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NOMENCLATURE

PEC-ECC  Parallel Edge Computing with Elliptic 
Curve Cryptography

ECC  Elliptic Curve Cryptography
F  Frequency

1. INTRODUCTION

Automatic numbering systems must not be used. Cloud 
computing has revolutionized the landscape of modern 
technology by providing a flexible and scalable framework 
for storing, managing, and accessing data and applications 
over the internet [1]. Unlike traditional on-premises 
infrastructure, cloud computing offers organizations the 
ability to utilize computing resources on-demand, paying 
only for what they use, without the need for extensive 
hardware investments or maintenance. This paradigm 
shift has empowered businesses to streamline operations, 
enhance collaboration, and innovate more rapidly, as 
resources can be provisioned and scaled dynamically to 
meet changing demands [2]. With its promise of cost-
efficiency, resilience, and accessibility, cloud computing 
has become an integral component of the digital ecosystem, 

driving efficiency, agility, and competitiveness across 
industries [3]. Cloud computing has synergized seamlessly 
with big data analytics, marking a pivotal advancement in 
the realm of data-driven decision-making. By leveraging 
the vast computational power and storage capabilities of 
the cloud, organizations can efficiently process, analyze, 
and derive actionable insights from massive volumes of 
structured and unstructured data [4]. This amalgamation 
not only enables businesses to extract valuable information 
but also enhances scalability, allowing for the processing 
of data at unprecedented scales without the constraints 
of on-premises infrastructure. Moreover, cloud-based 
big data analytics solutions offer agility and flexibility, 
facilitating rapid experimentation and iteration in 
developing analytical models [5]. As a result, businesses 
can uncover hidden patterns, trends, and correlations in 
their data, empowering them to make informed decisions, 
optimize operations, and gain a competitive edge in today’s 
data-driven landscape [6]. Big data analytics, coupled with 
smart media video cloud technology, is revolutionizing 
news communication in profound ways. This innovative 
fusion enables news organizations to harness the power 
of big data to analyze audience preferences, consumption 
patterns, and engagement metrics, thereby tailoring 
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content delivery to specific demographics and interests 
[7]. With leveraging cloud-based video infrastructure, 
news outlets can efficiently store, manage, and distribute 
multimedia content across various platforms, ensuring 
seamless access for viewers worldwide. Furthermore, 
advanced analytics algorithms sift through vast amounts 
of data generated by viewer interactions, allowing news 
broadcasters to personalize content recommendations, 
optimize ad placements, and enhance user experiences 
[8]. This dynamic integration of big data analytics with 
smart media video cloud technology not only enhances the 
relevance and timeliness of news reporting but also fosters 
deeper audience engagement and loyalty in today’s rapidly 
evolving media landscape [9].

The integration of big data analytics with smart media 
video cloud technology brings a multitude of benefits to 
the realm of news communication [10]. Firstly, big data 
analytics allows news organizations to gain deep insights 
into audience behavior and preferences. By analyzing data 
points such as viewership patterns, content consumption 
habits, and engagement metrics, news broadcasters can 
understand what content resonates most with their audience 
[11]. This insight is invaluable for tailoring content 
production and distribution strategies to meet the specific 
interests and needs of viewers, ultimately leading to higher 
engagement and retention rates [12]. Furthermore, the use 
of smart media video cloud technology facilitates seamless 
content delivery across various platforms and devices 
[13]. Cloud-based infrastructure enables news outlets 
to store and manage vast libraries of multimedia content 
efficiently, ensuring accessibility and scalability [14]. 
This means that viewers can access news updates, live 
streams, and archived content from anywhere, at any time, 
enhancing the reach and impact of journalistic endeavors 
[15]. Moreover, the combination of big data analytics and 
cloud technology enables dynamic content personalization. 
By leveraging data-driven algorithms, news broadcasters 
can deliver personalized recommendations and curated 
content experiences to individual viewers [16]. This level 
of customization not only enhances user satisfaction but 
also increases the likelihood of continued engagement and 
loyalty. Additionally, the integration of big data analytics 
into news communication facilitates data-driven decision-
making across various aspects of content production and 
distribution [17]. From editorial planning and story selection 
to advertisement placement and audience targeting, data-
driven insights empower news organizations to optimize 
their strategies for maximum impact and relevance.

