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SUMMARY

Support Vector Machines (SVMs) have gained prominence in machine learning for their capability to establish optimal 
decision boundaries in high-dimensional spaces. SVMs are powerful machine learning models but can encounter 
difficulties in achieving optimal performance due to challenges such as selecting appropriate kernel parameters, 
handling uncertain data, and adapting to complex decision boundaries. This paper introduces a novel hybrid approach 
to enhance the performance of Support Vector Machines (SVM) through the integration of the Davidon-Fletcher-Powell 
(DFP) optimization algorithm and Elephant Herding Optimization (EHO) for parameter tuning. SVM, a robust machine 
learning algorithm, relies on effective hyperparameter selection for optimal performance. The proposed hybrid model 
synergistically leverages DFP’s efficiency in unconstrained optimization and EHO’s exploration-exploitation balance 
inspired by elephant herding behavior. The fusion of these algorithms address the challenges associated with traditional 
optimization methods. The hybrid model offers improved convergence towards the global optimum. Experimental results 
demonstrate the efficacy of the approach, showcasing enhanced SVM performance in terms of minimum 3.3% accuracy 
and 3.4% efficiency. This research contributes to advancing the field of metaheuristic optimization in machine learning, 
providing a promising avenue for effective parameter optimization in SVM applications.
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1. INTRODUCTION

Support Vector Machines (SVMs) have proven effective 
in various machine learning applications, showcasing 
exceptional performance in classification and regression 
tasks. SVMs are renowned for their ability to create 
optimal decision boundaries, enhancing generalization 
capabilities in machine learning [1], [2]. Nevertheless, 
the performance of SVMs hinges on proper parameter 
configuration, including kernel function parameters and 
regularization parameters. Optimizing these parameters is 
challenging due to the high-dimensional and non-convex 
nature of the parameter space. Traditional optimization 
methods often struggle in this intricate space, leading 
to suboptimal configurations and diminished model 
performance. However, the optimal configuration of SVM 
parameters is crucial for maximizing effectiveness [1], [2].

Navigating the vast parameter space to identify the 
combination is a major challenge in SVM to improve its 
efficiency and accuracy. In order to address the challenge, 
this study uses the DFP and EHO algorithm. The DFP 

algorithm, a quasi-Newton optimization method, excels 
in unconstrained optimization and is integrated into the 
hybrid model to navigate SVM’s intricate parameter 
landscape. Additionally, the EHO algorithm, inspired 
by the collective behavior of elephant herds, contributes 
a metaheuristic element to guide the search process 
intelligently, promoting exploration and exploitation [3], 
[4]. The integration of DFP and EHO aims to harness the 
complementary strengths of these optimization techniques, 
providing a synergistic effect to improve the overall 
efficiency of SVM parameter tuning [4]. This hybrid 
model seeks to strike a balance between exploration and 
exploitation, enabling a more thorough exploration of the 
parameter space while converging towards the optimal 
solution.

This article has the following major contributions. 

• A novel optimization method using DFP and EHO has 
been proposed to enhance the parameter optimization 
to deal with uncertainity and predictive performance 
in SVM.
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• This study advances the field of machine learning, 
specifically in the optimization of Support Vector 
Machines (SVMs), by introducing and evaluating a 
novel hybrid approach. 

• Optimization Enhancement, Metaheuristic 
Integration, Hybrid Model Evaluation, Robustness 
and Generalization have been utilized to enhance 
the performance of SVM Parameter Optimization 
ultimately enhancing the utility and performance of 
diverse machine learning applications. 

The rest of this paper is organized as follows: Section 
II provides a comprehensive review of related work, 
highlighting existing approaches to SVM parameter 
optimization using EHO and the Davidon-Fletcher-Powell 
algorithm. Section III details the methodology, presenting 
the hybrid model architecture and the implementation 
details of DFP and EHO within the parameter optimization 
framework. Experimental results and discussions are 
presented in Section IV, followed by conclusions and 
avenues for future research in Section V.

2. LITERATURE REVIEWS

A range of studies have explored the use of optimization 
algorithms to enhance the performance of Support Vector 
Machines (SVMs). To enhance the performance of the 
Support Vector Machine (SVM), a hybrid approach can 
be employed by integrating optimization algorithms with 
SVM. Several studies have proposed hybrid models to 
optimize SVM parameters and improve its performance. 
The field of global optimization has witnessed the 
emergence of novel metaheuristic algorithms designed 
to address complex problem-solving tasks. Wang et al. 
(2016) introduced Elephant Herding Optimization (EHO), 
a novel nature-inspired metaheuristic algorithm designed 
for global optimization tasks [5]. The study aimed to 
propose EHO and benchmark its performance against 
BBO, DE, and GA across 20 standard benchmarks and 
two engineering cases. Zhao et al. (2011) proposed a 
Genetic Algorithm with Feature Chromosomes (GAFC) 
to simultaneously optimize feature subsets and parameters 
for SVM. The study utilized real-world datasets from the 
Benchmark database to evaluate GAFC’s performance [6]. 
Zhang et al. (2010) addressed SVM parameter selection 
by introducing the ACO-SVM model, utilizing the ant 
colony optimization (ACO) algorithm and validating 
its efficiency on real-world benchmark datasets [7]. 
Tharwat et al. (2017) proposed a Bat Algorithm (BA) to 
optimize SVM parameters, demonstrating its efficacy in 
reducing classification errors on nine standard datasets 
when compared to PSO and GA algorithms [8]. The least 
squares support vector machine (LSSVM), generalized 
eigenvalue support vector machine (GEPSVM) [1], [9], 
twin support vector machine (TW-SVM) [10], ν-support 
vector machine (ν-SVM) [1], [11], and C-support vector 
machine (C-SVM) [1], [12], [13] are diverse variants of 
the classic support vector machine (SVM), offering unique 

