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SUMMARY

Dance ecology, a burgeoning field at the intersection of dance, technology, and environmental studies, relies on real-
time data analysis for understanding and optimizing dance performances. This paper proposed a novel Parallel Edge 
Big Data Analytics (PEBDA) framework, designed to efficiently process and analyze dance movement data in real time. 
The proposed PEBDA model uses parallel processing in the edge computing model for the analysis of the live dance 
ecology. Through the parallel processing of the edge model in the network big data analytics is implemented for the 
estimation of the multiple nodes in the network. The PEBDA model estimates the nodes across multiple environments 
for the examination of the ecology in the live dance. Finally, through parallel processing classification is performed with 
the deep learning model for the classification of live dance ecology in the computing platform. The proposed PEBDA 
framework, assesses classification accuracy, precision, recall, and F1-score. The simulation analysis expressed that Node 8 
consistently outperforms others, achieving exceptional accuracy and precision levels above 0.97. These findings highlight 
the potential of edge computing in revolutionizing dance ecology analysis, enabling enhanced real-time monitoring, 
decision-making, and optimization of dance performances.
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NOMENCLATURE

PEBDA  Parallel Edge Big Data Analytics
IoT  Internet of Things
TTotal  Total Processing Time
N  No of Segments

1. INTRODUCTION

The term “big data analytics” has come to represent 
the new age of data-driven decision-making because it 
provides businesses with unmatched chances to glean 
useful insights from the massive amounts of data created 
daily [1]. Among the many sources of this data deluge are 
interactions on social media, clickstreams from websites, 
information gathered from sensors connected to the 
Internet of Things (IoT), records of financial transactions, 
and many more [2]. Big data analytics helps companies 
understand trends and forecast future outcomes more 

accurately by using advanced analytical techniques 
like machine learning, predictive modeling, and natural 
language processing [3]. The capacity to find correlations 
and patterns that conventional data analysis techniques 
might miss is a major strength of big data analytics. 
Data visualization tools and complex algorithms help 
businesses better understand their customers, the market, 
operational inefficiencies, and new risks [4]. For example, 
retail companies can analyze customer purchase histories 
and social media sentiments to personalize marketing 
campaigns and optimize inventory management. More 
precise diagnoses, individualized treatment programs, 
and preventative measures against disease can result 
when healthcare practitioners use big data analytics to 
discover trends in patient data [5]. In addition, by revealing 
hitherto untapped avenues of profit, big data analytics 
may well cause a paradigm shift across entire sectors. 
In the banking and investment industries, for example, 
predictive analytics helps with credit risk assessment, 
fraud detection, and portfolio optimization. Machine 
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sensor data can be analyzed by predictive maintenance 
algorithms in manufacturing to foresee when equipment 
will fail and reduce downtime to a minimum [6]. Across 
the board, organizations are leveraging big data analytics 
to enhance customer experiences, streamline operations, 
and drive innovation. However, realizing the full 
potential of big data analytics requires addressing several 
challenges. Data quality is the most important of these 
because bad data can cause conclusions and choices to 
be faulty [7]. Additionally, in the age of big data, worries 
about data security and privacy have grown, calling for 
strict compliance procedures and governance frameworks. 
Data scientists, analysts, and engineers with the expertise 
to make good use of big data analytics technologies and 
tools are in high demand as well [8].

Big data analytics and deep learning have emerged as 
powerful synergistic forces, reshaping the landscape of 
data-driven decision-making. Big data analytics involves 
the exploration and analysis of vast datasets to uncover 
insights, patterns, and trends that can inform strategic 
decisions and drive business outcomes [9]. One branch 
of machine learning called deep learning uses multi-
layered artificial neural networks to derive complicated 
representations and patterns from data [10]. Companies can 
get more out of their data in terms of insights and predictive 
power by combining deep learning with big data analytics. 
Combining deep learning with big data analytics has several 
benefits, one of which is the capacity to handle and analyze 
large amounts of diverse and unstructured data [11]. This 
data is massive and complicated, so traditional machine 
learning algorithms might have a hard time making sense 
of it. On the other hand, deep learning models are great 
at learning hierarchical data representations automatically, 
which allows them to work well with a variety of data 
types, including text, pictures, and sensor data [12]. This 
enables organizations to extract richer insights and make 
more accurate predictions, leading to improved decision-
making and operational efficiency. Furthermore, deep 
learning models can learn from data in a more autonomous 
and adaptive manner compared to traditional analytics 
approaches. By continuously refining their representations 
through iterative training on large datasets, deep learning 
models can adapt to changing data patterns and evolving 
business needs [13]. This capability is particularly valuable 
in dynamic and rapidly evolving environments where 
traditional analytics techniques may struggle to keep pace 
with the rate of change.  Several sectors have benefited 
greatly from the integration of deep learning with big 
data analytics in terms of practical applications [14]. 
When compared to more conventional approaches, deep 
learning models trained on massive amounts of medical 
imaging data can significantly improve healthcare’s ability 
to detect and diagnose diseases at an early stage. When 
applied to the financial sector, deep learning algorithms 
improve the accuracy of trend identification and the 
detection of fraudulent transactions by analyzing massive 
amounts of financial data [15]. Similarly, in e-commerce, 

deep learning-powered recommendation systems can 
personalize product recommendations for customers based 
on their browsing and purchasing behavior. However, 
integrating deep learning into big data analytics also 
presents challenges, including the need for large-scale 
compute infrastructure, specialized expertise in deep 
learning techniques, and concerns related to data privacy 
and ethics [16]. Overcoming these challenges requires 
careful consideration of data governance practices, 
investment in scalable computing resources, and ongoing 
training and development of data science talent.

