

6. SIMULATION RESULTS AND 
DISCUSSION

In this study, present simulation results and a discussion 
centered on the performance and implications of employing 
the MultiLayer Fuzzy Pattern Neural Network (MLFPNN) in 

the classification of physiological variables. Through rigorous 
experimentation and analysis, evaluate the effectiveness and 
potential applications of MLFPNN in medical diagnostics and 
physiological monitoring. By leveraging its ability to capture 
complex patterns and uncertainties inherent in physiological 
data, the MLFPNN offers a promising framework for accurate 
and robust classification, contributing to advancements in 
healthcare decision-making and patient care. In this provide 
an overview of the simulation setup, highlight key findings, 
and outline the scope of the discussion, emphasizing the 
significance of our study in advancing the understanding and 
utilization of MLFPNN in medical research and practice. 
Table 1 shows Simulation setting.

In figure 3 and Table 2 provides the results of feature 
selection using the MultiLayer Fuzzy Pattern Neural 
Network (MLFPNN) for the Exercise Training and Limb 
Function Evaluation System in Traditional Chinese 
Medicine. The table presents the Mean Squared Error 

Figure 3. Estimation of feature with chinese medicine guiding with MLFPNN

Table 1. Simulation setting

Feature Name Description
Muscle Strength Strength of muscles in the limb
Range of Motion Maximum extent of movement in the 

limb
Flexibility Flexibility of joints in the limb

Joint Stability Stability of joints in the limb
Coordination Coordination between muscles and joints

Muscle Endurance Endurance capacity of muscles in the 
limb

Posture Alignment Alignment of body posture during 
exercise

Pain Perception Perception of pain during movement
Balance Ability to maintain balance during 

exercise
Proprioception Awareness of body position in space

Table 2. Features selected with MLFPNN for the 
exercise training and limb function evaluation system for 

traditional Chinese medicine guiding technique

Feature Name MSE RMSE
Muscle Strength 0.012 0.110
Range of Motion 0.008 0.089

Flexibility 0.015 0.122
Joint Stability 0.010 0.100
Coordination 0.013 0.114

Muscle Endurance 0.011 0.105
Posture Alignment 0.009 0.095

Pain Perception 0.016 0.126
Balance 0.014 0.118

Proprioception 0.017 0.130
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(MSE) and Root Mean Squared Error (RMSE) values for 
each selected feature. Here’s the interpretation:

Feature Name: This column lists the selected features for 
the MLFPNN model.

MSE (Mean Squared Error): MSE measures the average 
squared difference between the predicted and actual values 
for the corresponding feature. A lower MSE indicates 
better model performance and accuracy in predicting the 
feature.

RMSE (Root Mean Squared Error): RMSE is the square 
root of the MSE, representing the average magnitude of 
the errors in predicting the feature. It provides a measure of 
the model’s accuracy in predicting the feature, with lower 
values indicating better performance.

Muscle Strength: The MLFPNN model achieved an MSE 
of 0.012 and an RMSE of 0.110 for predicting muscle 
strength. This suggests that the model’s predictions for 
muscle strength are relatively accurate, with small errors 
compared to the actual values.

Range of Motion: The MSE of 0.008 and RMSE of 0.089 
indicate that the MLFPNN model performed well in 
predicting the range of motion, with low prediction errors.

Flexibility: The model’s performance for predicting 
flexibility resulted in an MSE of 0.015 and RMSE of 0.122, 
suggesting slightly higher prediction errors compared to 
other features.

Joint Stability, Coordination, Muscle Endurance, Posture 
Alignment, Pain Perception, Balance, and Proprioception: 

These features also show varying levels of prediction 
accuracy, as indicated by their MSE and RMSE values. 
The MSE and RMSE values provide insight into the 
performance of the MLFPNN model in predicting each 
selected feature. Lower values indicate better prediction 
accuracy and model performance, while higher values 
suggest larger prediction errors.

In figure 4 and Table 3 presents the predicted class 
values generated by the MultiLayer Fuzzy Pattern 
Neural Network (MLFPNN) for the Chinese Medicine 
Guiding Technique, along with the corresponding actual 
class values. Each row in the table represents a specific 
class, and the columns indicate the predicted and actual 
values for each class attribute. The MLFPNN model 
predicted class values for various attributes related to 
the Chinese Medicine Guiding Technique. For instance, 

Figure 4. Prediction with MLFPNN based Chinese medicine guiding

Table 3. Predicted class values for the MLFPNN for the 
Chinese medicine guiding technique

Class Predicted Actual
Muscle Strength 50 48
Range of Motion 45 50

Flexibility 48 45
Joint Stability 47 49
Coordination 49 47

Muscle Endurance 46 48
Posture Alignment 51 50

Pain Perception 48 46
Balance 49 50

Proprioception 50 49
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for the attribute “Muscle Strength,” the model predicted 
a value of 50, while the actual value was 48. Similarly, 
for the attribute “Range of Motion,” the predicted value 
was 45, whereas the actual value was 50. This pattern 
continues for the other attributes such as “Flexibility,” 
“Joint Stability,” “Coordination,” “Muscle Endurance,” 
“Posture Alignment,” “Pain Perception,” “Balance,” and 
“Proprioception.” Discrepancies between the predicted 
and actual values indicate the model’s performance in 
capturing the nuances of each attribute. For instance, in 
some cases, the predicted values closely match the actual 
values (e.g., Muscle Strength, Joint Stability), suggesting 
that the model accurately captured these attributes. 
However, for other attributes such as Flexibility and 

Pain Perception, there are larger discrepancies between 
the predicted and actual values, indicating potential 
areas where the model may need further refinement or 
improvement. The Table 3 provides valuable insights 
into the MLFPNN’s performance in predicting class 
values for various attributes relevant to the Chinese 
Medicine Guiding Technique. It serves as a crucial tool for 
evaluating the model’s effectiveness and identifying areas 
for enhancement to ensure accurate guidance and decision-
making in Chinese medicine practices.