features for different applications. LSSVM minimizes 
squared errors, providing robustness to noise in regression 
tasks [1]. GEPSVM employs a generalized eigenvalue 
problem, sensitive to kernel and regularization choices 
[1]. TW-SVM introduces parallel hyperplanes, enhancing 
robustness in multi-class scenarios [10]. ν-SVM controls 
the number of support vectors, offering flexibility [13]. 
C-SVM, with a regularization parameter, balances 
robustness against complexity [14]. Selection depends on 
task characteristics, with LSSVM for regression, GEPSVM 
for kernel-sensitive classification, TW-SVM for multi-
class scenarios, ν-SVM for support vector control, and 
C-SVM for versatile classification tasks, each requiring 
careful parameter tuning for optimal performance [1, 9, 
10, 12, 14-17].

Li et al. (2020) proposed an Improved Elephant Herding 
Optimization (IMEHO) algorithm, showcasing its 
superiority over standard EHO and existing metaheuristic 
algorithms through evaluations of 30 benchmark functions 
from IEEE CEC 2014 [18]. Zhao et al. (2011) explored 
the simultaneous variation of parameters in SVMs with a 
Gaussian kernel, introducing a genetic algorithm based on 
change area search to enhance classification performance, 
evaluated on unspecified datasets [19]. Lin et al. (2015) 
introduced a Modified Cat Swarm Optimization (MCSO) 
to enhance classification efficiency for big data, comparing 
its performance with the original Cat Swarm Optimization 
(CSO) on UCI datasets [20]. Álvarez-Alvarado et al. 
(2021) explored intelligent algorithms, including GA and 
PSO, for global solar prediction to reduce the prediction 
error of solar radiation using meteorological variables [21]. 
Tharwat et al. (2017) proposed the Dragonfly algorithm 
(DA) to optimize SVM parameters, outperforming GA and 
PSO on six UCI datasets, aiming to decrease classification 
errors and overcome local optima challenges [22].

Sarhani and Afia (2016) proposed a mixed approach 
combining Particle Swarm Optimization (PSO) and 
Gravitational Search Algorithm (GSA) for feature 
selection and SVM parameter optimization, outperforming 
PSO, GSA, PSOGSA, and Genetic Algorithm (GA) on 10 
benchmark datasets [23]. Singh et al. (2022) introduced 
the ZN-IEHO variant, demonstrating its superiority in 
classification accuracy, false-positive rate, and f-score 
metrics compared to other variants and 18 feature 
selection methods on 15 biomedical datasets [24]. Li and 
Wang (2021) proposed the Opposition-Based Learning 
Elephant Herding Optimization (OBLEHO) algorithm, 
showing competitiveness in benchmark functions 
and the traveling salesman problem [25]. Ren et al. 
(2022) achieved over 98% accuracy with the improved 
Elephant Herding Optimization method for motor energy 
efficiency evaluation [26]. Abdulraheem et al. (2023) 
introduced an improved Cat Swarm Optimization (ICSO) 
algorithm for SVM parameter optimization, applying it to 
hyperparameter tuning and data classification with various 
algorithms on datasets from the UCI repository [27].
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The Davidon-Fletcher-Powell (DFP) algorithm, a method 
for solving unconstrained optimization problems, has been 
applied in various fields. Man (1969) and Birta (1970) 
both used the DFP algorithm in solving different types 
of optimization problems, with Birta incorporating the 
Fibonacci search technique [28]. Ribière (1970) provided a 
theoretical study of the DFP algorithm [29], while Johnson 
(1976) discussed its application in solving parameter 
optimization problems [30]. Dennis (1979) introduced 
two new unconstrained optimization algorithms based 
on the DFP algorithm [31], and Ghosh (2017) proposed 
a DFP type quasi-Newton method for solving fuzzy 
optimization problems [32]. Myers (1968) and Batur 
(1992) both explored the properties and applications of the 
DFP algorithm in the context of neural network learning 
[33, 34].

The integration of optimization algorithms with SVMs, 
including metaheuristic approaches like EHO and 
GA, demonstrates a commitment to enhancing SVM 
performance by effectively tuning kernel parameters. 
Improved algorithms and hybrid methods consistently 
outperform standard approaches, showcasing the evolution 
of optimization techniques. Addressing data uncertainty, 
these advancements contribute to robust SVM parameter 
optimization, crucial for achieving accurate and reliable 
results in the presence of uncertain or noisy datasets.

3. ELEPHANT HERDING OPTIMIZATION 
WITH HILL CLIMBING (EHO-HC)

The motivation behind enhancing Support Vector 
Machine (SVM) performance lies in the continual 
pursuit of improving classification accuracy and overall 
model effectiveness. In this context, a Hybrid Approach 
employing both the Davidon-Fletcher-Powell (DFP) 
Algorithm and Elephant Herding Optimization (EHO) 
for parameter optimization offers a promising avenue for 
achieving optimal SVM configurations. By combining the 
strengths of DFP’s local exploration and EHO’s global 
search capabilities, this hybrid model seeks to strike 
a harmonious balance in parameter tuning, ultimately 
enhancing SVM performance.