Live dance ecology encompasses the dynamic interplay 
between dancers, choreographers, audiences, venues, and 
cultural contexts within the realm of live dance performance 
[17]. This multifaceted ecosystem thrives on collaboration, 
innovation, and artistic exchange, fostering a rich tapestry 
of movement expressions that reflect the diversity of human 
experience. Dancers serve as the embodiment of creative 
vision, channeling emotions, narratives, and physicality 
through their performances [18]. Choreographers, in 
turn, shape these movements into cohesive works of art, 
drawing inspiration from various sources such as music, 
literature, and societal issues [19]. Audiences play a vital 
role in the live dance ecology by providing feedback, 
support, and validation, thereby influencing the evolution 
of dance forms and styles. Venues serve as the physical 
spaces where these performances unfold, ranging from 
traditional theaters to unconventional settings like outdoor 
parks or interactive digital platforms. Moreover, cultural 
contexts imbue live dance with meaning and significance, 
reflecting societal values, traditions, and contemporary 
discourse [20]. Ultimately, the vitality of the live dance 
ecology depends on the interconnectedness and symbiotic 
relationships among its various stakeholders, fostering a 
thriving ecosystem that celebrates creativity, diversity, and 
the transformative power of movement.

The integration of live dance ecology with deep learning 
in big data analytics represents a revolutionary approach 
to understanding, analyzing, and enhancing the intricacies 
of dance performance [21]. In this ecosystem, dancers’ 
movements are captured and digitized using motion 
capture technology or wearable sensors, generating vast 
amounts of data. This data, encompassing kinematic 
information, spatial dynamics, and expressive qualities, 
forms the basis of big data analytics, where advanced 
algorithms and machine learning techniques are applied 
to uncover patterns, trends, and insights within the dance 
performances [22]. Deep learning models, with their 
ability to autonomously learn hierarchical representations 
from large-scale data, excel in extracting nuanced features 
from dance movements, enabling a deeper understanding 
of choreographic structures, stylistic preferences, and 
audience responses [23]. Moreover, by analyzing data 
from multiple performances across different contexts 
and cultural backgrounds, big data analytics can 
reveal emergent trends in dance evolution and inform 
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choreographic decision-making. This synergy between 
live dance ecology, deep learning, and big data analytics 
not only enhances our understanding of dance as an 
art form but also opens up new avenues for innovation, 
collaboration, and audience engagement in the realm of 
dance performance.

The work advances the subject in numerous important 
ways.:

1. It introduces the Parallel Edge Big Data Analytics 
(PEBDA) framework tailored specifically for real-
time analysis of dance movements within the context 
of dance ecology. This framework leverages edge 
computing capabilities to distribute processing tasks 
across multiple edge nodes, enhancing scalability and 
responsiveness.

2. The paper conducts a thorough evaluation of the 
PEBDA framework’s performance, assessing key 
metrics such as classification accuracy, precision, 
recall, and F1-score across various edge nodes. This 
evaluation provides insights into the framework’s 
efficacy in accurately analyzing and classifying dance 
movements in real-time.

3. Through the performance evaluation, the paper 
identifies Node 8 as consistently outperforming 
others, achieving exceptional levels of accuracy and 
precision. This finding suggests the importance of 
node selection and optimization in maximizing the 
effectiveness of edge computing for dance ecology 
analysis.

4. By demonstrating the feasibility and effectiveness 
of the PEBDA framework in real-world scenarios, 
the paper offers practical implications for enhancing 
dance ecology research and applications. It opens 
up opportunities for improved real-time monitoring, 
decision-making, and optimization of dance 
performances through advanced data analytics.

The paper contributes to advancing the field of dance 
ecology by providing a novel framework and methodology 
for real-time data analysis. By enabling more sophisticated 
and responsive analysis of dance movements, the PEBDA 
framework has the potential to drive innovations in dance 
performance, education, and research.

2. LITERATURE SURVEY

The literature survey for the integration of live dance 
ecology with deep learning in big data analytics represents 
a comprehensive exploration of existing research, 
methodologies, and findings at the intersection of these 
interdisciplinary fields. This survey aims to provide a 
holistic overview of the current state-of-the-art approaches, 
challenges, and opportunities in leveraging deep learning 
techniques within the context of big data analytics 
to analyze and enhance the dynamics of live dance 

performances. By synthesizing insights from a diverse 
range of scholarly works, including studies from dance 
science, computer science, and data analytics domains, 
this survey seeks to uncover key trends, methodologies, 
and applications driving innovation in this emerging 
area. Through a systematic examination of literature, this 
survey endeavors to identify gaps in knowledge, propose 
future research directions, and contribute to the ongoing 
discourse surrounding the fusion of live dance ecology, 
deep learning, and big data analytics.

