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SUMMARY

A floating hose is key item for offshore oil transportation. In this paper, a mathematical model is derived for the overall 
dynamic performance of a single point-moored floating hose string under wave and current load. Airy wave theory 
was selected to calculate the wave force on the floating hose string. The dynamics of buoy, floating hose string and 
FSO were modelled using elastic foundation beam theory and discretised by using a fixed grid finite difference method. 
Discontinuities in the bending stiffness due to the flange connections are also considered. To verify the accuracy of the 
mathematical model, the finite element model of the buoy, floating hose string and FSO as a system was established by 
use of Orcaflex software tool. Numerical results for the displacement and bending moment at each section of the floating 
hose under severe sea conditions were obtained.
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NOMENCLATURE

B	 buoyancy	per	unit	length	of	the	floating	hose
Bmax maximum buoyancy force per unit length 
E	 elastic	modulus	of	the	floating	hose
g Acceleration due to gravity (9.81m/s^2)
Hh amplitude of heave of the buoy
Hp amplitude of pitching of the buoy
I	 moment	of	inertia	of	the	floating	hose	section
k wave numbers
K slope of the approximate linear section
L	 	overall	length	of	the	floating	hose	string
M		 moment	value	at	the	section	of	the	floating	hose
N nodes number
q wave load
r outer diameter of the hose section
W	 gravity	per	unit	length	of	the	floating	hose
Ye  initial elevation of the FSO-hose interface above 

sea level
Yp  equilibrium position of the hose central axis from 

sea level
ε	 phase	angle
εh phase angle between the wave and the buoy
θe  inclination angle between the FSO-hose interface 

and the horizontal plane
k	 differential	quantity	of	time
ρw seawater density
ω	 wave	frequency

1. INTRODUCTION

A floating hose is an important item for crude oil 
transportation between the hull and buoys in an FSO system 
due to its advantages of light weight, high tensile strength, 
and ability to achieve rapid deployment and withdrawal 
(Tonatto et al. 2016; O’Donoghue and Halliwell, 1990). 
In order to meet the strength, flexibility and buoyancy 
requirement, a floating hose is composed by an elastomeric 
layer for lining, reinforcing textile fabric and steel wire 
cord layers impregnated with elastomers for the main 
body, a closed cell foam material for the buoyancy layer, 
and an elastomeric layer the for cover.

Most of the published studies on floating hose focused 
on the static mechanical behavior of floating hose under 
various loading conditions, such as tension, bending, 
internal pressure, torsion. Tonatto et al. (2016) developed a 
finite element progressive damage model based on Multi-
Continuum Theory to predict crushing strength of the 
central section of the floating hose. Tonatto et al. (2018) 
presented a nonlinear finite element model to evaluate 
the axial, bending and torsional stiffnesses of floating 
double carcass marine hose with hybrid polyaramid/
polyamide reinforcement cords. Based on the anisotropic 
laminated composite theory, Zhou et al. (2018) performed 
an analytical study on reinforcement layers of bonded 
flexible marine hose under internal pressure. Gao et al. 
(2018) created a nonlinear finite element model to predict 
the structural behavior of the single carcass composite 
hose under internal pressure. Besides, Tonatto et al. (2017) 
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established the finite element models to predict the burst 
pressure of the double carcass floating hose.

The floating hoses are constantly subjected to the dynamic 
forces of the sea which can result in severe loads and 
stresses exerting on the hoses. A thorough examination of 
dynamic behaviors of the floating hose strings subjected to 
wave action should be undertaken to understand the stress 
distribution and the hose movement. By establishing the 
partially immersed cylinder model which simulated the 
morphologic and mechanical characteristics of floating 
hose, Zhang et al. (2015) presented an improved Morison 
equation for the wave load of offshore floating hose. Based 
on hydraulic model tests and analytical study, O’Donoghue 
and Halliwell (1990) examined the axial forces and vertical 
bending moments of the floating hose string induced by 
the combined action of waves and buoy motions. Brown 
and Elliott (1988) presented a mathematical model and 
the corresponding numerical method for the dynamic 
analysis of marine hoses subjected to both wave and buoy 
action. By using in-house program ANFLEX, Roveri et 
al. (2002) created a coupled model of the buoy, mooring 
system, submarine and floating hose to analyse the force 
response of the CALM system floating hose. Tonatto et 
al. (2018) adopted the element formulations and time 
integration schemes documented in commercial software 
package Orcaflex to calculate overall forces and moments 
on the floating hoses. By incorporating the RAOs of the 
buoy obtained by ANSYS AQWA and key environmental, 
geometric and material properties, Amaechi et al. (2019) 
developed a dynamic model on the CALM buoy with 
submarine hose in Chinese-lantern configuration using 
Orcaflex, and studied the effects of hose hydrodynamic 
loads and flow angles on the structural behavior of the hose.