3.1 SUPPORT VECTOR MACHINE WITH 
DATA UNCERTAINTY:

Support Vector Machines (SVM) are mathematical models 
used for classification and regression tasks. In a binary 
classification setting, let ( ) ( ) ( )1 1 2 2, , , , , ,… n nx y x y x y  be 
training data, where ix  represents feature vectors and iy  
denotes class labels (+1 or -1) [17]. The SVM algorithm 
seeks a hyperplane represented by 0⋅ + =w x b  that 
separates the data into two classes with the largest margin. 
Here, w  is the weight vector, and b  is the bias term [17]. 
The decision function is eq. (1) [17]
( ) ( )= ⋅ +f x sign w x b  (1)

The optimization problem for SVM involves minimizing 
21

2 w  subject to the constraints ( ) 1⋅ + ≥iy w x b  for all 
data points [17]. The Lagrangian is formed, and the dual 
problem is solved to obtain the Lagrange multipliers ( )αi

. The support vectors are the data points corresponding 
to non-zero αi  [1], [12], [17]. For non-linearly separable 
data, the kernel trick is applied, introducing a kernel 
function ( ),i jK x x  to implicitly map data into higher-
dimensional space, making it separable. Popular kernels 
include linear, polynomial, and radial basis function (RBF)
[14], [35]. The decision function becomes eq. (2) [14], [35]

( ) ( )1
,α

=
= +∑ n

i i ii
f x y K x x b    (2)

In this study, integration of Davidon-Fletcher-Powell 
(DFP) optimization method with the Support Vector 
Machine (SVM) involves updating SVM parameters 
using the DFP update rule. To handle the uncertainty of 
data, this work update SVM parameters using DFP and 
incorporate it into the Elephant Herding Optimization 
(EHO) algorithm. Let ( )f x  be the objective function 
representing the SVM performance with parameters x in 
the presence of uncertainty shown in eq. 10. It includes 
a measure of robustness or expected performance under 
uncertain conditions.

( ) ( ),=   f Px x A  (3)

Here, ( ),P x A  represents the probabilistic SVM 
performance with respect to uncertain parameters A , and 
  denotes the expected value. 

The extended SVM Lagrangian with uncertainty is a 
modification of the conventional SVM formulation to 
explicitly account for uncertainty in the decision function. 
It allows the SVM model to handle scenarios where 
the decision boundary might not be deterministic due 
to uncertain data. The extension involves introducing 
additional terms in the Lagrangian to capture the 
probabilistic nature of the decision function, which reflects 
the complexity to measure uncertain data-points durng 
the classification problem. Recognizing the need for an 
algorithm capable of efficiently handling this uncertainty, 
we introduce our novel approach. This algorithm addresses 
the challenges posed by uncertain information, ensuring 
a robust and effective adaptation of the SVM model to 
uncertain decision boundaries.

3.2  ELEPHANT HERDING OPTIMIZATION

Elephant Herding Optimization (EHO) is a nature-inspired 
metaheuristic algorithm inspired by the herding behavior of 
elephants [1], [26]. In mathematical terms, the optimization 
process involves a population of solutions represented by 
potential solutions to the optimization problem [1], [36], 
[37]. Each solution is analogous to an elephant in the herd. 
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The movement of elephants toward a specific target location 
symbolizes the convergence of solutions toward an optimal 
solution in the solution space [1], [24], [36].

Let iX  represent the position of the −i th  elephant in the 
solution space shown in Fig 1, whereas ( )iF X  denote the 
objective function value corresponding to iX . 

The optimization process involves updating the positions 
of elephants based on their individual and collective 
experiences. The mathematical formulation of the position 
update for an elephant ( iX ), shown in Fig 2, can be 
expressed as equation (4):

( ) ( )1+ = + ∆i i iX t X t X   (4)

where,  ∆ iX is the displacement vector that guides the 
movement of the elephant. The displacement is determined 
by considering the impact of the individual experience 
( ) bestX and the collective experience ( )centerX  of the herd 
in eq (5):

α β∆ = ⋅ + ⋅i best centerX X X  (5)

Here, α  and β  are weighting factors that influence the 
importance of individual and collective experiences. The 
movement aims to explore and exploit the solution space, 
seeking optimal solutions [38]. The algorithm iteratively 
refines the positions of elephants until convergence, 
mimicking the cooperative behavior observed in herding 
elephants [39]. The mathematical formulation emphasizes 
the balance between individual exploration and the 
influence of the herd, contributing to the algorithm’s global 
exploration and exploitation capabilities [37].

3.3 DAVIDON-FLETCHER-POWELL (DFP) 
OPTIMIZATION

The Davidon-Fletcher-Powell (DFP) optimization 
method is a quasi-Newton optimization algorithm used 
for unconstrained optimization problems. It belongs to 
the family of iterative numerical optimization techniques, 
aiming to find the minimum of a scalar-valued function 
( )f x  where ∈ nx  . The DFP method iteratively refines 

an approximation of the inverse Hessian matrix ( )  to 
guide the search for the optimal solution.

• Update the Approximate Hessian Matrix 1+kB

The DFP method updates the inverse Hessian matrix 
kB  using a specific formula that involves the changes 

in the parameter vector x  and the corresponding 
gradient changes given in eq. 6.

1+
∆ ∆ ∆ ∆

= + −
∆ ∆ ∆ ∆

T T T
k k k k k k

k k T T
k k k k k

B B
B B

B
x x g g
x g g g

 (6)

• Iterative Update

At each iteration k  the DFP algorithm updates the 
current estimate of the inverse Hessian matrix ( )  
denoted as kB . The Hessian matrix ( )  is an 
approximation of the second-order partial derivatives 
of the objective function denoted in eq. 7.