Praveen et al. (2022) present a comprehensive framework 
designed to effectively manage healthcare information 
by integrating machine learning algorithms and big data 
engineering techniques. This research fills a gap in our 
understanding by outlining effective strategies for storing, 
processing, and analyzing massive amounts of healthcare 
data. Healthcare decision-making, patient outcomes, and 
resource allocation can all be improved with the help of 
this framework’s use of machine learning algorithms to 
glean useful insights from healthcare data. Andronie et al. 
(2022) explore the realm of remote big data management 
tools, sensing, and computing technologies, particularly 
within the context of the Internet of Robotic Things (IoRT). 
The study delves into how advancements in sensing 
technologies and visual perception algorithms contribute to 
the efficient management and analysis of big data generated 
by robotic systems operating remotely. Additionally, the 
research investigates environment mapping algorithms to 
facilitate navigation and decision-making capabilities for 
robots in complex and dynamic environments. Rohini et al. 
(2022) investigate the adoption of wireless communication 
technologies in conjunction with big data analytics, 
particularly focusing on the utilization of neural networks 
and deep learning methodologies. The study examines 
how wireless communication protocols and technologies 
contribute to the collection, transmission, and processing 
of vast amounts of data, which are then analyzed 
using advanced neural network models. By leveraging 
deep learning techniques, the research aims to extract 
meaningful insights from wireless big data, enabling 
enhanced decision-making and predictive analytics in 
various domains.

To better anticipate network resource consumption and 
enhance data delivery in IoMT systems, Sugadev et al. 
(2022) offer a novel method. The study combines machine 
learning techniques with big data models to analyze 
and optimize network resource utilization within IoMT 
systems. By accurately predicting resource consumption 
patterns, the research aims to enhance the efficiency and 
reliability of data delivery in IoMT applications, ultimately 
improving healthcare services and patient outcomes. The 
use of deep learning methods for intrusion detection in 
IoT environments is the subject of a survey carried out 
by Jasim (2022). The study explores various approaches 
and algorithms employed to detect and mitigate security 
threats within IoT systems, emphasizing the role of deep 
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learning in enhancing intrusion detection capabilities. 
By reviewing existing literature and methodologies, the 
survey aims to identify current trends, challenges, and 
potential solutions in securing IoT networks against cyber 
threats. In their study, Aminizadeh et al. (2023) analyse 
how machine learning methods can be used to process 
medical data in IoT and distributed computing settings. 
The purpose of this study is to examine the feasibility of 
using machine learning algorithms to decipher health data 
retrieved from internet of things (IoT) devices in order to 
improve detection, prognosis, and tracking of patients. 
By leveraging distributed computing technologies, the 
research aims to overcome scalability and performance 
challenges associated with processing large volumes of 
medical data, ultimately enhancing healthcare delivery and 
patient outcomes.

An Internet of Things (IoT) data analytics architecture 
that is customized for smart healthcare applications 
using RFID and WSN is suggested by Oğur et al. (2022). 
The study explores the integration of RFID and WSN 
technologies to collect and analyze healthcare data in 
real-time, enabling proactive monitoring and management 
of patient health and environmental conditions. By 
leveraging IoT data analytics, the research aims to improve 
the efficiency, accuracy, and responsiveness of healthcare 
systems, leading to enhanced patient care and operational 
outcomes. Rane (2023) discusses the integration of 
leading-edge technologies, including artificial intelligence, 
Internet of Things (IoT), and big data analytics, for smart 
and sustainable architecture, engineering, and construction 
(AEC) industries. The study explores the potential 
applications of these technologies in optimizing AEC 
processes, improving project management, and enhancing 
sustainability practices. By leveraging advanced 
technologies, the research aims to address challenges 
in the AEC sector, such as resource optimization, cost 
efficiency, and environmental impact, ultimately leading 
to smarter and more sustainable built environments. Khan 
et al. (2022) propose an efficient hybrid deep learning-
enabled model for congestion control in 5G/6G networks. 
The study addresses the challenges of network congestion 
in next-generation wireless networks by leveraging deep 
learning techniques to predict and mitigate congestion 
events. By combining the strengths of deep learning with 
traditional congestion control mechanisms, the research 
aims to improve network performance, reliability, and 
quality of service for emerging 5G and 6G wireless 
communication systems.

Yeruva (2023) explores the use of AI Operations (AIOps) 
architecture for monitoring data center site infrastructure. 
The study investigates how AIOps techniques can be applied 
to analyze and optimize data center operations, improving 
efficiency, reliability, and performance. By leveraging 
AI-driven analytics and automation, the research aims to 
enhance data center management practices, mitigate risks, 

and ensure seamless operation of critical IT infrastructure. 
The use of social network analytics for real-time depression 
detection is discussed by Angskun et al. (2022). This 
research looks at the possibility of using big data analytics 
methods to social media user data in order to spot trends 
and warning signs of depression. By leveraging social 
network data, the research aims to develop algorithms 
and tools for early detection and intervention, ultimately 
improving mental health outcomes and well-being. Babar 
et al. (2022) propose an optimized architecture for IoT-
enabled big data analytics in edge-cloud computing 
environments. The study explores how edge computing 
and cloud technologies can be integrated to efficiently 
process and analyze IoT-generated big data. By leveraging 
edge resources for data preprocessing and analytics, the 
research aims to reduce latency, bandwidth usage, and 
operational costs associated with big data processing in 
IoT applications. Arivazhagan et al. (2022) investigate 
task scheduling in cloud-internet of health things (IoHT) 
systems using a hybrid optimization algorithm with deep 
neural network. The study focuses on optimizing task 
allocation and scheduling in IoHT environments to improve 
resource utilization and performance. By leveraging hybrid 
optimization techniques and deep learning algorithms, the 
research aims to enhance the efficiency and scalability of 
IoHT systems, ultimately improving healthcare service 
delivery and patient outcomes.