The paper makes several significant contributions to the 
field of edge computing and cryptographic techniques, 
particularly in the context of smart media for news 
communication. The paper introduces a novel framework, 
Parallel Edge Computing with Elliptic Curve Cryptography 
(PEC-ECC), which integrates parallel computing 
techniques with ECC for secure and efficient processing 
of smart media data at the network edge. This framework 

addresses the need for robust solutions capable of handling 
the increasing volumes of multimedia content in real-time 
communication systems. With ECC for data encryption 
and decryption, the PEC-ECC framework offers enhanced 
security features, ensuring data confidentiality and integrity 
during transmission and processing. This contributes 
to strengthening the security posture of edge computing 
environments, particularly in scenarios where sensitive 
information, such as news content, is involved. PEC-ECC 
enables real-time analytics of smart media data, allowing 
for timely extraction of insights and actionable information 
from large datasets. This capability is essential for news 
communication applications, where rapid analysis of 
multimedia content is crucial for delivering up-to-date and 
relevant information to users. Through experimentation 
and analysis, the paper evaluates the cost implications of 
employing PEC-ECC for smart media applications. By 
optimizing resource utilization and minimizing processing 
overhead, PEC-ECC offers a cost-effective solution for 
processing and transmitting multimedia content in edge 
computing environments. The scalability and versatility of 
the PEC-ECC framework are demonstrated across various 
scenarios, including video streams, audio recordings, 
images, and text articles. This highlights its adaptability 
to different types of smart media data and its potential 
for broader application in diverse domains beyond news 
communication. The contributions of the paper lie in its 
development of an innovative framework that addresses key 
challenges in edge computing, particularly in the context 
of handling multimedia content securely and efficiently. 
By providing a comprehensive analysis and evaluation of 
the PEC-ECC framework, the paper contributes valuable 
insights and solutions to advance the capabilities of edge 
computing systems in processing smart media for news 
communication and beyond.

2. CLOUD COMPUTING IN SMART 
MEDIA 

Cloud computing plays a pivotal role in enabling smart 
media applications to operate efficiently and effectively. 
Smart media encompasses various forms of digital content, 
including audio, video, images, and interactive media, which 
are delivered and consumed across a wide range of devices 
and platforms. Cloud computing provides the underlying 
infrastructure and services necessary to store, process, and 
deliver smart media content to users worldwide. One key 
aspect of cloud computing in smart media is the provision 
of scalable and reliable storage solutions. Cloud storage 
services, such as Amazon S3, Google Cloud Storage, or 
Microsoft Azure Blob Storage, offer virtually unlimited 
capacity for storing large volumes of media files. The 
storage capacity can be easily scaled up or down based 
on demand, ensuring that smart media applications can 
accommodate fluctuating storage requirements efficiently. 
In addition to storage, cloud computing also provides 
powerful computational resources for processing smart 
media content. This includes tasks such as transcoding, 
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encoding, decoding, and rendering, which are essential for 
delivering high-quality media experiences to users. The 
figure 1 illustrated the cloud technology for the PEC-ECC 
model environment.

Cloud-based media processing services, such as Amazon 
Elastic Transcoder or Google Cloud Media Translation, 
leverage distributed computing resources to process media 
files quickly and cost-effectively. Furthermore, cloud 
computing enables smart media applications to leverage 
advanced analytics and machine learning algorithms 
for content recommendation, personalization, and 
optimization. By analyzing user behavior, preferences, and 
engagement metrics, smart media platforms can deliver 
targeted content recommendations and personalized 
experiences to individual users. Cloud-based analytics 
services, such as Amazon Personalize or Google Cloud AI 
Platform, provide the tools and infrastructure necessary to 
build and deploy machine learning models at scale.  The 
cost of using cloud computing services for smart media 
applications can be represented in equation (1)

= + +C S P T  (1)

In equation (1) C represents the total cost of cloud 
computing services; S represents the cost of storage, 
including the price per unit of storage and any additional 
fees for data transfer or retrieval; P represents the cost of 
processing, including the price per unit of computational 
resources (e.g., CPU hours, GPU hours) and any additional 
fees for specialized services (e.g., media transcoding, 
machine learning inference). T represents the cost of 
data transfer, including the price per unit of data transfer 
between the cloud provider and external networks or 
regions. Cloud computing revolutionizes smart media 
by providing scalable, on-demand access to resources 
such as storage, processing power, and analytics tools. 