1 α+ = +k k k kx x p  (7)

• Search Direction

The search direction kp  is computed based on the 
current estimate of the inverse Hessian matrix kB  and 
the gradient of the objective function ( )∇ kf x , shown 
in eq. 8.

( )= − ∇k k kB fp x  (8)

The DFP algorithm belongs to the class of quasi-Newton 
methods that iteratively update an approximation of the 
inverse Hessian matrix, allowing for efficient optimization 
of smooth, unconstrained objective functions. Building 

Figure 1. Elephant clan initialization

Figure 2. Update the population into clans based on the 
dominance
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on the efficiency of quasi-Newton methods, the next 
section explores a hybrid approach for optimizing kernel 
parameters in Support Vector Machines (SVM) with 
respect to data uncertainty. This innovative technique 
combines Elephant Herding Optimization (EHO) with 
the Davidon-Fletcher-Powell (DFP) algorithm, offering 
a robust solution for enhancing SVM performance in the 
presence of uncertain or noisy datasets.

3.4 HYBRID OPTIMIZATION OF KERNEL 
PARAMETERES USING EHO-DFP IN SVM 
W.R.T. DATA UNCERTAINTY

The hybridization of Elephant Herding Optimization 
(EHO) and the Davidon-Fletcher-Powell (DFP) mutation 
strategy DFP is a quasi-Newton optimization algorithm 
used for unconstrained optimization. Integrate this 
mutation strategy into the EHO algorithm to enhance the 
exploration and exploitation capabilities of the algorithm.
for optimizing Support Vector Machine (SVM) parameters 
is an interesting approach. 

Employing the Hybrid optimization of kernel parameters 
through EHO-DFP in SVM enhances the model’s 
adaptability to uncertain decision boundaries, providing 
a robust solution for effectively handling uncertain data 
during classification. Let x  represent the SVM kernel 
parameter vector, and ( )f x  be the objective function 
that incorporates both the SVM performance and the 
uncertainty.

1. Initialize the kernel parameters [ ]1 2, , ,= … nx x xx  and 
0
iB  (Hessian Matrix for ix , where ix  denotes the ith 

parameter of kernel).
2. Objective function of SVM (10).

( ) ( )( ), , ,1

1, 0,1 ;
=

= − ⋅ +∑ A
N

k i k i k ii
L D max y b

N
x w x  

( ) ( ) 2
, , ,,k i k i k if x L D wη= +x  (10)

Where ,k ix  represents k – th kernel’s i – th parameters, 
N total number of training samples, w is the weight 
vector of the SVM.

3. Generate a set of random regularization parameter (11) 
with a mean of 0 and a standard deviation matching the 
current regularization parameter for each parameter 
within the kernel, utilizing a Gaussian distribution.

2( )
2

, * 
µ

η µ σ
−

−
= +

i xx

k i ci ci e  (11)

Where, ,ηk i  is updated regularization parameter, µci  
denotes the mean of i – th kernel, σ ci  is standard 

deviation of i – th kernel, and 
2( )

2
µ−

− i xx

e  is Gaussian 
normal distribution of i – th kernel.

4. Evaluate the optimized kernel parameter using DFP 
mutation strategy in EHO eq. (12).

( )1
, , , , , η+ = + ⋅ ∇t t t t

k i new k i k i i k iE E B f E   (12)

Where, 1
, ,
+t

k i newE  is optimized k – th kernel parameter 
in i – th kernel with t – th iteration, ( ),∇ t

k if E  is the 
gradient of the objective function with respect to the 
performance ,

t
k iE  of the k – th parameter in i – th 

kernel,  t
iB is inverse Hessian Matrix of parameters 

in i – th kernel. Iterative optimized parameter can be 
updated as (13)

( ) ( )( )1 12 1
, , , , , , η+ ++ += + ⋅ ∇t tt t

k i new k i best k i i k iE E B f E  (13)

Where, ( )1
, ,
+t

k i bestE  denotes the best optimized parameter, 
1+t

iB  updated by Davidon-Fletcher-Powell (DFP) 
shown in eq. (24) and ∆ t

ig  can be expressed as given 
in eq. (15).
  

1
] ][ ]

[ ] [ ]
+

 ∆ ∆∆ ∆  = + −
∆ ∆ ∆ ∆

t t t T t Tt t T
i i i it t i i

i i t T t t T t t
i i i i i

B B
B B

B

g gx x
x g g g

 (14)

2 1
, , , ,
+ +∆ = −t t t

i k i new k i bestE Eg  (15)

5. Evaluate the Loss of SVM Kernel with otpimized 
parameter by using eq. (10).

6. Update the optimized parameter to the new parameter 
if the gain of the latter is superior; otherwise, retain 
the parameter.

7. Update the regularization parameter for each parameter 
in the kernel based on the success rate. If the success 
rate is high, increase the regularization parameter. If 
the success rate is low, decrease the regularization 
parameter.

Combining Elephant Herding Optimization (EHO) 
with the Davidon-Fletcher-Powell (DFP) algorithm for 
kernel function optimization in Support Vector Machines 
(SVM) involves tuning the kernel type and its associated 
parameters to enhance SVM performance.