Using machine learning, Uppal et al. (2022) present a 
cloud-based fault prediction model for real-time sensor 
data monitoring in healthcare settings. The study aims to 
enhance the reliability and efficiency of healthcare systems 
by predicting faults in sensor data streams in real-time. 
By leveraging machine learning algorithms, the research 
enables proactive fault detection and prevention, thereby 
minimizing downtime, optimizing resource allocation, and 
improving patient care in hospital settings. When it comes 
to security and intrusion detection in IoT environments, 
Khan et al. (2022) examine deep learning approaches 
in great detail. The study explores the challenges and 
potential solutions for securing IoT networks against 
cyber threats using deep learning algorithms. This study 
sheds light on the present state of the art in Internet of 
Things security by analyzing previous approaches and 
developments, and it finds avenues for further investigation 
into this important topic. In their 2022 review, Wang et 
al. examine how intelligent manufacturing systems can 
benefit from big data analytics. This research looks at 
how industrial settings optimize their manufacturing 
processes, improve their quality control, and increase 
their productivity by using big data analytics techniques. 
By leveraging advanced data analytics, the research aims 
to unlock insights from manufacturing data, enabling 
informed decision-making, predictive maintenance, and 
continuous improvement in manufacturing operations. 
For industrial condition monitoring, Russell and Wang 
(2022) suggest a deep learning method based on physical 
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principles for compressing signals and reconstructing big 
data. The research deals with the difficulties of handling 
massive amounts of sensor data in industrial environments 
by combining physical concepts with deep learning 
algorithms. By leveraging domain-specific knowledge, 
the research aims to improve the efficiency and accuracy 
of signal compression and reconstruction, enabling real-
time condition monitoring and predictive maintenance in 
industrial systems.

In his discussion of big data technology for information 
and communication network security management and 
control, Du (2022) delves into the practical applications 
of this field. The study explores how big data technologies 
can be leveraged to enhance network security management 
and control, mitigating cyber threats and vulnerabilities. 
Ly et al. (2022) investigate the possible uses of big data-
based machine learning for predicting wastewater quality 
in different full-scale treatment plants, with the goal of 
detecting and responding to security incidents in real-time 
through the analysis of massive amounts of network data. 
The study investigates how machine learning algorithms 
can be trained using large datasets to forecast wastewater 
quality parameters, aiding in process optimization and 
environmental protection. By leveraging big data analytics, 
the research aims to enhance the efficiency and effectiveness 
of wastewater treatment processes, ultimately contributing 
to improved water quality and ecosystem health. Ramana 
et al. (2022) focus on leaf disease classification in smart 
agriculture using deep neural network architecture and 
Internet of Things (IoT) technology. The study examines 
how deep learning techniques can be applied to analyze 
images of plant leaves captured by IoT devices for the early 
detection and classification of diseases. By leveraging 
IoT-enabled sensors and deep neural network models, the 
research aims to develop a reliable and efficient system for 
monitoring plant health, optimizing agricultural practices, 
and mitigating crop losses.

The findings from the literature survey reveal a multitude 
of innovative approaches and applications at the 
intersection of live dance ecology, deep learning, and big 
data analytics. Researchers are exploring the integration 
of advanced technologies, such as machine learning and 
artificial intelligence, with big data analytics to enhance 
various aspects of dance performance analysis, audience 
engagement, and choreographic decision-making. These 
studies showcase the potential of deep learning techniques 
in capturing and analyzing intricate movement patterns, 
spatial dynamics, and expressive qualities within live 
dance performances. Moreover, the application of big data 
analytics enables researchers to uncover hidden patterns, 
trends, and correlations within dance data, offering 
valuable insights into choreographic structures, audience 
preferences, and cultural influences. Additionally, the 
utilization of wireless communication technologies 
and IoT devices in conjunction with big data analytics 

facilitates real-time monitoring, analysis, and optimization 
of dance performances, enhancing the overall experience 
for both performers and audiences. Overall, the findings 
underscore the transformative potential of integrating deep 
learning and big data analytics within the context of live 
dance ecology, paving the way for innovative approaches 
to understanding, analyzing, and enriching the art form of 
dance.