This paper mainly aims at establishing a mathematical 
model of a single point-moored floating hose string 
under wave load obtained through Airy wave theory, 
considering the in-situ working conditions of the floating 
hose string. Based on elastic foundation beam theory, the 
dynamical model of buoy, floating hose string and FSO are 
discretized by using fixed grid finite difference method. The 
discontinuity of the bending rigidity caused by the flange 
connections is also considered. Besides, the finite element 
model was established by Orcaflex software and compared 
with the mathematical model to verify its accuracy. The 
numerical results of displacement and bending moment at 
each section of floating hose are obtained under various 
sea conditions.

2. THEORETICAL MODEL

In this chapter, a dynamic mathematical model (Dyke  
et al., 1985) of the floating hose string assembly coupling 
buoy and FSO is derived, considering the deformation and 
stress of the floating hose string assembly under wave load 
with the boundary conditions provided by the CALM buoy 
and FSO coupling.

2.1 DIFFERENTIAL EQUATION OF BENDING 
VIBRATION OF FLOATING HOSE STRING 
UNDER WAVE LOAD

Combined with the dynamic response characteristics of 
floating hose string in actual sea conditions, the floating 
hose string can be simplified into a Bernoulli-Euler elastic 
beam. The motion of the floating hose string under wave 
current load is assumed to be the bending vibration of 
an ideal elastic body. Because the horizontal span of the 
hose is much larger than the height of the hose section, 
the influence of the shear force in the hose on the bending 
deformation of the hose is ignored. Therefore, the 
differential equation of bending deformation of floating 
hose string under wave load is:

 
( )2

2

,∂
=

∂
y x t M

EIx  (1)

where E is that elastic modulus of the floating hose, I is the 
moment of inertia of the floating hose section, M represents 
the moment value at the section of the floating hose at 
x, y = y(x, t) is the function form of floating hose string 
deformation curve with respect to time and displacement. 

Figure 1. Layer structure of floating hose

As can be seen from that stress diagram of the hose string 
in Figure 2:

 
( ),∂

=
∂

M x t
Q

x
 (2)

Substituting Equation (1) into Equation (2), the differential 
equation of the deformation curve of the floating hose 
string under the wave load q  is obtained:

 
( )3

3

,∂
=

∂
y x t

EI Q
x

 (3)

Motion equation of micro-segment hose string dx along 
y-axis direction:

 
( )2

2

,∂∂ − + + = ∂ ∂ 

y x tQQ Q dx qdx mdx
x t

 (4)

where the mass per unit length on the floating hose is m, 

acceleration is 
( )2

2

,∂
∂
y x t

t
.
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Substituting Equation (3) into Equation (4), the differential 
equation of bending vibration of the hose string under 
wave load is obtained:

 
( ) ( )4 2

4 2 2

, ,1
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∂ ∂
+ =

∂ ∂
y x t y x t

F
x t

 (5)

Where,
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α = =  (6)
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+
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Figure 2. The force analysis of floating hose string

2.2 ENVIRONMENTAL LOAD

In order to calculate the effect of wave load on the floating 
hose, the appropriate wave theory should be selected for 
calculation first. According to DNV report (2007), this 
paper selects the commonly used parameters of the East 
China Sea and selects the wave theory as the linear wave 
theory as suggested by DNV (2007). 

Linear wave waveform formula is:

 ( ) ( ), cos
2

η ω= −
Hx t kx t

 
(7)

where H is the wave height; k is the wave number; ω is the 
wave frequency; t is the time after the peak passes through 
the origin.

Considering that wave load acts on the floating hose, the 
floating hose string is affected by its own gravity, sea water 
buoyancy and wave load in the vertical plane. The dynamic 
load of floating hose string is approximately calculated by 
elastic foundation theory. Dunlop and Bridgestone used the 
elastic foundation theory to calculate the static load of the 
floating hose string approximately. Under the static load, 
the floating hose string only receives its own gravity and 
seawater buoyancy in the vertical plane. Take the z axis as sea 
level, the O point is located on the axis of the hose string, x is 
the axis of the hose string, and y is the vertical distance from 
the axis of the hose string to sea level, as shown in Figure 3. 

