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SUMMARY

A smart campus signifies the profound integration of machine vision technology with physical education, creating an 
innovative and dynamic learning environment. By incorporating machine vision into physical education settings, the 
campus becomes an intelligent ecosystem where advanced image recognition and analysis enhance various aspects of 
student engagement and well-being. From automated fitness assessments to real-time monitoring of physical activities, 
machine vision contributes to personalized and data-driven physical education experiences. This integration not only 
revolutionizes the way students interact with fitness routines but also facilitates efficient tracking of progress and overall 
health. The study proposes a novel IoT-enabled routing scheme based on Middle-Order Chain Deep Learning (MOCDL) 
to enhance the synergy between machine vision and physical education initiatives. By integrating IoT capabilities, the 
smart campus establishes a network that seamlessly connects various physical education resources and facilities, fostering 
a more interconnected and intelligent learning environment. The MOCDL algorithm, acting as the backbone of this 
integration, optimizes the routing of information, enabling efficient data exchange between machine vision systems and 
physical education programs. This deep integration facilitates real-time monitoring of student activities, personalized 
fitness assessments, and data-driven insights into overall well-being. The proposed framework not only elevates the 
quality of physical education experiences but also contributes to the establishment of a technologically advanced and 
holistic smart campus paradigm.
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1. INTRODUCTION

Automatic numbering systems must not be used. The Internet 
of Things (IoT) has rapidly transformed the way we interact 
with technology, revolutionizing various sectors including 
healthcare, transportation, agriculture, and smart homes 
[1]. IoT refers to the network of interconnected devices 
embedded with sensors, software, and other technologies, 
enabling them to collect and exchange data over the 
internet. This interconnectedness allows for seamless 
communication between devices, leading to improved 
efficiency, automation, and decision-making processes 
[2]. In healthcare, IoT devices like wearable monitors and 
remote patient monitoring systems enable continuous health 

tracking and real-time data analysis, enhancing patient care 
and treatment outcomes. In agriculture, IoT sensors can 
monitor soil conditions, weather patterns, and crop health, 
optimizing farming practices and increasing yield [3]. In 
transportation, IoT-enabled vehicles can communicate with 
each other and with infrastructure to improve traffic flow, 
reduce accidents, and enhance overall safety. Moreover, in 
smart homes, IoT devices such as smart thermostats, lights, 
and security systems offer convenience, energy savings, and 
enhanced security through remote monitoring and control 
[4]. However, as IoT adoption continues to grow, concerns 
regarding data privacy, security vulnerabilities, and 
interoperability challenges remain pertinent, necessitating 
robust regulatory frameworks and cybersecurity measures 
to safeguard against potential risks [5].

A Smart Campus powered by the Internet of Things (IoT) 
represents a cutting-edge integration of technology to 
enhance various aspects of campus life and operations. 
Through interconnected devices embedded with sensors 
and data analytics capabilities, a Smart Campus can 
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optimize resource utilization, improve safety, and 
enhance overall efficiency [6]. For instance, IoT sensors 
can monitor energy consumption in buildings, allowing 
for intelligent adjustments to heating, cooling, and 
lighting systems to conserve resources and reduce costs. 
Additionally, real-time tracking of campus transportation 
through IoT-enabled vehicles can optimize routes, 
minimize congestion, and provide more efficient shuttle 
services for students and staff [7]. IoT devices can 
also enhance campus security by enabling surveillance 
cameras, access control systems, and emergency alert 
mechanisms to respond proactively to potential threats 
[8]. Furthermore, IoT-powered smart classrooms equipped 
with interactive whiteboards, attendance tracking systems, 
and personalized learning platforms can transform the 
educational experience by fostering student engagement 
and facilitating more effective teaching methodologies [9]. 
While the implementation of IoT in a Smart Campus offers 
numerous benefits, it also requires careful consideration of 
data privacy, cybersecurity, and interoperability to ensure 
the seamless integration and functionality of diverse IoT 
devices across campus infrastructure [10]. A Smart Campus 
driven by IoT technologies holds the potential to create a 
more connected, sustainable, and innovative environment 
for learning, research, and community engagement.