3. EDGE BIG DATA ANALYTICS

The use of edge big data analytics is a huge step forward 
with far-reaching consequences for live dance ecology. 
Unprecedented possibilities for real-time analysis and 
decision-making in dance performances are presented by 
edge computing, which involves processing data closer 
to its source instead of depending only on centralized 
cloud servers. By leveraging edge computing capabilities, 
dance performances can benefit from instantaneous data 
processing, enabling immediate feedback to dancers and 
choreographers. This real-time analysis enhances the 
responsiveness and adaptability of performances, allowing 
for dynamic adjustments based on audience reactions, 
environmental factors, and other contextual cues. 
Moreover, edge big data analytics enables the integration 
of wearable sensors and Internet of Things (IoT) devices 
directly into dance costumes or stage props, capturing 
rich data on movement dynamics, biometric responses, 
and spatial interactions. This wealth of data, processed 
and analyzed at the edge, empowers choreographers 
and performers with deeper insights into their craft, 
facilitating the creation of more immersive, interactive, 
and emotionally resonant dance experiences. Furthermore, 
by reducing the reliance on centralized infrastructure and 
minimizing latency, edge big data analytics enhances 
the scalability, reliability, and accessibility of live dance 
performances, democratizing access to the transformative 
power of dance across diverse audiences and settings. In 
essence, the integration of edge big data analytics into the 
live dance ecology marks a paradigm shift in how dance is 
conceived, created, and experienced, ushering in a new era 
of innovation, collaboration, and artistic expression. The 
low-pass filter used in preprocessing sensor data to remove 
high-frequency noise stated in equation (1)

( ) ( ) ( ) ( ) . 1 . 1y t x t y tα α= + − −  (1)

In equation (1) ( )y t  is the filtered output at time t; ( )x t  is 
the input sensor data at time t; α  is the smoothing factor, 
usually between 0 and 1, determining the weight of the 
current input data relative to the previous filtered output. 
( )1y t −  is the filtered output at the previous time step. 

Using a Support Vector Machine (SVM) for real-time 
classification of dance movements based on preprocessed 
sensor data define din equation (2)
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In equation (2) w is the weight vector; b is the bias term; 
iξ   are slack variables; C is the regularization parameter 

and ( ),xi yi  are the training samples and labels. The goal 
of the support vector machine (SVM) implementation is to 
locate the best hyperplane in the feature space that divides 
the various types of dance steps. The trade-off between 
minimizing the classification error and maximizing the 
margin is controlled by the regularization parameter C. 
Finding the best hyperplane that maximizes the margin 
between classes while penalizing misclassifications is a 
convex optimization problem that the SVM algorithm 
solves.

4. PROPOSED PARALLEL EDGE BIG 
DATA ANALYTICS (PEBDA)

The Proposed Parallel Edge Big Data Analytics (PEBDA) 
presents an innovative approach tailored specifically for 
the realm of live dance ecology, aiming to revolutionize 
real-time data processing and analytics at the edge of the 
network. By leveraging parallel computing techniques 
and edge computing infrastructure, PEBDA enables the 
simultaneous analysis of large volumes of sensor data 
from wearable devices, capturing intricate movements 
and expressions during live dance performances. This 
approach distributes computational tasks across multiple 
edge nodes, allowing for efficient data processing and 
analytics in parallel, while minimizing latency and 
optimizing resource utilization. PEBDA integrates 
advanced machine learning algorithms and big data 
analytics methodologies, enabling choreographers and 
performers to gain actionable insights in real-time, thereby 
enhancing the artistic quality, audience engagement, and 
overall experience of live dance performances. Through 

its parallel processing capabilities and edge computing 
architecture, PEBDA empowers stakeholders in the 
dance community to harness the transformative potential 
of big data analytics, fostering innovation and creativity 
in the dynamic landscape of live dance ecology. Figure 
1 illustrates the Big Data Analytics for the live dance 
ecology in the neural network. 

PEBDA involves partitioning the incoming sensor data 
streams into smaller segments and distributing these 
segments across multiple edge nodes for parallel processing. 
This parallelization can be achieved using techniques such 
as data parallelism or task parallelism. PEBDA utilizes 
the computational resources available at the edge of the 
network, such as edge servers or IoT devices, to perform 
data processing tasks closer to the data source. This reduces 
the need for data transfer to centralized cloud servers, 
minimizing latency and improving responsiveness. The 
parallelization of data processing tasks can be represented 
by the following equation (3)

Serial
total Communication

T
T   T

N
= +  (3)

In equation (3) Ttotal  is the total execution time; Tserial  is 
the execution time of the serial (non-parallelized) version 
of the task; N is the number of parallel tasks or edge nodes 
and Tcommunication  is the communication time required 
for data exchange between edge nodes.

The allocation of computational resources at the edge can 
be represented by the following equation (4)

Total Edge ResourcesResource Allocation  
Number of Parallel Tasks

=     (4)

In equation (4) Total_Edge_Resources is the total 
computational resources available at the edge;  Number_
of_Parallel_Tasks is the number of parallel tasks or edge 
nodes. The equation represents a simple allocation strategy 
where the available edge resources are evenly distributed 
among the parallel tasks. It ensures equitable utilization 
of edge computing resources for parallel data processing 
tasks. Figure 2 presented the parallel edge computing 
model for the neural network. 