This scalability is particularly crucial for smart media 
applications, which often experience fluctuating demands 
in terms of storage capacity, processing requirements, and 
user traffic. Storage: Cloud storage services offer virtually 
limitless capacity for storing smart media content. These 
services typically charge based on the amount of data 
stored and any additional features such as data redundancy, 
access control, or data lifecycle management. The cost of 
storage S can be calculated with equation (2)

= × +s sS N P T    (2)
In equation (2) N is the total amount of data stored; Ps is the 
price per unit of storage; and Ts  represents any additional 
charges for data transfer, retrieval, or other storage-
related operations. Cloud computing platforms provide 
powerful computational resources for processing smart 
media content. This includes tasks such as transcoding 
(converting media files from one format to another), 
encoding (compressing media files for efficient storage 
and transmission), decoding (reversing the compression 
process for playback), and rendering (generating visual 
effects or overlays). The cost of processing P can be 
calculated using the equation (3)

= × pP N C   (3)
In equation (3) N is the total amount of data processed and 
Cp is the price per unit of computational resources (e.g., 
CPU hours, GPU hours). Cloud providers typically charge 
for data transferred into and out of their networks, as well 
as between different regions or availability zones. This 
can include data transfer between storage and processing 
resources, as well as between the cloud provider’s network 
and external networks (e.g., the internet). The cost of data 
transfer (T) can be calculated using the equation (4)

= × tT N P  (4)

Figure 1. Cloud technology with PEC-ECC
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In equation (4) N is the total amount of data transferred 
and Pt is the price per unit of data transfer. To minimize 
the overall cost of cloud computing services (C), smart 
media applications must optimize their usage of storage, 
processing, and data transfer resources. This involves 
careful consideration of factors such as data storage 
strategies (e.g., tiered storage, data compression), 
computational efficiency (e.g., task parallelization, 
resource allocation), and data transfer optimization (e.g., 
caching, content delivery networks).

3. SYSTEM MODEL

The system model for Big Data Analytics Parallel Edge 
Computing with ECC (PEC-ECC) encompasses several 
key components and concepts. Big Data Analytics is the 
process of analyzing large and complex datasets to uncover 
hidden patterns, correlations, and insights. Big data 
analytics techniques may include data mining, machine 
learning, statistical analysis, and visualization. Parallel 
Edge Computing (PEC) involves distributing computing 
tasks across a network of edge devices located close to 
the data source or end-users. This decentralized approach 
reduces latency and bandwidth usage by processing 
data locally, improving overall system efficiency and 
responsiveness. Elliptic Curve Cryptography (ECC) 
algorithm based on elliptic curves over finite fields. It 
offers strong security with shorter key lengths compared 
to traditional cryptographic algorithms such as RSA. 
ECC is well-suited for resource-constrained environments 
like edge devices due to its efficiency. PEC-ECC system 
architecture comprises edge devices, communication 
networks, and centralized or distributed servers for 
data processing and storage. Edge devices, such as IoT 
sensors, smartphones, or edge servers, perform local data 
processing and ECC-based encryption before transmitting 
data to the central servers. Data generated at the edge 
devices are processed locally using parallel computing 
techniques. ECC is applied to encrypt sensitive data before 
transmission over the network to ensure confidentiality 
and integrity. Encrypted data is then sent to centralized or 
distributed servers for further analysis and storage. The 
system leverages parallel computing paradigms, such as 
parallel algorithms and distributed computing frameworks 
(e.g., MapReduce, Apache Spark), to efficiently process 
large volumes of data in parallel across multiple edge 
devices. This parallelism enables faster data processing 
and real-time analytics, enhancing system performance 
and scalability. ECC is employed to provide secure 
communication and data encryption between edge devices 
and central servers. By encrypting data at the edge before 
transmission, the system ensures data confidentiality 
and integrity, protecting against unauthorized access and 
cyber-attacks. The distributed nature of PEC-ECC allows 
the system to scale dynamically by adding or removing 
edge devices as needed. This scalability improves system 
efficiency by distributing computational load and reducing 

network congestion, enabling the system to handle 
increasing volumes of data and users.

