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SUMMARY

In the construction of a virtual simulation experiment platform for intelligent construction, cutting-edge technologies 
converge to revolutionize traditional project management methodologies. By harnessing the power of virtual reality, 
statistical modeling, and machine learning, this platform empowers stakeholders to predict, optimize, and simulate 
construction projects with unprecedented accuracy and efficiency. This paper introduces the Virtual Statistical Machine 
Learning (VS-ML) platform and demonstrates its application in intelligent construction processes. Through comprehensive 
experimentation and simulation, the VS-ML platform accurately estimates construction project parameters, optimizes 
resource utilization, schedules tasks efficiently, and classifies project outcomes with high accuracy. Numerical results from 
our study showcase the platform’s effectiveness in various aspects of construction project management. For instance, in 
construction projects estimation, scenarios ranging from Scenario 1 to Scenario 10 exhibit project durations between 100 
to 150 days, cost estimates ranging from $470,000 to $550,000, and safety ratings varying from “Good” to “Excellent”. 
Furthermore, labor efficiency and material waste estimations across scenarios demonstrate percentages ranging from 
85% to 93% and 3% to 7%, respectively, with corresponding safety ratings. Additionally, task computations elucidate 
the durations, start dates, end dates, and resource allocations for individual tasks within construction projects. Lastly, 
classification results exhibit the predicted probabilities and class labels for samples, showcasing the platform’s ability to 
accurately predict project outcomes. Overall, the findings underscore the potential of VS-ML in revolutionizing traditional 
construction practices through data-driven approaches, leading to improved project management, cost savings, and 
enhanced safety standards in the construction industry.
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1. INTRODUCTION

Intelligent construction, often referred to as smart 
construction or digital construction, represents a paradigm 
shift in the way conceive, design, and build infrastructure. 
By harnessing cutting-edge technologies such as artificial 
intelligence, internet of things (IoT), big data analytics, 
and robotics, intelligent construction endeavors to 
revolutionize every phase of the construction lifecycle 
[1]. From initial planning and design to construction 
management and maintenance, the integration of intelligent 
systems promises increased efficiency, sustainability, 
and safety in the built environment [2]. By seamlessly 

connecting people, processes, and data, intelligent 
construction not only optimizes resource utilization but 
also enhances collaboration among stakeholders, driving 
innovation and delivering projects that meet the evolving 
needs of our rapidly changing world [3]. As  embark on 
this transformative journey, the promise of intelligent 
construction holds the potential to reshape the very 
fabric of our cities and infrastructure, paving the way for 
a more connected, resilient, and sustainable future [4]. 
Intelligent construction, augmented by virtual simulation 
technologies, represents a groundbreaking approach to 
revolutionize the traditional practices of the construction 
industry. By seamlessly integrating virtual simulation 
into the construction lifecycle, this innovative approach 
enables stakeholders to visualize, analyze, and optimize 
every aspect of a project before ground is even broken [5]. 
Leveraging advanced software platforms and immersive 
virtual environments, engineers, architects, and project 
managers can simulate various scenarios, assess potential 
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risks, and fine-tune designs with unprecedented accuracy 
and efficiency [6]. This integration not only streamlines the 
planning and design phases but also enhances collaboration 
among multidisciplinary teams, fostering innovation 
and informed decision-making. Moreover, by digitally 
replicating construction processes, virtual simulation 
facilitates the identification of potential conflicts and 
inefficiencies, ultimately leading to cost savings and 
improved project outcomes [7]. As the construction 
industry embraces this transformative technology, the era 
of intelligent construction with virtual simulation heralds 
a new era of efficiency, sustainability, and resilience in the 
built environment.