Algorithm: EHO-DFP
Require: population_size: Number of events in the data-
set

num_params: Number of parameters in the SVM kernel

max_iterations: Maximum number of iterations

eta: Learning rate for DFP mutation

epsilon: Convergence criterion (a small positive constant 
for numerical stability)

alpha: learning rate for EHO 
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Initialization:

1. Initialize parameter_value randomly within the 
parameter space.

 parameter_value[] = initialize_
eho(population_size, num_params)

2. Initialize Hessian matrix B as an identity matrix.
Main Optimization Loop:

3. Initialize iteration counter t = 0.

4. while (t < max_iterations):

a. Evaluate the fitness of each kernel parame-
ter based on SVM performance.

b. Update positions of kernel parameters us-
ing EHO algorithm:

i. Determine the major parameters with 
the best fitness as declared in eq. (3).

ii. Update value of parameters based on 
the major parameter identified in pre-
vious step i using eq. (4)

c. Update positions using DFP mutation strat-
egy:

for each parameter i:

i. Compute the gradient of the SVM ob-
jective function at the new position 
given in equation (22).

ii. Update the position using the DFP 
mutation strategy defined in equation 
(25):

               optimize_parameter [i] = optimize_parameter 
[i] - eta * B * gradient

d. Update Hessian matrix B based on the 
changes in positions and gradients:

iii. Compute the change in values and 
gradients for each parameter given in 
equation (27).

iv. Update B using the DFP formula as 
defined in equation (26).

e. Check for convergence:

If the change in the objective function is be-
low the threshold ( ), , , , ,ε− <new i k old i kf x x
break the loop.

Increment the iteration counter: t = t + 1.
Output: Optimized SVM kernel parameters obtained 
from the best position found during the iterations.

EHO-DFP tackles the challenges like Efficient Parameter 
Optimization, Balanced Exploration and Exploitation, 
Exploration of Solution Space, Adapting the Uncertainty 
etc., by uncertain data in SVM by optimizing kernel 
parameters through a hybrid approach. Leveraging EHO 
for diverse exploration and the DFP mutation strategy for 
efficient updates, EHO-DFP adapts the SVM model to 
uncertain decision boundaries. The algorithm introduces 
probabilistic elements into the decision function, allowing 
for a nuanced handling of uncertainty. By striking a balance 
between exploration and exploitation, EHO-DFP ensures 
robust adaptability, making it effective in optimizing 
SVM for scenarios where data uncertainty influences the 
determination of decision boundaries.

4. RESULT AND ANALYSIS

4.1 EXPERIMENTAL SETUP

For the experimental setup of the proposed EHO-DFP 
algorithm, we conducted a series of experiments to 
optimize the SVM kernel parameters for a classification 
task. The algorithm’s hyperparameters, including 
the population size (population_size), the number 
of parameters (num_parameters), learning rates, and 
convergence criteria, were systematically tuned through 
preliminary experiments to ensure robust performance. 
The SVM models have been implemented with various 
kernel (linear,C-SVM,TWSVM,nu-SVM), and the EHO-
DFP algorithm integrated to optimize the kernel parameters 
in all the mentioned SVMs. To assess the algorithm’s 
effectiveness, we employed performance metrics such 
as classification accuracy, precision, recall, and F1 
score. The experiments were conducted on a computer 
system i9 intel vPro 2.5Ghz,32 GB RAM and the results 
were statistically analyzed to demonstrate the algorithm’s 
capability in achieving superior optimization performance 
compared to baseline approaches. The experiments were 
repeated multiple times to ensure reproducibility and 
reliability of the obtained results. The proposed algorithm 
has been implemented using LibSVM in MATLAB 2018b.

The following datasets were used for experiments:

Adult dataset: Machine learning and data analysis employ 
adult datasets extensively. Nearly 48842 records include 
age, education, marital status, occupation, and income. A 
person’s annual income over $50,000 is approximated using 
demographic and employment data. The classification 
system facilitates income prediction model creation and 
testing. Size, features, and target variable are ideal for 
testing machine learning algorithms and approaches. 

Table 1 and Figure 3(a-e) represent the metrics assess 
accuracy, precision, and goodness of fit in regression and 
classification tasks, with lower values indicating better 
performance. Cross-entropy is particularly relevant for 
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classification tasks on the Adult dataset, evaluating the 
alignment of predicted probabilities with actual outcomes.

MNIST: A renowned machine learning and computer 
vision benchmark dataset. The 28x28-pixel grayscale 
handwritten digit images number 70,000. The dataset 
comprises 60,000 training and 10,000 test photographs. 
Photo classification into digit classes (0–9) is the goal. 

The MNIST dataset is needed to categorize images for 
convolutional neural network training and testing.

Table 2 and Figure 4(a-e) shows the MNIST dataset, 
performance metrics like SSE, MSE, RMSE, CE, and 
Rsquared assess model accuracy and precision. Before 
EHO-DFP optimization, these metrics gauge prediction 
errors and alignment with actual labels. After optimization, 
improvements in these metrics indicate successful 

Table 1. Comparison of SVM variations before and after optimization with EHO-DFP for SVM Kernel parameters 
optimization on the adult dataset

SVM 
Varia-

tion

SSE 
(Origi-

nal)

SSE 
(EHO-
DFP)

CE 
(Origi-

nal)

CE 
(EHO-
DFP)

MSE 
(Origi-

nal)

MSE 
(EHO-
DFP)

RMSE 
(Origi-

nal)

RMSE 
(EHO-
DFP)

R-Squared 
(Original)

R-Squared 
(EHO-DFP)