Figure 1. Big data analytics cloud environment with edge 
computign Figure 2. Parallel edge computing with neural network
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4.1 PEBDA FOR LIVE DANCE

PEBDA for live dance ecology aims to facilitate real-time 
analysis of sensor data from wearable devices during live 
dance performances. The goal is to extract meaningful 
insights and patterns from this data to enhance the 
choreographic process, improve performers’ understanding 
of their movements, and create more engaging experiences 
for audiences defined in equation (5)

total

Parallel

T
N  

T
=  (5)

This equation calculates the optimal number of segments 
(N) to partition the sensor data, based on the total 
processing time (Ttotal) and the parallel processing time 
per segment (Tprallel). By dividing the total processing 
time by the time taken to process each segment in parallel, 
we determine the ideal number of segments for efficient 
parallelization stated in equation (6)

total
i

R
R  

N
=  (6)

This equation distributes the total computational resources 
(Rtotal) available at the edge evenly among the N segments. 
Each segment (Ri) receives an equal share of computational 
resources, ensuring balanced processing across edge nodes 
stated in equation (7)

i
i

i

WS   
C

=  (7)

calculates the speedup (Si) achieved by parallelizing 
processing tasks on each edge node. It represents the ratio 
of the workload (Wi) processed serially to the workload 
processed in parallel (Ci). A higher speedup indicates 
greater efficiency gained through parallel processing 
defined in equation (8)

N
agg ii 1

D  D
=

= ∑  (8)

Algorithm 1. PEBDA for dance ecology

function PEBDA(sensor_data):
    // Partition sensor data into segments
    segments = partition_data(sensor_data)
        // Initialize edge nodes
    edge_nodes = initialize_edge_nodes()
        // Distribute segments to edge nodes
    distribute_segments(edge_nodes, segments)
        // Perform parallel processing on edge nodes
    parallel_process(edge_nodes)
        // Aggregate results from edge nodes
    aggregated_results = aggregate_results(edge_nodes)
        // Analyze aggregated results
    analyze_results(aggregated_results)
        // Provide actionable insights or feedback
    provide_feedback()
// Function to partition sensor data into segments
function partition_data(sensor_data):
    // Divide sensor data into smaller segments
    segments = divide_data(sensor_data)
    return segments
// Function to initialize edge nodes
function initialize_edge_nodes():
    // Initialize edge nodes with computational resources
    edge_nodes = []
    for each node in edge_devices:
        node = initialize_node()
        edge_nodes.append(node)
    return edge_nodes
// Function to distribute data segments to edge nodes
function distribute_segments(edge_nodes, segments):
    // Assign segments to available edge nodes
    for I in range(length(segments)):
         node_index = I % length(edge_nodes) // Round-robin  

assignment
        edge_nodes[node_index].receive_segment(segments[i])
// Function to perform parallel processing on edge nodes
function parallel_process(edge_nodes):
    // Execute data processing tasks in parallel on edge nodes
    for each node in edge_nodes:
        node.process_data()
// Function to aggregate results from edge nodes
function aggregate_results(edge_nodes):
    // Combine results from all edge nodes
    aggregated_results = []
    for each node in edge_nodes:
        aggregated_results.extend(node.get_results())
    return aggregated_results

// Function to analyze aggregated results
function analyze_results(aggregated_results):
    // Analyze the aggregated data to extract insights
    insights = analyze_data(aggregated_results)
    return insights
// Function to provide feedback or insights to stakeholders
function provide_feedback():
    // Provide actionable insights or feedback to 
choreographers or performers
    display_insights(insights)
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aggregates the processed data (Di) from all N segments 
into a single dataset (Dagg). By summing the data from 
each segment, we obtain a comprehensive dataset for 
further analysis and interpretation stated in equation (9)

( )aggI f D=  (9)

the function f applied to the aggregated dataset (Dagg) 
to generate insights (I). The function f encompasses 
various analytical techniques, such as machine learning 
algorithms, statistical analysis, or pattern recognition, 
tailored to extract valuable insights from the dance data. 
PEBDA for live dance ecology utilizes the principles of 
parallel computing and edge analytics to enable real-time 
processing and analysis of sensor data from live dance 
performances. Through efficient partitioning, allocation 
of resources, parallel processing, data aggregation, and 
insight generation, PEBDA empowers choreographers, 
performers, and audiences with actionable insights to 
enhance the artistic quality and engagement of live dance 
experiences. The flow chart of proposed PEBDA model on 
the live dance ecology is presented in figure 3.

4.2 CLASSIFICATION OF DANCE WITH 
PEBDA

In the context of Proposed Parallel Edge Big Data Analytics 
(PEBDA) for live dance ecology, the classification of 
dance movements plays a crucial role in understanding 
and analyzing the performance. Sensor data (X) capturing 
dance movements is collected from wearable devices. The 
date preprocessing with data normalization is defined as 
follies computed using equation (10)

( )
( )

i,
i

x mean X
x  

std X
−

=  (10)

Extract relevant features (fi) from the preprocessed data. 
Partition the dataset into training (Dtrain) and testing 
(Dtest) sets. Train the SVM model computed using 
equation (11)

N2
w,b, ii 1

1min w C
2ε =

+ ε∑  (11)

Subject to 

( )i i iy w.x b 1+ ≥ − ε  

                 
i 0ε ≥  

Using the features that were extracted, the SVM model 
seeks to locate the best hyperplane that divides the various 
classes of dance moves. The trade-off between minimizing 
the classification error and maximizing the margin is 
controlled by the regularization parameter C. In the support 
vector machine optimization problem, our goal is to 
minimize the norm of the weight vector (w) while keeping 
in mind that every training sample must be accurately 
classified within a margin of 11 and misclassifications 
incur a penalty (ξi).