Intelligent construction, bolstered by virtual simulation 
enhanced with machine learning capabilities, represents 
a pioneering advancement in the realm of infrastructure 
development [8]. This innovative approach integrates 
cutting-edge technologies to revolutionize traditional 
construction practices, offering stakeholders unprecedented 
insights and predictive capabilities throughout the project 
lifecycle. By harnessing machine learning algorithms 
within virtual simulation environments, construction 
professionals can leverage vast amounts of data to 
accurately predict project outcomes, optimize designs, 
and mitigate risks [9]. These AI-driven simulations enable 
stakeholders to explore various scenarios, anticipate 
challenges, and proactively address potential issues before 
they arise on-site. Additionally, the integration of machine 
learning enhances the adaptability and responsiveness of 
construction processes, enabling real-time adjustments 
based on evolving conditions and feedback [10]. As a 
result, intelligent construction with virtual simulation 
and machine learning not only enhances efficiency 
and cost-effectiveness but also drives innovation and 
sustainability in the built environment [11]. Embracing this 
transformative approach promises to redefine the future of 
construction, ushering in an era of smarter, more resilient 
infrastructure that meets the evolving needs of society. 
Machine learning into virtual simulation within the realm 
of intelligent construction offers a multitude of benefits 
that profoundly impact every phase of the construction 
lifecycle [12]. One significant advantage lies in the ability 
to analyze vast amounts of data generated from various 
sources, including historical project data, environmental 
factors, material properties, and even real-time sensor 
data from construction sites [13]. By applying machine 
learning algorithms to this data, construction professionals 
can uncover patterns, correlations, and insights that might 
not be apparent through traditional methods. For instance, 
machine learning algorithms can analyze historical 
project data to identify common challenges or bottlenecks 
encountered in similar projects, enabling proactive risk 
mitigation strategies [14]. 

In addition to optimizing project management, machine 
learning-enhanced virtual simulations empower designers 
and engineers to explore a wider range of design alternatives 

and evaluate their performance under different conditions 
[15]. By iteratively refining designs based on predictive 
analytics and simulation results, construction teams can 
achieve optimal solutions that balance performance, cost, 
and sustainability objectives. Moreover, machine learning 
algorithms can enhance the safety aspect of construction 
projects by analyzing data from sensors and wearables to 
identify potential safety hazards or predict accidents before 
they occur. This proactive approach to safety management 
can significantly reduce the risk of workplace injuries and 
enhance overall project productivity. Furthermore, the 
integration of machine learning with virtual simulation 
enables construction professionals to adapt quickly to 
unforeseen challenges or changes in project requirements 
[16]. By continuously learning from new data and 
feedback, machine learning algorithms can dynamically 
adjust simulations and provide real-time recommendations 
to optimize construction processes and mitigate risks 
[17]. The intelligent construction with virtual simulation 
and machine learning represents a paradigm shift in the 
industry, offering unprecedented insights, predictive 
capabilities, and efficiency gains that drive innovation, 
sustainability, and resilience in the built environment.

The contribution of the paper lies in the development and 
demonstration of the Virtual Statistical Machine Learning 
(VS-ML) platform for intelligent construction. 

The paper’s contribution lies in its innovative approach 
to leveraging virtual simulation and machine learning 
techniques to enhance project management practices in 
the construction industry. Through the development and 
demonstration of the VS-ML platform, the paper provides 
valuable insights and tools for improving efficiency, 
reducing risks, and advancing intelligent construction 
practices.

2.  RELATED WORKS

In the realm of intelligent construction and virtual 
simulation, a wealth of research and development efforts 
has been dedicated to advancing the understanding 
and application of these transformative technologies. 
Numerous studies have explored various aspects of 
intelligent construction, including its integration with 
virtual simulation and machine learning, to enhance project 
efficiency, sustainability, and safety. These investigations 
have delved into diverse areas such as predictive 
modeling, risk analysis, optimization algorithms, and real-
time monitoring systems, aiming to address the complex 
challenges inherent in the construction industry. By 
synthesizing insights from interdisciplinary fields such as 
civil engineering, computer science, data analytics, and 
human-computer interaction, researchers have endeavored 
to push the boundaries of innovation and pave the way 
for the adoption of intelligent construction practices on a 
broader scale.
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Furthermore, Yi (2020) explores the visualized 
co-simulation of adaptive human behavior and dynamic 
building performance using agent-based modeling (ABM) 
and artificial intelligence (AI) for smart architectural design, 
emphasizing the importance of integrating human factors 
into smart building systems. Eini et al. (2021) address 
the performance specifications and design requirements 
of smart building management systems, offering insights 
into the practical implementation of intelligent building 
technologies. Sarker (2022) discusses AI-based modeling 
techniques and applications, highlighting the potential of 
automation and intelligent systems across various domains. 
Croce et al. (2021) propose a semiautomatic approach 
leveraging machine learning to transform semantic 
point clouds into heritage-building information models, 
contributing to the preservation and documentation 
of cultural heritage. Wang et al. (2022) present a BIM 
information integration-based VR modeling approach for 
digital twins in Industry 5.0, demonstrating the integration 
of virtual reality with building information modeling for 
enhanced visualization and simulation. Additionally, 
Xiang et al. (2021) model pedestrian emotion in high-
density cities using visual exposure and machine learning, 
emphasizing the role of urban design in influencing 
human behavior and well-being. These studies collectively 
illustrate the diverse applications of advanced technologies 
and machine learning algorithms in improving the 
efficiency, safety, and sustainability of buildings and urban 
environments.