An IoT Smart Campus enhanced with machine vision 
technology represents a powerful convergence of 
innovation aimed at revolutionizing various facets of 
campus life. By integrating machine vision capabilities 
into the Internet of Things (IoT) ecosystem, campuses 
can achieve unprecedented levels of efficiency, safety, 
and functionality [11]. Machine vision systems, powered 
by advanced algorithms and image processing techniques, 
enable devices to interpret and analyze visual data in real-
time. In a Smart Campus context, this translates to a wide 
range of applications, including intelligent surveillance, 
facility management, and personalized services [12]. 
For instance, machine vision-enabled security cameras 
can automatically detect and respond to security threats, 
unauthorized access, or suspicious activities, enhancing 
campus safety and security. Additionally, machine vision 
can optimize space utilization by monitoring occupancy 
levels in classrooms, libraries, and common areas, 
allowing for efficient allocation of resources and facilities 
management [13]. Moreover, in areas such as campus 
transportation, machine vision-equipped vehicles can 
enhance navigation, pedestrian detection, and collision 
avoidance, ensuring safer and more reliable transportation 
services for students and faculty [14]. Furthermore, machine 
vision technology can personalize campus experiences by 
recognizing individuals and providing tailored services 
such as wayfinding assistance, campus navigation, and 
interactive information displays. However, the deployment 
of machine vision in a Smart Campus environment also 
raises important considerations regarding data privacy, 
ethical use of surveillance, and transparency in algorithms 
[15]. Therefore, comprehensive policies and regulations 

must be implemented to address these concerns and 
ensure responsible deployment and operation of machine 
vision systems across the campus [16]. The integration of 
machine vision technology within an IoT Smart Campus 
holds immense potential to create a more secure, efficient, 
and personalized environment conducive to learning, 
research, and community engagement.

Machine Vision into an IoT Smart Campus for physical 
education introduces a groundbreaking approach to 
enhancing the effectiveness and safety of physical activities 
within the educational environment [17]. By leveraging 
Machine Vision technology, the Smart Campus can deploy 
cameras and sensors to accurately track and analyze 
students’ movements and performance during physical 
education classes and sports activities. These systems 
can provide real-time feedback on techniques, posture, 
and progress, enabling instructors to offer personalized 
coaching and interventions [18]. Moreover, Machine Vision 
can play a crucial role in ensuring the safety of students 
by detecting potential hazards or risky behaviors, such as 
improper weightlifting techniques or dangerous playing 
conditions on sports fields. Additionally, Machine Vision 
can facilitate automated attendance tracking, equipment 
inventory management, and facility utilization optimization, 
streamlining administrative tasks for physical education 
departments [19]. Through the seamless integration of 
Machine Vision with IoT infrastructure, the Smart Campus 
not only enhances the quality of physical education but 
also fosters a safer and more efficient environment for 
students to engage in healthy and active lifestyles [20]. 
To address privacy concerns and implement robust data 
security measures to protect students’ personal information 
and uphold their rights in the context of data collection 
and analysis [21]. The combination of IoT and Machine 
Vision technologies represents a transformative approach 
to redefining physical education standards and promoting 
student well-being within the modern educational landscape.

This paper presented the Firstly, it provides a comprehensive 
exploration and analysis of IoT-enabled smart campus 
environments, shedding light on various applications 
and challenges in this domain. Secondly, it introduces 
and evaluates the efficacy of Middle-Order Chain Deep 
Learning (MOCDL) for tasks such as physical education, 
data transmission, and classification within smart 
campuses. Thirdly, through extensive simulations and 
evaluations, it demonstrates the superior performance of 
MOCDL compared to traditional machine learning models 
like SVM, Random Forest, and Regression. Fourthly, 
it highlights the robustness and scalability of MOCDL 
across different network sizes, showcasing its potential 
for optimizing smart campus operations and enhancing 
decision-making processes. Lastly, this research contributes 
valuable insights and methodologies that can facilitate the 
development of more intelligent and adaptive smart campus 
systems, thereby fostering innovation and advancement in 
the field of IoT and deep learning applications.
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2. RELATED WORKS