The system model for Big Data Analytics Parallel Edge 
Computing with ECC (PEC-ECC) is designed to optimize 
data processing, security, and efficiency in edge computing 
environments. This model combines the parallel processing 
capabilities of edge devices with the cryptographic 
strength of Elliptic Curve Cryptography (ECC) to enable 
secure and scalable big data analytics at the network edge. 
The PEC-ECC system model is the utilization of parallel 
computing techniques to distribute computational tasks 
across multiple edge devices. This parallelism enhances 
the system’s ability to process large volumes of data 
in real-time, leveraging the computational resources 
available at the edge. Mathematically, the parallelism can 
be represented using parallel algorithms and distributed 
computing frameworks, such as MapReduce, which enable 
efficient data processing and analysis across distributed 
nodes. Additionally, ECC is employed to provide robust 
security for data transmission and storage within the 
system. The cryptographic strength of ECC allows for 
the encryption of sensitive data at the edge devices before 
transmission over the network. The encryption process 
involves the derivation of elliptic curve parameters and 
the generation of public-private key pairs, which are used 
to encrypt and decrypt data. Mathematically, the ECC 
encryption process can be represented by the elliptic curve 
equation and the point addition and scalar multiplication 
operations defined over finite fields. The integration 
of parallel edge computing and ECC within the PEC-
ECC system model offers several advantages. Firstly, it 
enhances data security by ensuring the confidentiality and 
integrity of data transmitted between edge devices and 
central servers. Secondly, it improves system efficiency by 
enabling parallel processing of data at the network edge, 
reducing latency and bandwidth usage. Lastly, it enhances 
scalability by allowing the system to dynamically adapt to 
changing workload demands and resource availability.

4. PROPOSED BIG DATA ANALYTICS 
PARALLEL EDGE COMPUTING WITH 
ECC (PEC-ECC)

The proposed Big Data Analytics Parallel Edge Computing 
with ECC (PEC-ECC) system aims to revolutionize data 
processing, security, and efficiency in edge computing 
environments. This innovative framework integrates 
parallel edge computing techniques with Elliptic Curve 
Cryptography (ECC) to enable secure and scalable big 
data analytics at the network edge. The system architecture 
of PEC-ECC entails the deployment of edge devices 
equipped with computational resources and ECC-enabled 
encryption capabilities. These edge devices operate in 
parallel, leveraging distributed computing techniques to 
process data locally and in real-time. Mathematically, the 
parallelism in PEC-ECC can be represented using parallel 
algorithms and distributed computing frameworks such 
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as MapReduce, which facilitate efficient data processing 
and analysis across distributed nodes. Furthermore, ECC 
is employed to ensure robust security for data transmission 
and storage within the system. The cryptographic strength 
of ECC enables the encryption of sensitive data at the 
edge devices before transmission over the network. This 
encryption process involves the derivation of elliptic curve 
parameters and the generation of public-private key pairs, 
which are used for encryption and decryption operations. 
Mathematically, the ECC encryption process can be 
represented by the elliptic curve equation and the point 
addition and scalar multiplication operations defined over 
finite fields.

The integration of parallel edge computing and ECC within 
the PEC-ECC system offers several key advantages. Firstly, 
it enhances data security by providing confidentiality and 
integrity for data transmitted between edge devices and 
central servers. Secondly, it improves system efficiency by 
enabling parallel processing of data at the network edge, 
reducing latency and bandwidth usage. Lastly, it enhances 
scalability by allowing the system to dynamically adapt 
to changing workload demands and resource availability. 
In parallel edge computing, tasks are distributed across 
multiple edge devices for concurrent processing, 
improving overall system performance. Mathematically, 
parallelism can be represented using parallel algorithms, 
such as parallel matrix multiplication or parallel sorting 
algorithms. For example, in parallel matrix multiplication, 
if A and B are two matrices to be multiplied, and C is the 
resulting matrix, the parallel algorithm could distribute 
rows or columns of A and B across multiple edge devices, 
each computing a portion of the result C using equation (5)

1
 

=
= ×∑ n

ij ik kjk
C A B   (5)

In equation (5) Cij represents the ith row and jth column 
of the resulting matrix C, and n is the size of the matrices. 
ECC is a cryptographic algorithm based on elliptic curves 
over finite fields. It offers strong security with shorter key 
lengths compared to traditional cryptographic algorithms 
such as RSA. The core operation in ECC is point addition 
and scalar multiplication over elliptic curves. The elliptic 
curve equation is given in equation (6)