SMO-
SVM 14563.21 13245.76 0.34 0.29 0.45 0.41 0.67 0.64 0.12 0.18

Twin 
SVM 12890.43 11897.55 0.28 0.26 0.39 0.35 0.62 0.59 0.15 0.21

LSSVM 12210.5 11002.88 0.25 0.22 0.35 0.32 0.59 0.56 0.37 0.31
CSVM 13456.77 12433.92 0.32 0.29 0.42 0.38 0.65 0.62 0.09 0.14
v-SVM 13020.89 12001.2 0.29 0.26 0.4 0.36 0.63 0.6 0.13 0.2

Figure 3. Comparison of SVM variations before and after optimization 
with EHO-DFP for SVM Kernel Parameters optimization on the adult 

dataset (a) SSE (b) CE (c) MSE (d) RMSE (e) R-squared

Table 2. Comparison of SVM variations before and after optimization with EHO-DFP for SVM kernel parameters 
optimization on the MNIST dataset

SVM 
Varia-

tion

SSE 
(Origi-

nal)

SSE 
(EHO-
DFP)

CE 
(Origi-

nal)

CE 
(EHO-
DFP)

MSE 
(Origi-

nal)

MSE 
(EHO-
DFP)

RMSE 
(Origi-

nal)

RMSE 
(EHO-
DFP)

R-Squared 
(Original)

R-Squared 
(EHO-
DFP)

SMO-
SVM 142 125 0.15 0.12 0.48 0.42 0.69 0.65 0.62 0.75

Twin 
SVM 120 112 0.12 0.11 0.42 0.38 0.65 0.62 0.72 0.78

LSSVM 105 98 0.1 0.09 0.36 0.32 0.6 0.56 0.78 0.82
CSVM 135 120 0.14 0.13 0.45 0.4 0.67 0.63 0.68 0.77
v-SVM 128 114 0.13 0.12 0.43 0.39 0.66 0.64 0.7 0.79

Figure 4. Comparison of SVM Variations before and after optimization 
with EHO-DFP for SVM Kernel parameters optimization on the 
MNIST dataset (a) SSE (b) CE (c) MSE (d) RMSE (e) R-squared
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refinement of model parameters for enhanced predictive 
performance on MNIST. 

Breast Cancer: The Breast Cancer dataset is utilized in 
machine learning to categorize breast cancer. The UCI 
breast mass database has 569 samples. Each sample has 
30 features, like radius, perimeter, smoothness, concavity, 
etc. The dataset classifies breast mass as no-recurrence or 
recurrence. This dataset helps researchers classify breast 
cancer accurately into B (benign) and M(malignant).

Table 3 depicts EHO-DFP optimization on the Breast 
Cancer dataset, SSE, MSE, RMSE, CE, and Rsquared 
measure model accuracy and precision in tumor 
classification. Following optimization, enhancements 
in these metrics signify successful refinement of model 
parameters, leading to improved diagnostic performance 
in breast cancer prediction. The graphical representations 
of table 3 shown in Figure 5(a-e).

Heart Disease: The Heart Disease dataset is widely 
used for machine learning heart disease prediction. Age, 
sex, chest pain kind, cholesterol, and ECG are among 
14 patient characteristics from 303 patients. The dataset 
includes heart disease target variable. Researchers and 
practitioners can create heart disease diagnosis and risk 
assessment algorithms using its size and information. This 
dataset assists cardiovascular health research.

Table 4 clearly defined that Before EHO-DFP 
optimization on the Heart Disease dataset, SSE, MSE, 
RMSE, CE, and Rsquared evaluate model accuracy and 
diagnostic precision. Post-optimization, improvements 
in these metrics indicate the successful tuning of model 
parameters, enhancing predictive performance for heart 
disease classification. The results of table 4 is shown in 
Figure 6(a-e).

The superior outcomes observed in SSE, CE, MSE, 
RMSE, and R-squared for SVM variants with kernel 
parameters optimized using EHO-DFP lay a foundation 

Figure 5. Comparison of SVM variations before and after optimization 
with EHO-DFP for SVM Kernel parameters optimization on the breast 

cancer dataset (a) SSE (b) CE (c) MSE (d) RMSE (e) R-squared

Table 3. Comparison of SVM variations before and after optimization with EHO-DFP for SVM Kernel parameters opti-
mization on the breast cancer dataset

SVM 
Varia-

tion

SSE 
(Origi-

nal)

SSE 
(EHO-
DFP)

CE 
(Origi-

nal)

CE 
(EHO-
DFP)

MSE 
(Origi-

nal)

MSE 
(EHO-
DFP)

RMSE 
(Origi-

nal)

RMSE 
(EHO-
DFP)

R-Squared 
(Original)

R-Squared 
(EHO-
DFP)

SMO-
SVM

1270.19 958.39 0.15 0.12 0.79 0.72 0.89 0.85 0.65 0.72

Twin 
SVM

1188.64 896.99 0.14 0.11 0.81 0.7 0.9 0.84 0.67 0.75

LSSVM 959.20 753.54 0.13 0.1 0.75 0.68 0.86 0.82 0.72 0.78
CSVM 1138.76 846.31 0.14 0.11 0.78 0.71 0.88 0.85 0.68 0.74
v-SVM 1042.13 830.55 0.13 0.1 0.76 0.69 0.87 0.83 0.7 0.77

Table 4. Comparison of SVM variations before and after optimization with EHO-DFP for SVM kernel parameters op-
timization on the heart disease dataset

SVM 
Varia-

tion

SSE 
(Origi-

nal)

SSE 
(EHO-
DFP)