The volume per unit length of the hose string immersed in 
seawater is:

 ( ) ( )2 2 2 tanπ α π α α= − + = − +AOBV r S r y  (8)

Static load per unit length hose string is: 

 
wQ W B W gVρ= − = −  (9)

where Q is the static load per unit length of the floating 
hose string without wave flow, W is the gravity per unit 
length of the floating hose, B is the buoyancy per unit 
length of the floating hose. ρw is the seawater density, g 
is the gravity acceleration, r is the outer diameter of the 
hose section.

A 
B  

O r 

y 

z 

Figure 3. Schematic diagram of the hose string floating 

According to Equation (9) and common structural 
parameters of the hose, the load curve of the hose string 
can be drawn. Without affecting the calculation accuracy, 
the floating load of the hose is equivalent to a linear 
relationship in the range of − ≤ ≤r y r . Equation (9) can 
be simplified as:

 ( )    ,= − + − ≤ ≤Q W K y r when r y r  

 2;  
2
max

max w
B

K B g r
r

ρ π= =
 

(10)

where K is the slope of the approximate linear section, and 
maxB  is the maximum buoyancy force per unit length of the 

floating hose (all immersed in seawater).

Under static load, when the buoyancy force on the hose 
is equal to gravity, the equilibrium position py  of the hose 
central axis from sea level is obtained, making 0Q = :

 2
ρ π

= − = −p
w

W Wy r r
K g r  

(11)

The stress of the hose under static load is equivalent to the 
direct proportional relationship between the axial position 
of the hose and the difference between the equilibrium 
positions:
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* *, pQ Ky y y y= − = −  (12)

Similarly, considering the wave load acting on the floating 
hose, the dynamic load of the floating hose is approximately 
calculated by using the elastic foundation theory:

 ( )   η η= − + − − ≤ − ≤Q W K r y when r y r  (13)

where η−y  is the distance between the axial position of 
the hose and the wave surface.

Also,

 ( ) ( ), ,η = − − − pq K y x t x t y  
(14)

 ( ) ( ), cos
2

ω = − − − −  
p

Hq K y x t kx t y
 

(15)

2.3 BUOY BOUNDARY CONDITION

When only considering that the buoy interface and the 
floating hose string port are in the same vertical plane, 
only the heaving and pitching of the buoy under the 
action of waves will affect the boundary conditions of the 
buoy–hose interface. The heave of buoy affects the initial 
displacement of the interface and the phase angle ( ε) 
between buoy and wave. Let the initial displacement of 
the buoy–hose interface from the horizontal plane be 0y .  
Under the action of wave load, the phase angle between 
the wave and the buoy is εh when the buoy generates 
heave motion. Take the phase angle 0ε =h . When the 
buoy generates heave motion, the amplitude of heave of 
the buoy is hH . Let ε′ = hkx :

 
ε′ = hx
k

 (16)

The Equation (21) is brought into the linear wave surface 
Equation (12) to obtain:
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H
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(17)

The pitch of buoy affects the inclination angle of the 
interface ( ),θ x t . Under the action of wave load, the 
phase angle between wave and buoy is pε . When the buoy 
generates pitching motion, the amplitude of pitching of the 
buoy is pH . Let pkx ε′ = :

 
px

k
ε

′ =  (18)

The Equation (18) is brought into the linear wave surface 
Equation (7) to obtain:

 

( )

( ) ( )

0

0

0

0 sin
2

εηθ θ

θ θ ω
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p
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 (19)

where ( ),θ x t  is the angle between the wave surface 
function ( ),η x t and the x axis.

2.4 FSO BOUNDARY CONDITIONS

For the motion of FSO under wave load, this paper only 
considers the influence of heaves and pitches on FSO. 
Under the action of wave load, the phase angle between 
wave and buoy is  ε ′h . Similarly, let 'ε′ = hkx :

 
'ε′ = hx

k  
(20)

When the FSO produces heave motions, it will affect 
the elevation of the FSO-hose interface above sea level. 
The Equation (20) is brought into the linear wave surface 
Equation (7) to obtain:
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( ) ( )
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e

y x L y x
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H
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 (21)

where ey  is the initial elevation of the FSO-hose interface 
above sea level,  'hH  is the amplitude of buoy heave. θe  is 
the inclination angle between the FSO-hose interface and 
the horizontal plane ( 0eθ = ). The phase angle between the 
wave and the FSO is 'ε p . The pitch motion of FSO affects 
the inclination angle of the FSO-hose interface ( ),θ x t . 
Let 'ε′ = pkx :

 
'ε

′ = px
k

 (22)

The Equation (22) is brought into the linear wave surface 
Equation (7) to obtain:

 

( )
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
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

′ p
e

p
e

x L x
x k

H
x L k t

 (23)

where '
pH  is the amplitude of buoy pitching.