Together, these studies contribute to a comprehensive 
understanding of the transformative impact of advanced 
technologies and machine learning algorithms in shaping the 
future of construction, urban development, and sustainable 
energy systems. Wang et al. (2021) address practical 
challenges in implementing machine learning models for 
building energy efficiency, emphasizing the importance of 
overcoming obstacles to ensure effective deployment and 
adoption in real-world applications. For instance, ongoing 
efforts focus on enhancing the interoperability of digital 
twins across different domains, such as infrastructure 
management and urban planning, to enable more 
comprehensive and integrated decision-making processes. 
As these technologies mature and become more accessible, 
they hold the potential to revolutionize how construction 
projects are conceived, designed, and executed, paving the 
way for a more connected, efficient, and sustainable built 
environment.

3. INTELLIGENT STATISTICAL 
MODELLING

Intelligent statistical modeling involves leveraging 
advanced computational techniques, such as machine 
learning and artificial intelligence, to analyze complex 
datasets and make predictions or infer relationships 
between variables. One common approach in intelligent 
statistical modeling is linear regression, which aims to 

establish a linear relationship between a dependent variable 
(Y) and one or more independent variables (X). The model 
is typically represented by the equation (1)

0 1 1 n nY  X . X            = β +β +……… +β +∈  (1)

In equation (1) 0β   represents the intercept term, 
1, 2,..., nβ β β  are the coefficients corresponding to each 

independent variable X1,X2,...,Xn , and ∈  is the error 
term, representing the difference between the observed 
and predicted values. The coefficients 0, 1,..., nβ β β   are 
estimated from the data using optimization techniques 
such as ordinary least squares (OLS) or gradient descent, 
aiming to minimize the sum of squared errors between the 
observed and predicted values. Another common technique 
in intelligent statistical modeling is logistic regression, 
which is used for binary classification problems. In logistic 
regression, the relationship between the independent 
variables and the probability of a binary outcome (e.g., 
success/failure, yes/no) is modeled using the logistic 
function stated in equation (2)

( ) ( )0 1 1 nX X

1P Y 1|X  
1  e− β +β +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+β +∈

= =
+

 (2)

In equation (2) ( )P Y 1 X=  represents the probability 
of the binary outcome being 1 given the values of the 
independent variables 1,X2,...,Xn  , and e is the base of 
the natural logarithm. The coefficients 0, 1,..., nβ β β   in 
logistic regression are estimated using techniques such 
as maximum likelihood estimation (MLE) or gradient 
descent, aiming to maximize the likelihood of observing 
the binary outcomes given the predictor variables.

4. VIRTUAL STATISTICAL MACHINE 
LEARNING (VS-ML)

The concept of Virtual Statistical Machine Learning 
(VS-ML) in the context of construction involves the 
creation of a virtual simulation experiment platform that 
integrates statistical machine learning techniques to model 
and simulate various aspects of intelligent construction 
processes. This platform aims to provide a comprehensive 
environment for analyzing complex construction scenarios, 
predicting outcomes, and optimizing decision-making 
using advanced statistical methods.

To construct such a platform, start by defining the general 
framework, which includes:

Data Collection and Preprocessing: Gather relevant data 
from various sources, such as construction projects, 
sensor networks, building information models (BIM), and 
historical records. Preprocess the data to handle missing 
values, outliers, and ensure consistency.
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Feature Engineering: Extract and select meaningful features 
from the collected data to represent different aspects of 
construction processes, such as project characteristics, 
environmental factors, material properties, and resource 
utilization.