The diverse range of studies focused on various aspects 
of IoT-based smart campuses. Sneesl, Jusoh, Jabar, and 
Abdullah (2022) present a systematic review aimed 
at refining the understanding of technology adoption 
factors specific to IoT-based smart campuses. Cavus et al. 
(2022) conduct a systematic literature review exploring 
the applications of the Internet of Things (IoT) in smart 
campus contexts. Polin et al. (2023) contribute a review 
and conceptual framework delineating the development 
of smart campuses. Sungheetha (2022) focuses on the 
assimilation of IoT sensors for data visualization in 
smart campus environments. Hidayat and Sensuse (2022) 
propose a knowledge management model tailored for 
smart campuses in Indonesia. García-Monge et al. (2023) 
investigate the role of IoT monitoring in enhancing 
building energy efficiency within smart campuses. Tseng, 
Chen, and Yang (2022) develop an augmented reality-
based smart campus platform. Brand et al. (2022) introduce 
“Sapientia,” a Smart Campus model emphasizing device 
and application flexibility. Toutouh and Alba (2022) 
design a low-cost IoT cyber-physical system for vehicle 
and pedestrian tracking on smart campuses. Alkhammash 
et al. (2022) explore the integration of IoT and blockchain 
technologies to revolutionize smart campus architecture. 
Cheong and Nyaupane (2022) delve into smart campus 
communication, IoT, and data governance, focusing on 
student tensions and imaginaries. Razzaq et al. (2022) assess 
vertical scaling for smart campus environments utilizing 
IoT. Silva-da-Nóbrega et al. (2022) present a framework 
highlighting challenges and opportunities for smart campus 
development based on sustainable development goals. 
Pexyean, Saraubon, and Nilsook (2022) investigate the 
synergies between IoT, AI, and digital twin technologies 
for smart campuses. Astawa, Sanjaya, and Jaya (2022) 
examine smart campus development as a supporter of 
research and community service activities. Ahmed et al. 
(2022) propose an IoT platform for remote monitoring and 
control of smart buildings toward achieving an intelligent 
campus. Ferreira Jr. et al. (2022) optimize IoT gateway 
deployment for smart campuses using software-defined 
and virtualized approaches. Kou and Park (2022) present 
a distributed energy management approach for smart 
campus demand response. Shtewi et al. (2022) develop 
a smart university campus based on IoT, using An-Najah 
National University as a case study. Finally, Xu, Wang, and 
Zhang (2022) conduct research on intelligent campuses 
and visual teaching systems based on IoT.

Firstly, Sneesl et al. (2022) offer insights into the factors 
influencing the adoption of IoT technologies in smart 
campuses through a systematic review, contributing to a 
deeper understanding of the challenges and opportunities 
in this domain. Building on this, Cavus et al. (2022) 
provide a broader perspective by systematically reviewing 
the applications of IoT across different aspects of 
smart campuses, shedding light on the diverse range of 

possibilities enabled by IoT technologies. Polin et al. (2023) 
contribute a conceptual framework for the development of 
smart campuses, outlining key considerations and strategies. 
Sungheetha (2022) focuses on the practical integration of 
IoT sensors for data visualization, emphasizing the role of 
data-driven insights in optimizing campus operations and 
services. Furthermore, Hidayat and Sensuse (2022) propose 
a knowledge management model tailored specifically for 
smart campuses, highlighting the importance of effectively 
managing and leveraging information within educational 
environments. García-Monge et al. (2023) investigate the 
potential of IoT monitoring in improving building energy 
efficiency, showcasing the sustainability implications of IoT 
applications in smart campuses. The studies by Tseng, Chen, 
and Yang (2022), Brand et al. (2022), and Toutouh and Alba 
(2022) present practical solutions and innovations, ranging 
from augmented reality platforms to low-cost IoT systems 
for tracking and monitoring campus resources and activities.

Alkhammash et al. (2022) explore the integration of 
emerging technologies like blockchain with IoT to 
reimagine smart campus architecture, while Cheong and 
Nyaupane (2022) delve into the socio-technical aspects 
of smart campus communication, emphasizing the need 
to address student perspectives and concerns. Moreover, 
Razzaq et al. (2022) assess the scalability of IoT solutions 
in smart campuses, considering the potential challenges 
and benefits of vertical scaling. Silva-da-Nóbrega et al. 
(2022) offer a sustainability-focused framework for smart 
campus development, aligning with global sustainable 
development goals. Pexyean, Saraubon, and Nilsook (2022) 
explore the synergies between IoT, artificial intelligence 
(AI), and digital twin technologies, illustrating how these 
integrated systems can enhance campus operations and 
experiences. Astawa, Sanjaya, and Jaya (2022) discuss 
the broader societal impact of smart campus initiatives, 
emphasizing their role in supporting research and 
community service activities. Ahmed et al. (2022) propose 
a practical IoT platform for remote monitoring and control 
of smart buildings within campuses, contributing to the 
realization of intelligent campus environments. Ferreira 
Jr. et al. (2022) focus on the optimization of IoT gateway 
deployment, employing software-defined and virtualized 
approaches to enhance scalability and efficiency.

Kou and Park (2022) introduce a distributed energy 
management approach tailored for smart campuses, 
addressing the growing need for sustainable energy 
solutions. Finally, Shtewi et al. (2022) present a case 
study of IoT-based smart campus development, offering 
insights into the practical challenges and opportunities 
encountered during implementation. Xu, Wang, and Zhang 
(2022) focus on the development of an intelligent campus 
and visual teaching system based on IoT, highlighting the 
potential of IoT-driven solutions to enhance teaching and 
learning experiences within educational settings. Lastly, 
ALQathami et al. (2023) explore the implementation of a 
zero-touch entrance system and air quality monitoring in 
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smart campus design, underscoring the importance of IoT 
applications in promoting health, safety, and sustainability 
within campus environments.