( )2 3  ≡ + +y x ax b mod p  (6)

In equation (6) a and b are constants defining the curve, 
and p is a prime number representing the field size. 
Point addition and scalar multiplication operations in 
ECC involve manipulating points on the elliptic curve 
according to specific rules. For example, point addition 
involves finding the third point on the curve that lies on 
the line passing through two given points, while scalar 
multiplication involves repeatedly adding a point to itself 
a certain number of times denoted in equation (7) and 
equation (8)

3 1 2 = +P P P   (7)

=Q kP   (8)

In equation (7) P3, P1, P2, are points on the curve, k is a 
scalar (private key), and Q is the resulting point (public 
key).

Algorithm 1: PEC-ECC for the Smar Media
function PEC_ECC_Processing(data):
    // Parallel Edge Computing (PEC) at the edge devices
    parallel_process(data) // Distribute data processing tasks 
across edge devices
    // Elliptic Curve Cryptography (ECC) for data encryption
    key_pair = generate_key_pair() // Generate ECC public-
private key pair   
    for each data_chunk in processed_data:
        encrypted_chunk = ECC_encrypt(data_chunk, public_
key) // Encrypt data using ECC
    send_encrypted_data(encrypted_data) // Transmit 
encrypted data to central server
function parallel_process(data):
    // Parallel processing of data across multiple edge devices
    divide_data(data) // Divide data into smaller chunks   
    for each chunk in data_chunks:
        process_chunk(chunk) // Process data chunk in parallel
function ECC_encrypt(data_chunk, public_key):
    // ECC encryption of data using public key
    encrypted_data_chunk = ECC_encrypt(data_chunk, 
public_key)
    return encrypted_data_chunk
function generate_key_pair():
    // Generate ECC public-private key pair
    private_key = ECC_generate_private_key()
    public_key = ECC_generate_public_key(private_key)
    return (private_key, public_key)
function send_encrypted_data(encrypted_data):
    // Transmit encrypted data to central server
    establish_connection() // Establish secure connection with 
central server
    send_data(encrypted_data) // Send encrypted data over the 
network
    close_connection() // Close connection with central server

4.1 CRYPTOGRAPHIC PROCESS WITH PEC-
ECC FOR THE SMART MEDIA FOR NEWS 
COMMUNCIATION

In the context of smart media for news communication, 
the integration of Cryptographic Process with PEC-
ECC (Parallel Edge Computing with Elliptic Curve 
Cryptography) offers a robust framework for ensuring 
the security and privacy of sensitive data, while enabling 
efficient data processing at the network edge. The 
cryptographic process begins with the generation of ECC 
key pairs, comprising a public key for encryption and a 
corresponding private key for decryption. Mathematically, 
the ECC key pair generation involves selecting a random 
private key (k) and computing the corresponding public 
key (Q = kG), where G represents a generator point on 
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the elliptic curve. This process can be represented by the 
equation using equation (9)

= ×Q k G  (9)

Once the key pair is generated, the public key is distributed 
to edge devices, while the private key is securely maintained 
by the central server. In the PEC-ECC framework, edge 
devices perform parallel processing of smart media data, 
such as video streams or textual content, using parallel 
computing techniques. This parallelism enhances the 
efficiency of data processing, enabling real-time analysis 
and content delivery. Mathematically, parallel processing 
involves distributing data chunks across multiple edge 
devices and executing processing tasks concurrently, 
optimizing computational resources and reducing 
processing latency. Simultaneously, the cryptographic 
process ensures the confidentiality and integrity of smart 
media data during transmission from edge devices to the 
central server. Each data chunk processed at the edge 
is encrypted using the ECC public key before being 
transmitted over the network. The ECC encryption process 
involves mapping the plaintext data onto points on the 
elliptic curve and computing ciphertext points using scalar 
multiplication. Mathematically, ECC encryption can be 
represented in equation (10)

 = + ×C M k Q  (10)

In equation (10) M represents the plaintext data, C 
represents the ciphertext, Q is the ECC public key, and k is 
a randomly generated scalar. Upon receiving the encrypted 
data, the central server utilizes its private key to decrypt 
the ciphertext and perform further analysis or distribution. 
This decryption process involves scalar multiplication of 
the ciphertext with the server’s private key, resulting in 
the retrieval of the original plaintext data. Mathematically, 
ECC decryption can be represented in equation (11)

= − ×M C d Q  (11)

In equation (11) M represents the decrypted plaintext, C 
represents the received ciphertext, Q is the ECC public 
key, and d is the server’s private key. Figure 2 illustrated 
the cloud server environment for the PEC-ECC model in 
the smart cloud environment. 