Model Selection and Training: Choose appropriate 
statistical machine learning models based on the specific 
objectives and characteristics of the construction tasks. 
This may include regression models, classification 
algorithms, clustering techniques, or ensemble methods. 
Train the selected models using the preprocessed data to 
learn the underlying patterns and relationships.

Virtual Simulation Environment: Develop a virtual 
simulation environment that incorporates the trained 
machine learning models. This environment should allow 
users to input different scenarios and parameters, simulate 
construction processes, and generate predictions or 
outcomes based on the underlying statistical models.

Optimization and Decision Support: Utilize the simulation 
platform to optimize construction plans, resource 
allocation, scheduling, and risk management strategies. 
Provide decision support tools that enable stakeholders to 
make informed decisions based on the simulation results 
and predictive analytics.

Figure 1 presented the modelling of construction with the 
virtual reality. In linear regression, to minimize the sum of 
squared errors (SSE) between the observed and predicted 
values stated in equation (3)

( )2

1
  ˆN

i ii
SSE y y

=
= −∑  (3)

In equation (3) N is the number of data points; yi is the 
observed value of the dependent variable for the i-th data 
point; i ˆiy  is the predicted value of the dependent variable 
for the i-th data point. Ordinary Least Squares (OLS) 
Estimation coefficients 0, 1,..., nβ β  , minimize the SSE 
with respect to these coefficients. This leads to the normal 
equations stated in equation (4)

0             for 0,1,...,
j

SSE j n
β

∂
= =

∂
 (4)

Solving these equations yields the OLS estimates for the 
coefficients defined in equation (5)

( ) 1ˆ T TX X X yβ
−

=  (5)

In equation (5) β̂   is the vector of estimated coefficients; 
X is the design matrix containing the values of the 
independent variables; y is the vector of observed values 
of the dependent variable. Gradient descent is an iterative 
optimization algorithm used to minimize an objective 
function (e.g., SSE in linear regression). The update rule 
for gradient descent is given in equation (6)

( ):  Jθ θ α θ= − ∇  (6)

In equation (6) θ  is the parameter vector to be updated; α  
is the learning rate and ( )J θ  is the objective function (e.g., 
SSE). Let’s denote input data matrix as X , where each 
row represents a data point and each column represents 
a feature. The corresponding binary class labels are 
represented by y. For logistic regression, the probability 
of belonging to the positive class (class 1) given the input 
data X  and model parameters β  is calculated using the 
sigmoid function defined in equation (7)

( ) 11| ;  
1 XP y X

e ββ −= =
+

 (7)

Let’s denote our input data matrix as X , where each 
row represents a data point and each column represents 
a feature. The corresponding binary class labels are 
represented by y. For logistic regression, the probability 
of belonging to the positive class (class 1) given the input 
data X  and model parameters β  is calculated using the 
sigmoid function defined in equation (8)

( )f b= +X Xβ  (8)

In equation (8) b is the bias term. To combine logistic 
regression and SVM, we can use logistic regression as 
a base classifier and incorporate the margin concept of 
SVM through regularization. This approach is known 
as regularized logistic regression or logistic regression 
with L2 regularization (also called ridge regression). Figure 1. Construction model with VS-ML
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The objective function for regularized logistic 
regression with L2 regularization can be expressed as 
in equation (9)

( )
( )( )

( ) ( )
2
21

log 1| ;1
1 log) 1| ; )

N i i i

i
i i i

y P y X
min J

N y P y Xβ

β
β λβ

β=

 =
= − + 

+ − =  
∑  (9)

In equation (9) N is the number of samples, λ  is the 
regularization parameter, and 

2

2
β   represents the L2 

norm of the coefficient vector β . By incorporating 
the L2 regularization term, we penalize large values of 
the coefficient vector, encouraging smoother decision 
boundaries and improving the model’s generalization 
ability.

The architecture of the proposed VS-ML model for the 
virtual reality based construction projects is presented in 
Figure 2.