Firstly, many of these studies are focused on specific 
aspects or applications of IoT within smart campuses, 
potentially overlooking broader systemic interactions and 
dependencies. Additionally, the rapidly evolving nature of 
IoT technologies means that some research findings may 
become outdated relatively quickly, necessitating ongoing 
updates and revisions. Furthermore, there may be a lack 
of standardization across studies, making it challenging 
to compare findings or generalize conclusions across 
different contexts. Moreover, while the benefits of IoT 
implementation in smart campuses are often highlighted, 
there is a need for more research on the potential drawbacks, 
risks, and ethical considerations associated with pervasive 
data collection and connectivity. Lastly, the geographical 
and institutional contexts of the studies may vary, limiting 
the applicability of findings to diverse settings. Addressing 
these limitations will be crucial for advancing the field and 
ensuring the successful implementation of IoT in smart 
campus environments. Figure 1 shows Smart campus for 
phyiscal education.

3. MIDDLE-ORDER CLUSTERING

Middle-Order Clustering Middle-Order Chain Deep 
Learning (MOCDL) for the smart Campus” appears to 
describe a specific method or approach related to deep 
learning techniques applied in the context of smart 
campuses. This method likely involves the utilization of 
middle-order clustering and chain deep learning algorithms 
to process and analyze data collected within a smart campus 
environment. Middle-Order Clustering is a clustering 
technique applied to data within the smart campus context. 
Clustering involves grouping similar data points together 
based on certain features or characteristics. “Middle-order” 
may refer to the level or depth of clustering performed, 
possibly indicating a clustering approach that operates at 
an intermediate level of granularity. Middle-Order Chain 
imply a sequential or chain-like processing of data clusters 
at the middle-order level. It suggests that the clustered data 
undergoes further analysis or processing in a sequential 

manner, possibly to extract higher-level patterns or 
insights. Deep Learning (DL) is subset of machine learning 
techniques that involve neural networks with multiple 
layers (deep neural networks). Deep learning algorithms 
are capable of automatically learning representations 
of data through the composition of increasingly abstract 
features. Smart Campus denotes an environment where 
various Internet of Things (IoT) devices and sensors are 
deployed to collect data and optimize operations within 
a university or educational institution. A smart campus 
leverages technology to enhance efficiency, sustainability, 
safety, and overall user experience. The “Middle-Order 
Clustering Middle-Order Chain Deep Learning (MOCDL) 
for the smart Campus” likely represents an advanced data 
processing and analysis approach tailored to the needs of 
smart campus environments, aiming to extract meaningful 
insights and optimize various aspects of campus operations 
through deep learning techniques applied to clustered data.

In a smart campus, various IoT devices such as sensors, 
actuators, cameras, and smart meters are deployed to 
collect a wide range of data including environmental 
conditions, energy consumption, occupancy patterns, and 
more. Let { }1, 2, ,=X x x I xn  represent the collected IoT 
data, where each xi   is a data point with multiple features. 
Before clustering, relevant features are extracted from 
the raw IoT data. Let { }1, 2, ,=F f f I fm  denote the set 
of extracted features, where each fj   represents a specific 
characteristic or attribute of the data points. The next step 
involves calculating the distance between data points 
based on their feature values. A common distance metric 
used in clustering is Euclidean distance calculated using 
equation (1)

( ) ( )2

, ,1
,    

=
= −∑m

i j i k j kk
d x x x x  (1)

In equation (1) ,  i kx and ,j kx  are the k-th features of data 
points xi  and xj   respectively. A clustering algorithm is 
then applied to the IoT data to group similar data points 
together. One popular algorithm is k-means clustering. The 
algorithm iteratively partitions the data into k clusters by 
minimizing the within-cluster sum of squares. The cluster 
centroids are updated until convergence. Middle-order 
clustering involves clustering the data at an intermediate 
level of granularity, which may involve clustering the 
clusters obtained from the initial clustering step. This could 
be achieved through hierarchical clustering techniques 
like agglomerative clustering or divisive clustering. In 
this context, IoT data is integrated into the middle-order 
clustering process. This could involve incorporating 
additional IoT features or adjusting the clustering 
algorithm based on insights gained from the IoT data.  In a 
smart campus, IoT devices generate data continuously. Let 

{ }1, 2, ,=X x x I xn  represent the collected IoT data, where 
n is the number of data points. Let X be an  ×n m matrix, 
where each row xi   represents a data point and each column 
fj   represents a feature. Feature extraction aims to identify 

Figure 1. Smart campus for physical education
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relevant attributes from the raw IoT data. This step might 
involve techniques like principal component analysis 
(PCA) or feature engineering to reduce dimensionality 
and enhance clustering quality. After initial clustering 
with k-means, middle-order clustering aims to cluster the 
obtained clusters. One approach is hierarchical clustering, 
which builds a tree of clusters. Agglomerative clustering 
starts with each data point as a singleton cluster and merges 
them iteratively. Divisive clustering begins with all data 
points in one cluster and splits them recursively.