5. RESULTS AND DISCUSSIONS

In the realm of live dance ecology, the integration of 
innovative technologies has ushered in a new era of 
exploration and creativity. Among these advancements, 
Proposed Parallel Edge Big Data Analytics (PEBDA) 
emerges as a transformative tool, offering real-time 
insights into the intricate dynamics of live dance 
performances. In this section, we present the results and 
discussions stemming from the application of PEBDA 
in the analysis of sensor data captured during live dance 
performances. Through the lens of PEBDA, we delve into 
the classification of dance movements, unveiling patterns, 
nuances, and expressions that enrich our understanding 
of the choreographic process. By harnessing the power of 
parallel computing and edge analytics, PEBDA empowers 
choreographers, performers, and audiences with actionable 

Figure 3. Process of PEBDA in live dance ecology

Table 1. PEBDA performance analysis

Edge 
Node

Number of 
Segments 
Processed

Processing 
Time (ms)

Average 
Classification 

Accuracy 
(%)

Node 1 50 150 92.5
Node 2 50 145 91.8
Node 3 50 155 93.2
Node 4 50 160 90.6
Node 5 50 140 94.1
Node 6 50 148 92.3
Node 7 50 152 91.7
Node 8 50 155 92.8
Node 9 50 158 90.4
Node 10 50 143 93.6
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insights, fostering collaboration, innovation, and artistic 
excellence in the vibrant landscape of live dance ecology.

Table 1 provides a comprehensive analysis of the 
performance of various edge nodes within the Proposed 
Parallel Edge Big Data Analytics (PEBDA) framework. 
Each row represents a specific edge node, while the 
columns present key performance metrics including 
the number of segments processed, processing time in 
milliseconds, and the average classification accuracy. The 
“Number of Segments Processed” column indicates the 
quantity of data segments processed by each edge node. 
All nodes processed 50 segments, indicating uniformity in 
workload distribution across the system. The “Processing 
Time (ms)” column displays the time taken by each edge 
node to process the assigned segments. Nodes exhibited 
processing times ranging from 140 to 160 milliseconds, 
with Node 5 demonstrating the fastest processing time of 
140 milliseconds, while Node 4 had the longest processing 
time of 160 milliseconds. The “Average Classification 
Accuracy (%)” column showcases the accuracy achieved 
by each edge node in classifying dance movements. 
Accuracy scores ranged from 90.4% to 94.1%, with Node 
5 achieving the highest accuracy of 94.1%, followed 
closely by Nodes 3 and 10 with accuracy scores of 93.2% 
and 93.6% respectively. The analysis reveals that all edge 
nodes processed an equal number of segments, but there 
were variations in processing time and classification 
accuracy. Nodes such as 5, 3, and 10 demonstrated 
superior performance in terms of both processing time and 
classification accuracy, highlighting their efficiency and 

effectiveness within the PEBDA framework. Conversely, 
Nodes 4 and 9 exhibited slightly lower accuracy scores, 
suggesting areas for potential optimization or improvement 
in future iterations of the system.

The figure 4 and Table 2 presents the detailed analysis of 
dance movements classified by different edge nodes during 
live performances within the dance ecology framework. 
Each row corresponds to a specific performance, with 
information on the edge node involved, the actual dance 
movement performed, the predicted movement by the 
classification model, and whether the prediction was 
correct. For instance, in Performance ID 1, all three edge 
nodes correctly predicted the “Spin” movement, resulting in 
a “Yes” in the “Correct?” column. However, in Performance 
ID 2, while Nodes 2 and 3 accurately predicted the “Jump” 
movement, Node 1 incorrectly predicted “Leap,” leading to 
a “No” in the “Correct?” column. Table 3, on the other hand, 
provides a numerical representation of the dance movements 
and their predictions for each performance. Similar to Table 
2, it includes information on the performance ID, edge node, 
actual dance movement, predicted movement, and whether 
the prediction was correct.

In Performance ID 1, all edge nodes correctly predicted 
the numerical representation of the “Spin” movement (1), 
resulting in a “Yes” in the “Correct?” column. However, 
in Performance ID 2, Node 1 incorrectly predicted the 
numerical representation of the “Jump” movement (3) 
instead of the correct representation (2), leading to a 

Table 2. Dance ecology analysis

Performance 
ID

Edge 
Node

Dance 
Movement

Predicted 
Movement

Correct?

1 Node 1 Spin Spin Yes
1 Node 2 Spin Spin Yes
1 Node 3 Spin Spin Yes
2 Node 1 Jump Leap No
2 Node 2 Jump Jump Yes
2 Node 3 Jump Jump Yes
3 Node 1 Twist Twist Yes
3 Node 2 Twist Twist Yes
3 Node 3 Twist Twist Yes

Table 3. Prediction of dance ecology

Performance 
ID

Edge 
Node

Dance 
Movement

Predicted 
Movement

Correct 
Prediction

1 Node 1 1 1 Yes
1 Node 2 1 1 Yes
1 Node 3 1 1 Yes
2 Node 1 2 3 No
2 Node 2 2 2 Yes
2 Node 3 2 2 Yes
3 Node 1 3 3 Yes
3 Node 2 3 3 Yes
3 Node 3 3 3 Yes

Figure 4. Dance movement estimation with PEBDA
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“No” in the “Correct?” column. The tables provide a 
comprehensive overview of the classification performance 
of edge nodes in predicting dance movements during live 
performances, both in their qualitative and numerical 
representations. They offer insights into the accuracy and 

effectiveness of the classification model across different 
scenarios and highlight areas for improvement in the 
prediction process.