3. NUMERICAL SOLUTION

3.1 SINGLE FLOATING HOSE

In this paper, the fixed-grid finite-difference method 
proposed by O’Donoghe and Halliwell in 1990 is used in 
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the vertical solution process. The numerical value of the 
bending vibration curve equation ( ),y x t  of the floating 
hose at any position on the hose and at any time ( ),i jx t  
can be expressed as follows:

 

( ) ( ) ,, ,

 0 ; 1, 2,3 .
0 ; 0

i j i j

i

j

y x t y ih jk y

x ih ih i N
t j j jκ κ

 = =
 = + = = …
 = + = ≥

 (24)

 
( ) [ ) , 0, ; , 0,

1
Lh x x L t t

N
δ κ δ= = ∈ = ∈ +∞

+  
(25)

where L is the overall length of the floating hose string, ix  
and jt  are nodes, N is the number of equidistant nodes in 
the interval [0, L].

Discretization of differential equations into difference 
equations. The central difference scheme will lead to 
instability in the solution of the above-mentioned hose 
differential equations (Brown and Elliott, 1988), so the 
backward difference scheme is adopted in this paper. 

( ) ( )4 2

, 14 2 2
, 1 , 1

, ,1
α +

+ +

   ∂ ∂
+ =      ∂ ∂   
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i j i j

y x t y x t
F
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2y x, t
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+ −
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  − +∂
= +  ∂ 

i j i j i j

i j

y y y
O k

k  
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4
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4 4
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+

i j i j i j i j i j
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y y y y yy x t
x h

O h (28)

Substituting Equations (27) and (28) into Equation (26):

 
2, 1 1, 1 , 1 1, 1 2, 1
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4 6 4+ + + + + − + − +− + − +i j i j i j i j i jy y y y y
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2
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1 2 cos 1
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Where,

( ), 1 , , 14 4 2 2 2 2

1 6 1 1 ;   ; 2
 
γ

α κ α κ+ −= = + + = −i j i j i j
Ke b y y
EIh h  (31b)

Let ( ), 1 , , 12 2

1 2
α κ+ −= −i j i j i jb y y , and according to Equation 

(17):

( ) ( )( ), 1 02 2

1 cos cos 1
2

ω κ ω κ
α κ+
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i j

Hb y H j j  (32)

Let

( ) ( )( ), 1 , , 12 2

1 2 cos 1
2

ω κ
α κ+ −

 = − + − + +  
i j i j i j p
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and Equation (36) is equivalent to:

2, 1 1, 1 , 1 1, 1 2, 1 , 14 4γ+ + + + + − + − + +− + − + =i j i j i j i j i j i jey ey y ey ey f  (33)

Combine the boundary conditions at the pontoon, 
according to Equation (18) and Equation (20):

 
( )0, 1 0 cos ,      0, 0

2
ω+ = + − = =h

j
H

y y t when x i
 

(34)

Using the first-order center difference quotient formula 

1, 1 1, 1 '
0, 1 

2
+ − +

+

−
=j j

j

y y
y

h
,

( )1, 1 1, 1 2 sin
εη ω+ − +

∂  − = = = − ∂  
′ h

j j hy y h x hH k t
x k  

(35)

Combine the boundary conditions at the FSO, according 
to Equation (21):

 ( )
'

1, 1 cos
2

ω+ + = + −h
N j e

H
y y t

 
(36)

Using the first-order center difference quotient formula 
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1, 12
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−
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y y
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h
,

( ) ( )
'

'
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2
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N j N j h
H

y y h k t hH k t  (37)

The difference equations are obtained from Equations (33), 
(34), (35), (36) and (37). Write the system of difference 
equations into a matrix:

 1 1+ +=T T
j jAy f  (38)