Algorithm 1: Middle Order Clustering for Smart City
Input: 
- IoT data X
- Number of initial clusters k
- Number of middle-order clusters m
1. Preprocess IoT data:
   - Extract relevant features
   - Normalize the data if necessary
2. Perform initial clustering using k-means:
   centroids = InitializeCentroids(X, k)
   clusters = AssignToClusters(X, centroids)
   Repeat until convergence:
       new_centroids = UpdateCentroids(clusters)
       clusters = AssignToClusters(X, new_centroids)
3. Perform middle-order clustering:
   a. Apply hierarchical clustering on the obtained 
clusters:
      hierarchical_clusters = HierarchicalClustering(clus-
ters)
   b. Determine the middle-order clusters using m 
clusters:
      middle_order_clusters = DetermineMiddleOrder-
Clusters(hierarchical_clusters, m)

4. MIDDLE-ORDER CHAIN DEEP 
LEARNING (MOCDL)

In the context of smart campuses, Middle-Order Chain 
Deep Learning (MOCDL) represents a sophisticated 
approach to leveraging IoT data for various applications 
such as predictive maintenance, resource optimization, 
and anomaly detection. MOCDL integrates deep learning 
techniques with middle-order chain analysis to extract 
valuable insights from complex IoT data streams, 
facilitating intelligent decision-making processes within 
smart campus environments. Initially, the data undergoes 
preprocessing to handle missing values, noise reduction, and 
feature engineering, ensuring its suitability for subsequent 
analysis. Middle-order chain analysis is then employed 
to uncover relationships and dependencies between 
different IoT variables. This analysis entails constructing 
chains of dependencies, often represented using graphical 
structures like Bayesian networks or Markov chains, 
to capture both direct correlations and higher-order 
dependencies. Integration with deep learning techniques, 
such as recurrent neural networks (RNNs) or long short-
term memory (LSTM) networks, enables MOCDL to learn 
intricate patterns and temporal dependencies within the IoT 

data. The framework optimizes the use of low-level sensor 
data and high-level contextual information, enhancing the 
accuracy and robustness of predictive models. Finally, 
the parameters of the MOCDL model are optimized and 
evaluated using training, validation, and test datasets 
to ensure its effectiveness in real-world smart campus 
scenarios. Through this integrated approach, MOCDL 
facilitates more accurate predictions, improved anomaly 
detection, and enhanced decision-making capabilities, 
ultimately contributing to the efficient management and 
optimization of campus resources stated in equation (2)

( )=preprocessed rawX Preprocess X  (2)

Middle-order chain analysis aims to identify dependencies 
and correlations between IoT variables. Let’s denote the 
set of IoT variables as { }1, 2, ,=V V V I Vn . The middle-
order chain analysis can be expressed using equation (3)

( )( ) ( )( )| =i Parents i Parents iP V V V f V V   (3)

In equation (3) ( )Vparents Vi  represents the parents of 
variable Vi   in the chain, and ()f  is a function representing 
the conditional probability distribution. Deep learning 
techniques, such as Recurrent Neural Networks (RNNs) 
or Long Short-Term Memory (LSTM) networks, can be 
integrated to capture temporal dependencies within the 
IoT data. For instance, an LSTM layer can be represented 
using equation (4) 

( )1, −=t t th LSTM x h  (4)

In equation (4) ht   is the hidden state at time t, xt   is the 
input at time t, and 1−ht   is the hidden state from the 
previous time step. Finally, the parameters of the MOCDL 
model are optimized using training data and validated using 
validation data. This involves minimizing a loss function 
L  by adjusting the model parameters. The optimization 
process can be formulated using equation (5) 

( )*
1

 ,θθ
=

= ∑ N
i ii

argmin L y y   (5)

In equation (5) θ represents the parameters of the MOCDL 
model, yi   is the true label, iy  is the predicted label, and N  
is the number of samples in the training dataset. Suppose 
we have a dataset represented as a matrix X, where each row 
corresponds to an observation and each column represents 
a variable. We aim to derive the conditional dependencies 
between variables in the dataset. Mathematically, for two 
variables Vi   and Vj , calculate the conditional dependency 
using a measure like mutual information using equation (6)
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( ) ( )

; |

; |
 , ,

| |
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i j k

i j k

i j k
i j kv v v

i k j k

I V V V

P V V V
P v v v log

P V V P V V
 (6)