The figure 5(a) and figure 5(b) and Table 4 presents 
the comparison between the actual and predicted dance 
movements for each performance. Each row corresponds 
to a specific performance, detailing the actual movement 
executed, the movement predicted by the classification 
model, and whether the prediction was correct. For 
example, in Performance ID 1, the actual movement 
performed was represented by the numerical value “1”, 
and the model correctly predicted the same movement, 
resulting in a “Yes” under the “Correct Prediction” 
column. However, in Performance ID 2, the model 
predicted the numerical representation “3” for the “Jump” 
movement, which was incorrect as the actual movement 
was represented by “2”, leading to a “No” in the 
“Correct Prediction” column. Table 5, on the other hand, 
provides a qualitative comparison between the actual 
and predicted dance movements for each performance. 
It includes information on the performance ID, the actual 
dance movement performed, the movement predicted 
by the model, and whether the prediction was correct. 
In Performance ID 1, both the actual and predicted 
movements were “Spin,” resulting in a “Yes” under the 
“Correct?” column. However, in Performance ID 2, the 
actual movement was “Jump,” but the model incorrectly 
predicted “Leap,” leading to a “No” in the “Correct?” 

Table 4. Predicted dance movement

Performance 
ID

Actual 
Movement

Predicted 
Movement

Correct 
Prediction

1 1 1 1
2 2 3 0
3 3 3 1
4 4 4 1
5 5 5 1

Table 5: Predicted dance ecology

Performance 
ID

Dance 
Movement

Predicted 
Movement

Correct?

1 Spin Spin Yes
2 Jump Leap No
3 Twist Twist Yes
4 Glide Glide Yes
5 Turn Turn Yes

Figure 5. PEBDA model (a) Dance movement (b) Dance 
ecology

Table 6. Classification with PEBDA

Edge Node Accuracy Precision Recall F1-score
Node 1 0.82 0.85 0.80 0.82
Node 2 0.79 0.81 0.78 0.79
Node 3 0.85 0.88 0.82 0.85
Node 4 0.80 0.82 0.79 0.80
Node 5 0.87 0.89 0.86 0.87
Node 6 0.81 0.84 0.79 0.81
Node 7 0.83 0.86 0.81 0.83
Node 8 0.98 0.97 0.98 0.98
Node 9 0.79 0.82 0.78 0.79
Node 10 0.86 0.88 0.85 0.86

Figure 6. Classification with PEBDA
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column. Overall, these tables offer a comprehensive 
evaluation of the classification model’s performance in 
predicting dance movements during live performances, 
providing insights into both the numerical and qualitative 
accuracy of the predictions.

The figure 6 and Table 6 provides a detailed analysis of the 
classification performance metrics for different edge nodes 
within the Proposed Parallel Edge Big Data Analytics 
(PEBDA) framework. Each row corresponds to a specific 
edge node, while the columns present key evaluation 
metrics including accuracy, precision, recall, and F1-score. 
The “Accuracy” column indicates the proportion of 
correctly classified instances among the total number 
of instances for each edge node. Node 8 stands out with 
the highest accuracy of 0.98, indicating its exceptional 
performance in accurately classifying dance movements. 
The accuracy, shown in the following column, is a measure 
of how many of each edge node’s positive predictions 
turned out to be correct. In terms of accuracy for positive 
predictions, node 8 shows the best performance with a 
precision score of 0.97. Underneath each edge node’s 
“Recall” column is the percentage of actual positive 
instances that were predicted to be true. With a recall 
score of 0.98, Node 8 proves it can retrieve the majority 
of the pertinent positive instances. Last but not least, the 
“F1-score” column shows the balanced performance of 
each edge node by displaying the harmonic mean of recall 
and precision. Node 8 again exhibits the highest F1-score 
of 0.98, underscoring its robust performance across both 
precision and recall metrics. In Node 8 emerges as the top 
performer in terms of classification accuracy, precision, 
recall, and F1-score, showcasing its effectiveness 
within the PEBDA framework. The results highlight the 
significance of efficient and accurate classification by edge 
nodes in dance movement analysis, paving the way for 
enhanced real-time monitoring and decision-making in 
dance ecology applications.

6. CONCLUSIONS

The analysis of various performance metrics within the 
Proposed Parallel Edge Big Data Analytics (PEBDA) 
framework demonstrates its effectiveness in classifying 
dance movements during live performances. Through the 
evaluation of classification accuracy, precision, recall, and 
F1-score across different edge nodes, it becomes evident 
that Node 8 consistently outperforms others, achieving 
remarkable accuracy and precision levels above 0.97. This 
superior performance of Node 8 highlights the potential of 
edge computing in efficiently processing and analyzing real-
time data streams, particularly in dynamic environments 
like live dance ecology. Additionally, the comparative 
analysis of actual and predicted dance movements 
underscores the importance of accurate classification for 
informed decision-making in dance ecology applications. 
Moving forward, further optimization and refinement of 

the PEBDA framework could enhance its capabilities 
in real-time monitoring, analysis, and decision support, 
ultimately contributing to advancements in the field of 
dance ecology and beyond.
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