Where,

1 0 1 0 0
0 1 0 0 0

4 4 0
0 4 4 0

0 4 4
0 0 1 0

1 0 1

γ
γ
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−

− −
− −
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−

            

e e e e
e e e e

A

e e e e

(39)

 ( )1 1, 1 0, 1 1, 1 2, 1, , , ,+ − + + + + + += 

T
j j j N j N jy y y y y  (40)
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( ) ( )
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 (41)

3.2 INFLUENCE OF FLANGE FITTINGS

Due to the different materials and structures of the flange 
and the hose body and the different bending rigidity, the  
bending rigidity of the floating hose connected by 
the flange is discontinuous at the joint of the flange and 
the hose, and the discontinuity of the bending rigidity 
affects the second derivative and the higher derivative of 
the deformation function to the displacement. At the joint 
of flange and hose, the displacement and the deformation 
slopes of flange and hose are equal. It can be further known  

from formula 
( )2

2

,∂
=

∂
y x t M

EIx
 that the bending moments 

they bear are also equal:

 ( ) ( ), ,r sy x t y x t=  (42)
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x x
x t x t∂ ∂
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 (43)
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( ) ( )2 2

2 2

, ,
    

∂ ∂
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r s s

r

y x t y x t EI
R where R

EIx x
 (45)

where r  stands for rubber hose, s  stands for flange fitting 
steel structure.

The discontinuity of bending stiffness can be seen from 
Equation (43). Considering the influence of discontinuity, 
five points ( )0 0,    2, 1,0,1, 2  = + = − = − −ix x ih h x x i  are 
introduced in this paper. Take i = 0 at the flange and hose 
interface, take 2, 1= − −i  for the hose close to the interface, 
and take 2,1=i  at the flange close to the interface. ( )1y ,x t  
and ( )2y ,x t  are expanded by Taylor series at 0=x x :
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According to Equations (42) and (44):

 ( ) ( ) ( ) ( )22
0 0

1 0 2

, ,1, ,
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∂ ∂
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r ry x t y x thy x t y x t h

x R x
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Use the difference formula 
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Equations (46):
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,

1
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=
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R y x t R y x t
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R
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Similarly, use the difference formula according to the 
expressions of ( )2,−y t  and ( )2,y t :
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( ) ( )( ) ( )
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1 1 2

2 4, ,

2 2 , , ,− −
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+
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Ry x t y x t
R

R y x t y x t y x t
R

 (50)

When time takes 1= +t j , the number of multiple parallel 
hoses is taken as N=10, the overall displacement of the 
hose under wave load obtained by Equations (38) is 
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Then that hose is calculated in section, each hose is 
provided with left and right flanges, and the influence 
of the left and right flanges on the hose is calculated 
respectively. Considering that on the tail hose connecting 
to the FSO, part of the hose is suspended between the 
FSO and the sea surface without receiving wave load. In 
the extracted overall displacement data of the hose, the 
partial displacement after the hose connected with the 
FSO is eliminated. This distance is calculated based on 
the height of the FSO from the sea surface ( )0 7 H m=  
and the movement of the FSO-hose interface (Sayed and 
Patel, 1992).
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'

0 cos
2
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N

H
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( ) ( )3 2 32

24
= − − +

qxy x l lx x
EI

 (53)

4. RESULTS AND DISCUSSIONS

In this section, the mathematical model is numerically 
solved and verified through Orcaflex simulation. The 
rotary table mooring form of most mooring buoy structures 
(cylindrical buoys) in practical application is selected, and 
the general properties of mooring buoys given in Table 1. 
The general properties of FSO is given in Table 2. The 
operating parameters of the floating hose are shown in 
Table 3, and its material parameters are shown in Table 4. 
Environmental parameters under different working 
conditions will have a great impact on the oil loading and 
unloading system. The sea state parameters selected in this 
paper are 50-year return period. The specific values are 
shown in Table 5, and the selection of wave parameters 
and water depth is completed respectively according to 
Table 5.
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Table 1: General properties of CALM.

Parameter Data Unit
Diameter 11.0 m
Moulded depth 5.30 m
Draught 2.5 m
Total weight of buoy 250.0 t
Mass moment of inertia x 2411.50 t·m2

Mass moment of inertia y 2411.50 t·m2

Mass moment of inertia z 3781.20 t·m2

Depth of floating hose 0.5 m
Angle with floating hose 15 Deg
Number of catenary anchor legs 6 -
Pre-opening angle 50±2 Deg

Table 2: General properties of FSO.