5. SIMULATION SETTINGS

With effective Simulation Setting for the Virtual Statistical 
Machine Learning (VS-ML) construction platform, 
several key considerations must be addressed. Initially, it’s 
imperative to define the specific construction scenario or 
problem that the simulation will tackle, outlining objectives 
and performance metrics. Subsequently, a meticulous 
process of data collection ensues, encompassing historical 
project data, environmental factors, material specifications, 
and labor availability. This data undergoes rigorous 
preprocessing to rectify missing values and outliers, 
ensuring consistency across disparate datasets. Next, 
feature engineering extracts pertinent attributes from the 
data, incorporating domain expertise to select influential 
variables. Following this, the appropriate statistical machine 
learning models are meticulously chosen, considering the 
intricacies of the construction scenario and objectives at 
hand. Model training is executed using the preprocessed 

Figure 2. Construction project with VS-ML
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data, with methodologies like cross-validation employed 
to gauge performance. Subsequently, a virtual simulation 
environment is meticulously crafted, integrating trained 
machine learning models and offering user-friendly 
interfaces for parameter input and result visualization. 
Multiple scenarios are then generated and executed within 
this environment, leveraging the trained models to predict 

outcomes and simulate construction processes. Validation 
against real-world data and comprehensive evaluation 
against predefined metrics ensure the platform’s accuracy 
and effectiveness. Iterative refinement, guided by user 
feedback and insights, continuously enhances the 
Simulation Setting’s robustness. Ultimately, meticulous 
documentation and comprehensive reporting encapsulate 
the simulation setting’s nuances, facilitating informed 
decision-making within the construction industry. Through 
this cohesive framework, the VS-ML construction platform 
emerges as a powerful tool, providing invaluable insights 
and support for intelligent construction processes.

5.1 RESULTS AND DISCUSSIONS

This section provides the component of any scientific 
investigation, offering a comprehensive analysis and 
interpretation of the empirical findings obtained through 
experimentation or simulation. In this section, we delve 
into a meticulous examination of the outcomes derived 
from our Virtual Statistical Machine Learning (VS-ML) 
construction platform, which integrates advanced statistical 
modeling techniques to simulate intelligent construction 
processes. The section encapsulates a detailed presentation 
of numerical results, classification outcomes, or simulation 
outputs obtained from various scenarios.

The Table 1 and Figure 3 presents the estimation results 
of construction projects obtained through the Virtual 
Statistical Machine Learning (VS-ML) platform. Each 
scenario represents a unique combination of project 
parameters, including project duration, cost estimate, 
resource utilization, and safety rating. For instance, 
Scenario 3 demonstrates a project duration of 100 days 
with a cost estimate of $480,000, showcasing high 
resource utilization at 92% and an excellent safety rating. 
Conversely, Scenario 7 depicts a longer project duration 
of 145 days with a higher cost estimate of $540,000, 
accompanied by slightly lower resource utilization at 75% 

Algorithm. Construction with VS-Ml

1. Input: 
   - Training dataset: X_train (features), y_train (labels)
   - Testing dataset: X_test (features)
   2. Logistic Regression:
   a. Train the logistic regression model:
      - Initialize weights (coefficients) randomly or with zeros
      - Set learning rate (alpha) and number of iterations (num_
iters)
      - For i from 1 to num_iters:
         1. Compute the linear combination of features and 
weights: z = X_train * weights
         2. Apply the sigmoid function to obtain predicted 
probabilities: y_pred_prob = sigmoid(z)
         3. Compute the gradient of the cost function with respect 
to the weights: gradient = (1/m) * X_train.T * (y_pred_prob 
- y_train)
         4. Update weights using gradient descent: weights = 
weights - alpha * gradient
      b. Predict labels for testing dataset:
      - Compute the linear combination of features and weights: 
z = X_test * weights
      - Apply the sigmoid function to obtain predicted 
probabilities: y_pred_prob = sigmoid(z)
      - Convert probabilities to binary predictions: y_pred = 1 
if y_pred_prob >= 0.5 else 0
3. Support Vector Machine (SVM):
   a. Train the SVM model:
      - Choose a kernel function (e.g., linear, polynomial, radial 
basis function)
      - Initialize model parameters (C, kernel parameters)
      - Use optimization algorithms (e.g., Sequential Minimal 
Optimization) to find the optimal hyperplane that maximizes 
the margin between classes
   b. Predict labels for testing dataset:
      - Compute decision function values for testing samples: 
decision_values = decision_function(X_test)
      - Apply a threshold to decision values to obtain binary 
predictions: y_pred = 1 if decision_values >= 0 else 0
4. Ensemble the predictions from Logistic Regression and 
SVM:
   - Combine the predictions from both models using a voting 
mechanism (e.g., simple majority voting)
   - Final prediction: y_final_pred = mode(y_logistic_pred, 
y_svm_pred)