Algorithm 2: Smar Media with PEC-ECC
function PEC_ECC_Processing(media_data):
    // Parallel Edge Computing (PEC) at the edge devices
    parallel_process(media_data) // Distribute data processing 
tasks across edge devices
    // Elliptic Curve Cryptography (ECC) for data encryption
    key_pair = generate_key_pair() // Generate ECC public-
private key pair
    for each data_chunk in processed_media_data:
        encrypted_chunk = ECC_encrypt(data_chunk, public_
key) // Encrypt data using ECC
    send_encrypted_data(encrypted_data) // Transmit 
encrypted data to central server
function parallel_process(media_data):
    // Parallel processing of media data across multiple edge 
devices
    divide_media_data(media_data) // Divide media data into 
smaller chunks
        for each chunk in media_data_chunks:
        process_chunk(chunk) // Process media data chunk in 
parallel
function ECC_encrypt(data_chunk, public_key):
    // ECC encryption of data using public key
    encrypted_data_chunk = ECC_encrypt(data_chunk, 
public_key)
    return encrypted_data_chunk
function generate_key_pair():
   // Generate ECC public-private key pair
   private_key = ECC_generate_private_key()

Figure 2. Cloud server for the PEC-ECC
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    public_key = ECC_generate_public_key(private_key)
    return (private_key, public_key)
function send_encrypted_data(encrypted_data):
    // Transmit encrypted data to central server
    establish_connection() // Establish secure connection with 
central server
    send_data(encrypted_data) // Send encrypted data over the 
network
    close_connection() // Close connection with central server

5. EXPERIMENTAL SETUP 

The experimental setup for PEC-ECC involves configuring 
a test environment to evaluate the performance and 
efficacy of the proposed system in processing smart 
media data with parallel edge computing and Elliptic 
Curve Cryptography (ECC). Firstly, a set of edge devices 
representative of real-world scenarios, such as IoT 
devices, edge servers, or mobile devices, is selected. 
These devices should have sufficient computational 
capabilities to perform data processing tasks in parallel 
and support ECC-based encryption and decryption. Next, 
a central server is provisioned to coordinate and manage 
the processing tasks performed by the edge devices. The 
server should have adequate resources to handle incoming 
encrypted data, decrypt it using ECC, and perform further 
analysis or distribution as required. For the experimental 
data, a diverse set of smart media content is chosen, 
including video streams, audio recordings, images, and 
text articles. This data should represent typical content 
encountered in news communication scenarios, varying 
in size, format, and complexity. The ECC parameters, 
such as the elliptic curve equation, prime modulus, and 
generator point, are predefined and shared among the edge 
devices and central server for encryption and decryption 
operations. The experimental setup also includes 
establishing communication channels between the edge 
devices and the central server. Secure communication 
protocols, such as HTTPS or TLS, are employed to ensure 
the confidentiality and integrity of data transmission. To 
evaluate the performance of PEC-ECC, various metrics 
are considered, including processing latency, throughput, 
resource utilization, and energy efficiency. These metrics 
are measured under different scenarios, such as varying 
data sizes, computational loads, and network conditions, 
to assess the scalability and robustness of the system. Table 
1 shows simalation setup.

6. RESULTS AND DISCUSSION

The results and discussion section serves as the cornerstone 
of any research endeavor, offering a comprehensive 
analysis and interpretation of the findings obtained through 
experimentation and simulation. In this section, we present 
a detailed examination of the outcomes obtained from 
our experimental setup and discuss their implications in 
the context of the proposed PEC-ECC framework for 
smart media in news communication. Through a rigorous 

evaluation of performance metrics, such as processing 
latency, throughput, resource utilization, and security, 
we aim to shed light on the effectiveness, efficiency, and 
scalability of the PEC-ECC system in securely processing 
and transmitting smart media data at the network edge. 
Furthermore, we delve into the implications of our findings 
on the advancement of edge computing and cryptographic 
techniques in enhancing data privacy, integrity, and real-time 
analytics capabilities for modern communication systems. 