In equation (6) ( , )I Vi Vj Vk  denotes the conditional 
mutual information between variables Vi   and Vj   
given variable Vk  , and ( ), ,P vi vj vk  represents the joint 
probability distribution of ,  ,  Vi Vj and Vk  . Once the 
conditional dependencies between variables are derived, 
a clustering algorithm is applied to group variables with 
similar conditional relationships. One possible algorithm 
is the K-means algorithm adapted for clustering variables 
based on their conditional dependencies. The algorithm 
iteratively assigns variables to clusters and updates the 
cluster centroids until convergence. The objective function 
of the middle-order clustering algorithm aims to minimize 
the discrepancy between the conditional dependencies 
within each cluster and maximize the differences between 
clusters. Mathematically, the objective function can be 
formulated using equation (7)

( ), ,1 1 1
; |  

= = =
−∑ ∑ ∑i ik n n

i j i l k ii j l
minimize I V V V I

 
(7)

In equation (7) k  is the number of clusters, ni   is the 
number of variables in cluster i , ( , ; , )I Vi j Vi l Vk  is the 
conditional mutual information between variables ,Vi j   
and ,Vi l   given variable Vk   in cluster I, and  iI  is the 
average conditional mutual information within cluster i.

5. SMART CAMPUS WITH MOCDL WITH 
MACHINE VISION FOR PHYSICAL 
EDUCATION

Middle-Order Chain Deep Learning (MOCDL) with 
machine vision for physical education in a Smart Campus 
environment enhanced by the Internet of Things (IoT) 
presents a comprehensive approach to optimizing 
physical activity monitoring and analysis. MOCDL, 
a sophisticated clustering technique, facilitates the 
identification of intricate patterns and dependencies within 
high-dimensional datasets, such as those generated by 
IoT-enabled sensors in smart campus environments. By 
leveraging machine vision technology, which enables 
computers to interpret and understand visual information, 
physical education activities can be accurately captured and 
analyzed in real-time. This combination offers a powerful 
framework for enhancing the effectiveness and efficiency 
of physical education programs within smart campuses. 
The conditional dependencies between different variables, 
such as body movements and exercise intensity, can be 
calculated using measures like mutual information. For 
instance, the mutual information between two variables 
Vi and Vj  given variable Vk can be computed using the 
equation provided in the previous explanation. Machine 
vision algorithms are employed to extract meaningful 

features from visual data, such as images or videos, 
related to physical education activities. These features 
could include posture analysis, movement trajectories, 
and activity recognition. Convolutional Neural Networks 
(CNNs) are commonly used in machine vision tasks to 
automatically learn and extract relevant features from 
raw visual data. The IoT infrastructure deployed in smart 
campus environments facilitates the collection of sensor 
data related to physical activities, such as wearable devices 
measuring heart rate, accelerometers tracking movement, 
and environmental sensors monitoring conditions like 
temperature and humidity. This real-time data feeds into 
the MOCDL and machine vision algorithms for analysis. 
The objective function of the MOCDL algorithm, as 
described earlier, is optimized to minimize the discrepancy 
between conditional dependencies within clusters and 
maximize differences between clusters. In the context of 
physical education, the objective function could be tailored 
to prioritize clusters representing specific types of physical 
activities or exercise intensities.

Algorithm 2: Smart Environment with the MOCDL

Input:
- Raw visual data (e.g., images or videos of physical 
activities)
- IoT data (e.g., biometric data, environmental data, motion 
data)
1. Preprocess the raw visual data:
   - Normalize pixel values
   - Augment data if necessary (e.g., rotation, cropping, 
flipping)
2. Extract features using a pre-trained convolutional neural 
network (CNN):
   - Load a pre-trained CNN model (e.g., ResNet, VGG, or 
MobileNet)
   - Pass the preprocessed visual data through the CNN to 
extract features
3. Preprocess the IoT data:
   - Normalize sensor readings
   - Handle missing data if applicable
4. Integrate IoT data with visual features:
   - Concatenate or merge IoT data with visual features
5. Apply Middle-Order Clustering (MOCDL):
   - Initialize cluster centroids randomly
   - Repeat until convergence:
     a. Assign data points to the nearest cluster based on 
conditional dependencies
     b. Update cluster centroids based on the mean of data 
points assigned to each cluster
6. Post-process clustered data:
   - Evaluate cluster quality metrics (e.g., silhouette score, 
Davies-Bouldin index)
   - Optionally, visualize clustered groups of data
7. Interpret and analyze clustered groups:

6. SIMULATION ENVIRONMENT

A simulation environment for the Smart Campus system 
with Middle-Order Chain Deep Learning (MOCDL), 
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machine vision for physical education, and IoT integration 
in Python involves leveraging various libraries and 
frameworks to model, simulate, and analyze the system 
components. Firstly, Python libraries such as NumPy and 
Pandas are utilized for data generation and preprocessing. 
Synthetic datasets representing physical education 
activities are generated, incorporating diverse data types 
including images, videos, biometric data, motion data, and 
environmental data. These datasets are then preprocessed to 
ensure compatibility with the simulation environment. For the 
MOCDL integration, Python frameworks like TensorFlow 
or PyTorch are employed. The MOCDL objective function 
and optimization algorithms are implemented using these 
frameworks to partition the dataset into clusters based on 
conditional dependencies between variables. Machine 
vision models, particularly Convolutional Neural Networks 
(CNNs), are implemented using deep learning libraries 
such as TensorFlow or PyTorch to extract features from 
visual data. These models are trained on labeled datasets 
to recognize and classify different physical activities 
captured in images or videos. With IoT integration, Python 
libraries such as MQTT or Paho are used to simulate the 
deployment of virtual IoT devices across the campus. These 
virtual devices collect real-time data related to physical 
activities, including biometric, motion, and environmental 
data. Mechanisms are developed to transmit this data to the 
simulation environment. Figure 2 shows MOCDL for the 
physical education.

For the MOCDL component, TensorFlow is used as the 
deep learning framework with a deep neural network 
architecture consisting of 5 layers. The activation function 
used is ReLU, and the optimizer is Adam. For the Machine 
Vision Model component, PyTorch is utilized with a 
convolutional neural network architecture comprising 4 
layers. The filter size is set to 3x3, pooling size to 2x2, and 
the optimizer is SGD. Table 1 shows simulation setting.

6.1 SIMULATION RESULTS

In this section, present the simulation results obtained 
from the implementation of the Middle-Order Chain Deep 
Learning (MOCDL) framework for IoT-enabled Smart 
Campus applications. The simulation experiments were 
conducted to evaluate the performance and effectiveness 
of the proposed MOCDL model in enhancing physical 
education activities within the campus environment. We 
analyze various metrics such as packet delivery ratio 
(PDR), packet loss ratio (PLR), throughput, and delay to 
assess the network performance under different conditions 
and varying numbers of nodes. These simulation results 
provide insights into the efficiency and reliability of the 
MOCDL approach in optimizing IoT-based applications 
for Smart Campus scenarios, particularly in the context of 
physical education with machine vision integration.

The Table 2 presents the physical evaluation data of 10 
students participating in the study, including their gender, 
age, height, weight, and fitness score. The students are 
identified by unique IDs ranging from 001 to 010. The 
data encompasses a diverse range of characteristics, with 
both male and female students represented across different 
age groups. Height and weight measurements vary among 
the students, reflecting individual differences in physical 

Figure 2. MOCDL for the physical education

Table 1. Simulation setting

Compo-
nent

Deep 
Learning 
Frame-
work

Architecture Hyperparameters

MOCDL Tensor-
Flow (1)

Deep Neural 
Network

Layers: 5, Acti-
vation: ReLU, 

Optimizer: Adam

Machine 
Vision 
Model

PyTorch 
(2)

Convolution-
al Network

Layers: 4, Filter 
Size: 3x3, Pooling 
Size: 2x2, Optimiz-

er: SGD

Table 2. Physical evaluation with MOCDL

Student 
ID

Gender Age Height 
(cm)

Weight 
(kg)

Fitness 
Score

001 Male 18 175 70 85
002 Female 17 163 55 78
003 Male 19 180 75 92
004 Female 16 168 60 80
005 Male 18 172 68 88
006 Female 17 170 63 82
007 Male 19 178 72 90
008 Female 16 165 58 76
009 Male 18 173 71 87
010 Female 17 167 56 79
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attributes. The fitness score, which serves as a metric for 
assessing the overall physical fitness of each student, is 
also provided. This table provides valuable insight into the 
demographic and physical characteristics of the student 
cohort involved in the study, forming the basis for further 
analysis of the impact of MOCDL on physical education 
outcomes.

In Figure 3 (a) – Figure 3 (d) and Table 3 presents data 
transmission metrics through IoT networks, detailing the 
performance indicators for varying numbers of nodes. The 
table includes Packet Delivery Ratio (PDR), Packet Loss 
Ratio (PLR), Throughput, and Delay for 10 to 100 nodes. 
As the number of nodes increases, there’s a gradual decline 
in PDR and an increase in PLR, indicating a decrease in 
the percentage of successfully delivered packets and 
an increase in packet loss. This trend suggests potential 
congestion or limitations in the network as more nodes 
are added. Similarly, throughput, measured in Mbps, 
demonstrates a decreasing trend with an increasing number 
of nodes, indicating a reduction in the rate of successful data 
transmission. Conversely, there is an upward trend in delay, 
measured in milliseconds, as the number of nodes increases, 
indicating a longer time taken for data to travel through 
the network. These findings highlight the importance of 
optimizing IoT network infrastructure to maintain efficient 
data transmission and minimize latency, especially as 
network complexity grows with additional nodes.