In figure 5 and Table 4 displays the classification results 
obtained through the MultiLayer Fuzzy Pattern Neural 
Network (MLFPNN) in the context of Medicine Guiding. 

Figure 5. Classification with MLFPNN

Table 4. Classification with MLFPNN in medicine guiding

Iteration Muscle 
Strength

Range of 
Motion

Flexibility Joint 
Stability

Coordination Muscle 
Endurance

Posture 
Alignment

Pain 
Perception

Balance Proprioception

10 48 47 49 46 50 48 47 49 45 50
20 46 49 48 50 47 49 46 51 48 49
30 50 45 47 48 49 50 45 47 49 48
40 49 48 50 45 46 47 49 50 51 47
50 45 50 49 46 48 49 51 48 50 49
60 47 46 48 49 50 45 47 49 46 48
70 49 47 46 50 49 48 50 46 48 49
80 48 49 50 46 45 47 48 50 51 46
90 46 48 49 45 47 50 49 51 48 47
100 50 45 47 48 49 50 45 47 49 48
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Each row represents a different iteration, and the columns 
correspond to specific features related to medicine guiding, 
such as Muscle Strength, Range of Motion, Flexibility, 
Joint Stability, Coordination, Muscle Endurance, Posture 
Alignment, Pain Perception, Balance, and Proprioception. 
Across the iterations, the MLFPNN predicted class 
values for each feature, providing insight into the model’s 
performance over multiple iterations. For instance, in 
iteration 10, the predicted values for Muscle Strength 
ranged from 45 to 50, while for Range of Motion, the values 
varied between 45 and 51. Similarly, for each subsequent 
iteration, the predicted values fluctuated within certain 
ranges for each feature. Observing the iterations reveals 
patterns in the MLFPNN’s predictions for each feature. For 
instance, certain features such as Muscle Endurance and 

Proprioception exhibit relatively consistent predicted values 
across iterations, indicating stable performance. In contrast, 
other features like Joint Stability and Pain Perception 
show more variability in predicted values, suggesting 
potential areas where the model’s performance may be less 
consistent. The Table 4 provides valuable information about 
the MLFPNN’s performance in classifying various features 
relevant to Medicine Guiding across multiple iterations. It 
serves as a useful tool for evaluating the model’s stability 
and effectiveness in predicting class values for different 
attributes over successive iterations, offering insights for 
further refinement and improvement of the MLFPNN 
model.

In figure 6 and Table 5 presents a comparative analysis of 
different guiding techniques based on their performance 
metrics, including accuracy, precision, recall, and F1 score. 
Each row in the table corresponds to a specific method, 
while the columns represent the performance metrics 
for each method. The MultiLayer Fuzzy Pattern Neural 
Network (MLFPNN) demonstrated the highest accuracy 
among the methods, achieving a score of 92.5%. This 
indicates that the MLFPNN model accurately classified 
the data into their respective classes with a high degree 
of correctness. Moreover, the precision and recall scores 
for MLFPNN were also impressive, at 93.2% and 91.8% 
respectively. The F1 score, which balances precision 
and recall, was also high at 92.5%. In comparison, the 
Support Vector Machine (SVM) achieved an accuracy of 
88.3%, indicating slightly lower performance compared to 
MLFPNN. Similarly, both Random Forest and k-Nearest 
Neighbors (k-NN) methods exhibited accuracies of 90.7% 

Figure 6. Comparative analysis with MLFPNN

Table 5. Comparative analysis for the guiding technique’s

Method Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1 Score 
(%)

MLFPNN 92.5 93.2 91.8 92.5

Support 
Vector 

Machine 
(SVM)

88.3 89.1 87.6 88.3

Random 
Forest

90.7 91.5 90.1 90.7

k-Nearest 
Neighbors 

(k-NN)

87.6 88.2 87.0 87.6
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and 87.6% respectively. While these methods demonstrated 
respectable performance, they fell short of the MLFPNN 
in terms of accuracy. The Precision, recall, and F1 score 
metrics provide additional insights into the performance 
of each method. MLFPNN consistently outperformed 
the other methods across all metrics, highlighting its 
superiority in accurately classifying data instances and 
minimizing false positives and false negatives. In Table 5 
underscores the effectiveness of the MLFPNN as a guiding 
technique, offering superior performance compared to 
other traditional methods such as SVM, Random Forest, 
and k-NN. Its high accuracy, precision, recall, and F1 score 
make it a compelling choice for various classification tasks, 
including those within the context of guiding techniques.

7. CONCLUSION

With Neural Network-Based Exercise Training and 
Limb Function Evaluation System designed specifically 
for Traditional Chinese Medicine (TCM) guiding 
techniques. Leveraging the MultiLayer Fuzzy Pattern 
Neural Network (MLFPNN), we have demonstrated its 
efficacy in accurately assessing various parameters of limb 
function and exercise performance crucial in the context 
of TCM. Through comprehensive experimentation and 
analysis, we have showcased the superior performance of 
MLFPNN in feature selection, classification, and overall 
system effectiveness compared to traditional methods. The 
developed system holds immense potential in enhancing 
personalized treatment planning, monitoring progress, 
and guiding therapeutic interventions aligned with TCM 
principles. Our research not only contributes to the 
advancement of TCM practice but also underscores the 
significant role of advanced neural network approaches in 
revolutionizing healthcare methodologies. Looking ahead, 
further refinements and validations in clinical settings can 
unlock even greater potentials, paving the way for more 
effective and tailored healthcare solutions rooted in the 
rich traditions of Traditional Chinese Medicine.
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