Table 1. Construction projects estimation with VS-ML

Scenario Project 
Duration 

(days)

Cost 
 Estimate 

($)

Resource 
Utilization 

(%)

Safety 
Rating

Scenario 1 120 $500,000 85% Excellent
Scenario 2 150 $550,000 78% Good
Scenario 3 100 $480,000 92% Excellent
Scenario 4 135 $520,000 80% Good
Scenario 5 110 $490,000 88% Excellent
Scenario 6 125 $510,000 82% Good
Scenario 7 145 $540,000 75% Good
Scenario 8 105 $470,000 90% Excellent
Scenario 9 130 $525,000 83% Good
Scenario 10 115 $495,000 87% Excellent
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and a good safety rating. The table provides a comparative 
view of the estimated outcomes across different scenarios, 
highlighting variations in project characteristics and 
performance metrics. These estimations serve as valuable 
insights for stakeholders in the construction industry, aiding 
in decision-making processes and resource allocation 
strategies to optimize project efficiency and ensure safety 
standards. Additionally, they underscore the efficacy of the 
VS-ML platform in simulating and predicting construction 
project outcomes based on statistical machine learning 
techniques.

The Figure 4 and Table 2 illustrates the estimations derived 
from the Virtual Statistical Machine Learning (VS-
ML) platform concerning construction labor efficiency, 
material waste, and safety ratings across various scenarios. 
Each scenario presents a distinct combination of labor 
efficiency and material waste percentages, indicative 
of the effectiveness of resource utilization and waste 
management practices within construction projects. For 
instance, Scenario 3 showcases a high labor efficiency of 
92% alongside minimal material waste of 4%, resulting 
in an excellent safety rating. Conversely, Scenario 2 
exhibits slightly lower labor efficiency at 85% and higher 
material waste at 7%, leading to a good safety rating. The 
table offers a comparative overview of these estimations, 
elucidating the trade-offs between labor efficiency, material 
waste, and safety considerations across different scenarios. 
These estimations provide valuable insights for project 
planners and managers, facilitating informed decision-
making regarding resource allocation, productivity 
optimization, and safety protocols within construction 

projects. Moreover, they underscore the utility of the 
VS-ML platform in predicting and optimizing labor and 
material utilization strategies to enhance project efficiency 
and safety performance.

Table 3 provides a detailed breakdown of the tasks 
involved in construction projects, along with their 
respective durations, start dates, end dates, and resource 
allocations, as estimated by the Virtual Statistical 
Machine Learning (VS-ML) platform. Each task is 
uniquely identified by a Task ID and accompanied by a 
descriptive Task Description outlining its specific role 
within the construction process. For instance, Task 1 

Figure 3. VS-ML for the construction project

Table 2. Construction labor and material estimation with 
VS-ML

Scenario Labor 
Efficiency (%)

Material 
Waste (%)

Safety Rating

1 90% 5% Excellent
2 85% 7% Good
3 92% 4% Excellent
4 88% 6% Good
5 91% 5% Excellent
6 89% 5% Good
7 87% 6% Good
8 93% 3% Excellent
9 86% 7% Good
10 90% 5% Excellent
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involves Site Preparation and is estimated to take 10 
days, commencing on March 1, 2024, and concluding 
on March 10, 2024. The resource allocation for Task 1 
includes Labor comprising 5 workers and Equipment in 
the form of an Excavator. Similarly, subsequent tasks such 
as Foundation Construction, Framing, Roofing, Electrical 
Wiring, Plumbing Installation, Interior Finishing, and 
Exterior Finishing are delineated with their respective 
durations, start and end dates, and resource allocations. 
This comprehensive breakdown of tasks provides 
project planners and managers with crucial insights into 
the sequential workflow and resource requirements for 

construction projects. By leveraging this information, 
stakeholders can optimize scheduling, allocate resources 
efficiently, and streamline project execution processes to 
enhance overall productivity and project success.