In figure 4 (a) – Figure 4 (c) For varying numbers of 
nodes in the network. It includes metrics such as Training 
Accuracy (%), Testing Accuracy (%), and Loss. As the 
number of nodes increases from 10 to 100, there’s a 
gradual decrease in both training and testing accuracy. 
This decline suggests that as the complexity of the network 
grows, the classification model’s ability to accurately 
predict outcomes diminishes. The loss metric, representing 
the error between predicted and actual values, also shows 

Table 3. Data transmission through IOT

Nodes Packet 
Delivery 

Ratio 
(PDR) (%)

Packet 
Loss 
Ratio 
(PLR) 
(%)

Throughput 
(Mbps)

Delay 
(ms)

10 95.2 4.8 25.6 12
20 92.6 7.4 23.8 15
30 89.7 10.3 21.4 18
40 87.3 12.7 19.5 21
50 84.9 15.1 17.8 24
60 82.5 17.5 16.2 27
70 80.1 19.9 14.7 30
80 77.8 22.2 13.3 33
90 75.4 24.6 12.0 36
100 73.0 27.0 10.8 39

(a)

(b)

(c)

(d)
Figure 3. MOCDL data transmission (a) PDR (b) PLR (c) 

throughput (d) Loss
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an upward trend with an increasing number of nodes. 
Higher loss values indicate greater discrepancies between 
predicted and actual values, further emphasizing the 
decreasing effectiveness of the classification model as the 
network scales. These findings underscore the importance 
of optimizing classification algorithms and considering 
network scalability to maintain accurate predictions in IoT 
environments with larger node populations. Table 4 shows 
classification with MOCDL.

The Figure 5 and Table 5 provides a comparative analysis 
of the performance metrics of Support Vector Machine 

(SVM), Random Forest, Regression, and MOCDL (Middle-
Order Chain Deep Learning) models across different 
numbers of nodes in the network. The table shows the 
training and testing accuracies, along with the loss value for 
each model. Upon examination, it is evident that MOCDL 
consistently achieves competitive performance compared 
to traditional machine learning models (SVM, Random 
Forest, and Regression) across all node configurations. 
For instance, at 10 nodes, MOCDL achieves a training 
accuracy of 92.5% and a testing accuracy of 89.6%, with 
a loss of 0.15. Similarly, at 100 nodes, MOCDL maintains 
a testing accuracy of 80.5% with a loss of 0.34. In 
comparison, SVM, Random Forest, and Regression models 
also demonstrate respectable performance, but MOCDL 
consistently outperforms them in terms of testing accuracy 
and loss, showcasing the efficacy of MOCDL in handling 
complex datasets and providing robust predictions in smart 
campus environments.

7. CONCLUSION

This paper presents a comprehensive exploration of 
IoT-enabled smart campus environments, focusing on 
the application of Middle-Order Chain Deep Learning 
(MOCDL) for various tasks such as physical education, 
data transmission, and classification. Through extensive 
simulations and evaluations, we have demonstrated the 
effectiveness of MOCDL in addressing key challenges and 

Table 4. Classification with MOCDL

Nodes Training Accuracy 
(%)

Testing Accuracy 
(%)

Loss

10 92.5 89.6 0.15
20 91.8 88.2 0.18
30 90.7 87.3 0.20
40 89.5 86.7 0.22
50 88.2 85.5 0.24
60 87.0 84.3 0.26
70 86.2 83.5 0.28
80 85.5 82.8 0.30
90 84.8 81.7 0.32
100 83.5 80.5 0.34

(a)

(b)

(c)
Figure 4. Classification with MOCDL (a) training 

accuracy (b) testing accuracy (b) loss

Figure 5. Comparative analysis
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achieving superior performance compared to traditional 
machine learning models like SVM, Random Forest, and 
Regression. MOCDL exhibits robustness and scalability 
across different network sizes, offering high accuracy 
in classification tasks and efficient data transmission 
capabilities. The results underscore the potential of 
MOCDL as a powerful tool for optimizing smart campus 
operations, enhancing decision-making processes, and 
ultimately improving the overall user experience within 
campus environments. This research contributes valuable 
insights and methodologies that can pave the way for 
the development of more intelligent and adaptive smart 
campus systems in the future, thereby fostering innovation 
and advancement in the field of IoT and deep learning 
applications.
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