The Figure 3 and Table 2 present the results of the Cloud 
Model with PEC-ECC for various scenarios, including 
video streams, audio recordings, images, and text articles, 
each with different data sizes. For the video stream 
scenario, we observe that as the data size increases from 10 
MB to 50 MB, the processing latency also increases from 
50 ms to 200 ms. However, the throughput improves from 
200 MB/s to 250 MB/s, indicating that despite the higher 
processing time, more data is being processed per unit time. 
This increase in processing time correlates with higher 
CPU and memory utilization, as well as increased energy 

Table 1. Simulation setup

Component Description
Edge Devices - 10 IoT devices equipped with quad-core 

processors (2.0 GHz)
- Each device has 4 GB RAM and 32 GB 
storage capacity

Central Server - 1 central server with octa-core processor 
(3.0 GHz)
- 16 GB RAM and 500 GB SSD storage 
capacity

Smart Media 
Data

- Video streams, audio recordings, images, 
and text articles
- Data sizes ranging from 1 MB to 100 
MB

ECC Parameters - Elliptic curve: secp256r1 (NIST P-256)
- Prime modulus (p): 11579208921035624
8762697446949407573529996955224135
760342422259061068512044369
- Generator point (G): (x, y) coordinates

Communication - Secure HTTPS/TLS communication 
channels between edge devices and server

Metrics - Processing latency: measured in 
milliseconds
- Throughput: data processed per unit time 
(e.g., MB/s)
- Resource utilization: CPU and memory 
usage (%)
- Energy efficiency: power consumption 
(Watts)

Security 
Assessment

- Evaluation of encrypted data for 
vulnerabilities
- Attempted decryption without access to 
private key
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consumption. Similarly, in the audio recording scenario, 
we observe a trade-off between processing latency and 
throughput as the data size varies. While the processing 
latency increases from 20 ms to 80 ms with larger data sizes, 
the throughput remains relatively high, ranging from 200 
MB/s to 250 MB/s. This is accompanied by higher CPU and 
memory utilization, resulting in slightly increased energy 
consumption. For the image and text article scenarios, we 
observe similar trends in processing latency, throughput, 
and resource utilization. Despite differences in data size 
and content type, the processing latency generally remains 

low, with throughput varying based on the size of the data. 
Additionally, CPU and memory utilization increase with 
larger data sizes, leading to higher energy consumption. 
The results demonstrate the efficacy of the Cloud Model 
with PEC-ECC in efficiently processing and transmitting 
smart media data while maintaining reasonable processing 
latency and high throughput. However, the trade-offs 
between processing time, resource utilization, and energy 
consumption highlight the need for optimization strategies 
to further enhance the performance and scalability of the 
system.

Table 2. Cloud model with PEC-ECC
Scenario Data Size 

(MB)
Processing 

Latency (ms)
Throughput 

(MB/s)
CPU Utilization 

(%)
Memory 

Utilization (%)
Energy 

Consumption 
(Watts)

Video Stream 10 50 200 80 60 15
50 200 250 90 70 20

Audio Recording 5 20 250 70 50 10
20 80 200 85 60 12

Image 2 10 200 60 40 8
10 40 250 75 50 12

Text Article 1 5 200 50 30 6
5 20 250 65 40 8

Figure 3. PEC-ECC for the cloud model
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In Figure 4 and Table 3 presents the results of the 
Cryptography process with PEC-ECC, showcasing the 
encryption and decryption outcomes for different types of 
data chunks, including video, audio, image, and text. For 
the video data chunk, consisting of 10 MB of plaintext, 
the encryption process increases the data size to 12 MB 
due to the overhead introduced by the ECC encryption. 
However, upon decryption, the data is restored to its 
original size of 10 MB, demonstrating the effectiveness 
of ECC in preserving data integrity during encryption 
and decryption operations. Similarly, for the audio data 
chunk of 5 MB, the encryption process results in a slightly 
larger encrypted data size of 6 MB, while decryption 
successfully restores the data to its original size of 5 MB. 
This reaffirms the reliability of ECC in maintaining data 
consistency throughout the cryptographic process. In the 
case of image data, comprising 2 MB of plaintext, the 
encryption process increases the data size to 2.5 MB, with 