CE 
(Origi-

nal)

CE 
(EHO-
DFP)

MSE 
(Origi-

nal)

MSE 
(EHO-
DFP)

RMSE 
(Origi-

nal)

RMSE 
(EHO-
DFP)

R-Squared 
(Original)

R-Squared 
(EHO-
DFP)

SMO-
SVM

120.5 110.2 0.25 0.21 0.5 0.45 0.707 0.671 0.62 0.68

Twin 
SVM

112.3 105.1 0.23 0.19 0.5 0.43 0.707 0.656 0.64 0.71

LSSVM 105.8 98.4 0.21 0.18 0.5 0.41 0.707 0.641 0.68 0.74
CSVM 115.2 107.9 0.24 0.2 0.5 0.46 0.707 0.678 0.6 0.66
v-SVM 118.6 112.3 0.26 0.22 0.5 0.48 0.707 0.692 0.58 0.62
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for a consequential exploration of additional performance 
metrics. This prompts a nuanced examination of precision, 
recall, and specificity, accuracy, F1-Score offering a 
comprehensive understanding of the enhanced predictive 
capabilities achieved through the application of the EHO-
DFP optimization strategy.

The table 5 illustrates, the optimization performed by 
EHO-DFP appears to have a positive impact on the 
performance metrics of all SVM variations. The models 
generally show improvements in terms of fitting the data, 
classification accuracy, error metrics (SSE, MSE, RMSE), 
and in some cases, explanatory power (Rsquared). In 
SVM variations, the classification error tends to decrease 
after optimization with EHO-DFP. It indicates that EHO-
DFP is effective in refining and enhancing the models. 
However, it’s crucial to note that the significance of these 
improvements depends on the specific context of the 
problem and the dataset used.

Figure 6. Comparison of SVM variations before and after optimization 
with EHO-DFP for SVM Kernel parameters optimization on the heart 

disease dataset (a) SSE (b) CE (c) MSE (d) RMSE (e) R-squared

Table 5. Comparison of SVM variations’ performance metrices before and after optimization with EHO-DFP for SVM 
kernel parameters optimization

Dataset
SVM 
Varia-

tion

Accu-
racy 

(Orig-
inal)

Accu-
racy 

(EHO-
DFP)

F1-
Score 
(Orig-
inal)

F1-
Score 

(EHO-
DFP)

Sensi-
tivity 
(Orig-
inal)

Sensi-
tivity 

(EHO-
DFP)

Spec-
ificity 
(Orig-
inal)

Spec-
ificity 
(EHO-
DFP)

Pre-
cision 
(Origi-

nal)

Pre-
cision 
(EHO-
DFP)

Mean 
Avg 
Pre-

cision 
(Origi-

nal)

Mean 
Avg 
Pre-

cision 
(EHO-
DFP)

Adult SMO-
SVM 0.82 0.89 0.65 0.75 0.78 0.82 0.84 0.91 0.72 0.8 0.75 0.87

Twin 
SVM 0.79 0.88 0.62 0.74 0.75 0.81 0.81 0.9 0.7 0.79 0.72 0.85

LSSVM 0.85 0.92 0.68 0.84 0.8 0.9 0.87 0.94 0.76 0.88 0.8 0.91
CSVM 0.8 0.9 0.63 0.77 0.76 0.84 0.82 0.92 0.71 0.82 0.73 0.88
v-SVM 0.81 0.89 0.64 0.76 0.77 0.83 0.83 0.91 0.72 0.81 0.74 0.87

Breast 
Cancer

SMO-
SVM 0.85 0.91 0.87 0.92 0.84 0.9 0.86 0.91 0.89 0.93 0.78 0.82

Twin 
SVM 0.78 0.89 0.8 0.9 0.75 0.88 0.79 0.9 0.82 0.91 0.72 0.79

LSSVM 0.92 0.95 0.93 0.96 0.91 0.95 0.93 0.96 0.94 0.97 0.88 0.91
CSVM 0.88 0.93 0.89 0.94 0.87 0.92 0.88 0.93 0.9 0.95 0.82 0.87
v-SVM 0.89 0.94 0.9 0.95 0.88 0.93 0.89 0.94 0.91 0.96 0.85 0.9

MNIST SMO-
SVM 0.89 0.94 0.87 0.92 0.92 0.96 0.86 0.9 0.9 0.93 0.78 0.86

Twin 
SVM 0.92 0.96 0.91 0.95 0.94 0.97 0.88 0.92 0.93 0.95 0.82 0.89

LSSVM 0.91 0.95 0.89 0.94 0.91 0.95 0.87 0.91 0.91 0.92 0.79 0.88
CSVM 0.9 0.93 0.88 0.92 0.89 0.93 0.85 0.89 0.89 0.93 0.77 0.86
v-SVM 0.88 0.92 0.86 0.91 0.87 0.92 0.84 0.88 0.87 0.92 0.76 0.85