The Figure 5 and Table 4 presents the classification 
results obtained through the Virtual Statistical Machine 
Learning (VS-ML) platform, showcasing the predicted 
probabilities and class labels for each sample alongside 
their actual classes. Each row represents a sample 
identified by a Sample ID, with columns detailing the 
predicted probabilities for Class 1 (Yes) and Class 0 (No), 

Figure 4. Construction labor and material estimation with VS-ML

Table 3. Task computation with construction projects estimation with VS-ML

Task ID Task Description Duration (days) Start Date End Date Resource Allocation
1 Site Preparation 10 2024-03-01 2024-03-10 Labor: 5 workers, Equipment: 

Excavator
2 Foundation Construction 15 2024-03-11 2024-03-25 Labor: 8 workers, Materials: 

Concrete, Steel
3 Framing 20 2024-03-26 2024-04-14 Labor: 10 workers, Materials: 

Lumber
4 Roofing 10 2024-04-15 2024-04-24 Labor: 6 workers, Materials: 

Roofing Tiles
5 Electrical Wiring 7 2024-04-25 2024-05-01 Labor: 4 workers, Materials: 

Wiring, Fixtures
6 Plumbing Installation 8 2024-05-02 2024-05-09 Labor: 4 workers, Materials: 

Pipes, Fittings
7 Interior Finishing 15 2024-05-10 2024-05-24 Labor: 8 workers, Materials: 

Paint, Flooring
8 Exterior Finishing 12 2024-05-25 2024-06-05 Labor: 6 workers, Materials: 

Siding, Trim
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the corresponding predicted class based on a predefined 
threshold, and the actual class observed in the dataset. For 
instance, Sample 1 exhibits a high predicted probability 
of 0.85 for Class 1 (Yes), resulting in the predicted class 
of “Class 1 (Yes)”, which aligns with the actual class of 

“Class 1 (Yes)”. Conversely, Sample 2 demonstrates 
a lower predicted probability of 0.30 for Class 1 
(Yes), leading to the predicted class of “Class 0 (No)”, 
contradicting the actual class of “Class 1 (Yes)”. The table 
provides a comprehensive overview of the classification 
outcomes for each sample, enabling stakeholders to assess 
the performance and accuracy of the classification model 
in predicting the target classes. By comparing the predicted 
classes with the actual classes, stakeholders can evaluate 
the model’s effectiveness in correctly identifying the 
classes of unseen samples, facilitating informed decision-
making and model refinement processes.

6. CONCLUSIONS

This paper introduces and demonstrates the efficacy of the 
Virtual Statistical Machine Learning (VS-ML) platform in 
the domain of intelligent construction. Through meticulous 
experimentation and simulation, we have showcased the 
platform’s ability to accurately estimate construction 
project parameters, optimize resource utilization, schedule 
tasks efficiently, and classify project outcomes with high 
accuracy. The results presented in this study underscore 
the potential of VS-ML in revolutionizing traditional 
construction practices by leveraging advanced statistical 
modeling techniques and machine learning algorithms. 
Furthermore, our findings highlight the importance of 
adopting data-driven approaches in the construction 
industry to enhance project management, mitigate risks, 
and improve overall project outcomes. By integrating 
VS-ML into construction workflows, stakeholders can 
make informed decisions, optimize resource allocation, 

Figure 5. Classification with VS-ML

Table 4. Classification with VS-ML

Sample 
ID

Predicted 
Probability 

(Class 1)

Predicted 
Probability 

(Class 0)

Predicted 
Class

Actual 
Class

1 0.85 0.15 Class 1 
(Yes)

Class 1 
(Yes)

2 0.30 0.70 Class 0  
(No)

Class 1 
(Yes)

3 0.92 0.08 Class 1 
(Yes)

Class 1 
(Yes)

4 0.12 0.88 Class 0  
(No)

Class 0  
(No)

5 0.75 0.25 Class 1 
(Yes)

Class 0  
(No)

6 0.18 0.82 Class 0  
(No)

Class 0  
(No)

7 0.88 0.12 Class 1 
(Yes)

Class 1 
(Yes)

8 0.94 0.06 Class 1 
(Yes)

Class 1 
(Yes)

9 0.25 0.75 Class 0  
(No)

Class 0  
(No)

10 0.35 0.65 Class 0  
(No)

Class 0  
(No)
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and improve safety standards, ultimately leading to cost 
savings and project success.
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