decryption reverting the data back to its original size of 
2 MB. This indicates the consistent performance of ECC 
in handling different types of media data while ensuring 
accurate encryption and decryption outcomes. Lastly, 
for the text data chunk of 1 MB, the encryption process 
results in an encrypted data size of 1.2 MB, slightly larger 
than the original plaintext size. However, decryption 
successfully restores the data to its original size of 1 
MB, highlighting the robustness of ECC in maintaining 
data fidelity across various data formats. The results 
demonstrate the effectiveness of the Cryptography process 
with PEC-ECC in securely encrypting and decrypting 
smart media data while preserving data integrity and 
confidentiality. These findings underscore the reliability of 
ECC as a cryptographic technique in ensuring the secure 

Figure 4. Cryptography with PEC-ECC

Table 3. Cryptography process with PEC-ECC
Data 

Chunk
Plaintext 

(MB)
Encrypted 
Data (MB)

Decrypted Data 
(MB)

Video 10 12 10
Audio 5 6 5
Image 2 2.5 2
Text 1 1.2 1

Table 4. Data computation with PEC-ECC
Scenario Data 

Size 
(MB)

Storage 
Cost ($)

Processing 
Cost ($)

Total 
Cost ($)

Video 
Stream

100 10 20 30

Audio Re-
cording

50 5 15 20

Image 20 2 10 12
Text Article 10 1 5 6
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transmission and processing of sensitive information in 
edge computing environments.

The Figure 5 and Table 4 illustrate the results of Data 
Computation with PEC-ECC, presenting the associated 
costs for processing and storing smart media data across 
different scenarios. For the video stream scenario, with 
a data size of 100 MB, the total cost amounts to $30, 
comprising $10 for storage and $20 for processing. 
Similarly, for audio recording data of 50 MB, the total cost 
is $20, with $5 allocated for storage and $15 for processing. 
The image and text article scenarios, with data sizes of 20 
MB and 10 MB respectively, incur total costs of $12 and 
$6, with varying proportions for storage and processing 

costs. These results highlight the cost implications of 
leveraging PEC-ECC for data computation, with larger 
data sizes generally resulting in higher total costs due to 
increased processing requirements. The Figure 6 and Table 
5 provides insights into the costs associated with data 
transfer using PEC-ECC across different scenarios. For the 
video stream scenario, with a data size of 100 MB, the data 
transfer cost is $5. Similarly, for audio recording, image, 
and text article scenarios, with data sizes of 50 MB, 20 
MB, and 10 MB respectively, the data transfer costs are 
$3, $2, and $1 respectively. These findings underscore the 
importance of considering data transfer costs alongside 
processing and storage costs when evaluating the overall 
economic feasibility of employing PEC-ECC for smart 
media applications.

7. CONCLUSION

The proposed framework of Parallel Edge Computing 
with Elliptic Curve Cryptography (PEC-ECC) presents 
a robust and efficient solution for securely processing 
and transmitting smart media data in edge computing 
environments. Through experimentation and simulation, 
we have demonstrated the effectiveness of PEC-ECC in 

Figure 5. Data computation with PEC-ECC

Table 5. Data transferred with PEC-ECC
Scenario Data Size 

(MB)
Data Transfer Cost ($)

Video Stream 100 5
Audio Recording 50 3
Image 20 2
Text Article 10 1
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achieving real-time analytics, ensuring data confidentiality, 
integrity, and reducing processing latency. The results of 
our experiments highlight the scalability and versatility 
of PEC-ECC across various scenarios, including video 
streams, audio recordings, images, and text articles. 
Despite differences in data sizes and formats, PEC-ECC 
consistently delivers reliable encryption and decryption 
outcomes, preserving data integrity and confidentiality 
while minimizing processing overhead. Furthermore, our 
analysis of the cost implications associated with PEC-
ECC, including storage, processing, and data transfer 
costs, underscores its economic feasibility for smart 
media applications. By optimizing resource utilization and 
leveraging parallel edge computing techniques, PEC-ECC 
offers a cost-effective solution for handling large volumes 
of smart media data at the network edge.
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