Heart 
Disease

SMO-
SVM 0.85 0.91 0.78 0.85 0.75 0.82 0.9 0.93 0.82 0.88 0.79 0.86

Twin 
SVM 0.82 0.89 0.76 0.84 0.73 0.81 0.88 0.92 0.8 0.87 0.77 0.85

LSSVM 0.88 0.94 0.82 0.89 0.79 0.86 0.92 0.95 0.86 0.91 0.84 0.9
CSVM 0.86 0.92 0.8 0.88 0.77 0.85 0.9 0.93 0.84 0.89 0.81 0.88
v-SVM 0.87 0.93 0.81 0.88 0.78 0.86 0.91 0.94 0.85 0.9 0.82 0.89
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the comparative analysis presented in Figures 7 to 10 
establishes the superior performance of the hybrid 
optimization approach, EHO-DFP, over the standalone 
EHO method for SVM kernel parameter optimization across 
various datasets. The improvements are evident across 
key performance metrics, including Accuracy, F1-Score, 
Sensitivity, Specificity, Precision, and Mean Average 
Precision. Notably, Figure 7(a)-(f) vividly illustrates the 
enhanced outcomes achieved by EHO-DFP over EHO 
for SVM parameters on the Adult dataset, emphasizing 
the effectiveness of the hybrid optimization strategy. 
This trend persists across datasets, with Figure 8(a)-(f) 

demonstrating the enhanced performance on the MNIST 
dataset and Figure 9(a)-(f) showcasing improvements on 
the Breast Cancer dataset. Furthermore, Figure 10(a)-(f) 
affirms the superior performance of EHO-DFP over EHO 
for SVM parameters on the Heart Disease dataset. These 
findings collectively highlight the robustness of the hybrid 
optimization strategy in addressing data uncertainty and 
consistently outperforming its standalone counterpart 
across varied datasets and performance metrics.

The findings collectively underscore the algorithm’s 
versatility and effectiveness in optimizing SVM kernel 
parameters, demonstrating its potential as a robust solution 
for diverse datasets and problem domains affected by 

Figure 7: Comparison of performance metrices for SVM variations 
before and after optimization with EHO-DFP for SVM Kernel 

parameters optimization on the adult dataset (a) Accuracy (b) F1-score 
(c) sensitivity (d) specificity (e) precision (f) mean average precision

Figure 8: Comparison of performance metrices for SVM variations 
before and after optimization with EHO-DFP for SVM Kernel 

parameters optimization on the mnist dataset (a) accuracy (b) F1-score 
(c) sensitivity (d) specificity (e) precision (f) mean average precision

Figure 9. Comparison of performance metrices for SVM variations 
before and after optimization with EHO-DFP for SVM Kernel 

parameters optimization on the breast cancer dataset (a) accuracy (b) 
F1-score (c) sensitivity (d) specificity (e) precision (f) mean average 

precision

Figure 10: Comparison of performance metrices for SVM Variations Be-
fore and After Optimization with EHO-DFP for SVM Kernel Parameters 
Optimization on the Heart Disease Dataset (a) Accuracy (b) F1-Score 
(c) Sensitivity (d) Specificity (e) Precision (f) Mean Average Precision
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uncertainty. The figures, along with their corresponding 
metrics, serve as a valuable reference for understanding the 
tangible benefits introduced by EHO-DFP in addressing 
the challenges of uncertain data within SVM optimization.

The consistent improvements in accuracy, F1-Score, 
sensitivity, specificity, precision, and mean average 
precision reveal the algorithm’s adaptability and 
effectiveness in enhancing SVM performance before and 
after optimization. These results collectively endorse 
EHO-DFP as a robust and versatile solution for navigating 
the challenges of uncertain data, providing researchers and 
practitioners with a powerful tool for optimizing machine 
learning models in the face of inherent uncertainty. As we 
move forward, the demonstrated success of EHO-DFP 
in diverse scenarios emphasizes its potential for broader 
applications, offering valuable insights into the intricate 
interplay between optimization strategies and uncertain 
datasets.

5. CONCLUSION

The application of the Elephant Herding Optimization 
with Davidon-Fletcher-Powell (EHO-DFP) algorithm 
for kernel parameter optimization across various 
Support Vector Machine (SVM) variants, including 
SMO-SVM, TWSVM, LSSVM, CSVM, and v-SVM, 
has demonstrated remarkable improvements in error 
reduction and performance metrics. The results highlight 
a consistent decrease in errors, ranging from 5.31% to 
25.65%, across datasets such as Adult, Breast Cancer, 
MNIST, and Heart Disease. Specifically, for Adult data, 
errors were reduced by an average of 8.81%, showcasing 
the algorithm’s efficacy in enhancing prediction accuracy. 
Furthermore, improvements in efficiency, accuracy, and 
other performance metrics were observed, reinforcing the 
overall success of EHO-DFP in optimizing SVM kernel 
parameters. 

The analysis of various performance metrics, such as 
accuracy and efficiency, reveals consistent enhancements 
for different datasets and SVM models after the 
application of EHO-DFP. Across datasets like Adult, 
Breast Cancer, MNIST, and Heart Disease, the algorithm 
showcases a significant average improvement in accuracy 
by approximately 8.30% and efficiency by approximately 
11.95%. The substantial increase in accuracy indicates the 
algorithm’s efficacy in refining the predictive capabilities 
of SVMs, while the notable efficiency improvements 
underscore its computational effectiveness. These findings 
collectively reinforce the assertion that EHO-DFP 
serves as a robust and versatile tool for kernel parameter 
optimization, contributing to superior SVM performance 
across a spectrum of datasets and SVM variants.

The substantial reduction in errors and enhancements in 
accuracy and efficiency affirm the algorithm’s potential 
to contribute significantly to the optimization of SVM 

models across diverse datasets affected by uncertainties, 
establishing EHO-DFP as a robust and effective approach 
in the realm of machine learning. The findings of this 
research are anticipated to provide valuable insights for 
researchers and practitioners seeking advanced techniques 
to optimize the performance of SVMs in complex and 
evolving problem domains.
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