Parameter Data Unit
Length 103.0 m
Width 16 m
Height 13.2 m
Moulded depth 7.30 m
Draught 4.5 m
Total weight 9017.95 t
Mass moment of inertia x 254.93e3 t·m2

Mass moment of inertia y 5.980e6 t·m2

Mass moment of inertia z 5.980e6 t·m2

Table 3: Operating parameters of floating hose.

Operating parameters Data Unit
Application standard OCIMF2008 -
Pressure rating 1.5 MPa
Factory test pressure 1.5 MPa
Minimum burst pressure 7.5 MPa
Allowable operating pressure −0.075 MPa
Allowable flow rate 13 m/s
Allowable temperature −20~80 ℃
Allowable ambient temperature −29~52 ℃

Table 4: Floating hose parameters.

Parameters Data Unit
Length per section 10 m
Inner-diameter 0.365 m
External diameter 0.469 m
Weight per unit length 518.5 kg/m
Bending Stiffness 400 kN/m2

Axial Stiffness 20000 kN/m
Minimum bending radius 1.956 m

Table 5: Environment parameters.

Environmental parameters Data Unit
Depth of water 85 m
50-year high tide 2.5 m
50-year low tide −2.25 m
Wave height 2 m
Period 5.61 s
Wave direction
Wavelength

0
20

Deg
m

4.1 COMPUTATION OF VERTICAL 
DISPLACEMENT

Calculation results of vertical displacement of axis of 
floating hose string are presented in Figure 4. Using 
MATLAB software to calculate (take wavelength  

20 =L m), according to the calculation results in one 
wave period, the dynamic displacement in the whole 
vertical plane of the hose string is extracted, and four 
times t1, t2, t3 and t4. are respectively selected to fit the 
displacement curve of the floating hose string. At time 
1 0=t  s (Figure 4a), affected by wave load and dynamic 

boundary, in the vertical displacement of the hose string 
axis, the displacement of both ends of the hose string is 

0.18= −y  m at 0=x  m and 7.5=y  m at 100=x  m.

Since most of the tail hoses are not subjected to wave 
loads, the data of the tail hoses are not considered, and 
the hose string has a maximum displacement 1.1=y  m 
at 4=x  m. Similarly, at time 2 1.4=t  s (Figure 4b), in 
the displacement of the hose string axis in the vertical 
direction, the displacement of both ends of the hose string 
is 0.73= −y  m at 0=x  m, 6.1=y  m at 100=x  m, 
the maximum displacement occurs at 49=x  m, and the 
displacement 0.75y = −  m.

At time 3 2.8=t  s (Figure 4c), the axis of the hose string is 
displaced in the vertical direction, the displacement of both 
ends of the hose string is 1.1= −y  m at 0=x  m,  6.5=y  
m at 100=x  m, the maximum displacement occurs at

a) at time t = 0 s
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 0=x  m, and 1.1= −y  m. At time 4 4.2=t  s (Figure 
4d), the axis of the hose string is displaced in the vertical 
direction, the displacement at both ends of the hose string 
is 0.50= −y  m at 0=x  m, 6.8=y  m at 100=x  m, 
the maximum displacement occurs at 80=x  m, and the 
displacement 0.60y = −  m.

4.2 COMPUTATION OF VERTICAL BENDING 
MOMENT

From the differential equation of deformation curve 

( )2

2

,∂
=

∂
y x t M

EIx
, one obtaines:

 ( ) ( )2

2

,
,

∂
=

∂
y x t

M x t EI
x

 (54)
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The connection end of the head hose and the single-point 
buoy is a reinforced end, and the bending rigidity at the 
flange is taken as EI kNm

0

2
2000= :

1, 1 0, 1 1, 1
0, 1 0 2

2
    0+ + − +

+

− + 
= = 

 

j j j
j

y y y
M EI when x

h  
(56)

The bending moment curve of the hose string axis is shown 
in Figure 5. When 1 0=t  s (Figure 5a), displacement 
coordinate point data 1,0y , 0,0 y , 1,0−y  at the left end interface 
of the head hose of the floating hose string are extracted:

( ) 1,0 0,0 1,0
0 2

2
0,0 94.3 −− + 

= = 
 

y y y
M EI kNm

h
 (57)

At 100=x  m, the bending moment ( ) 100,0 35.8 kNm  = −M
of the hose string, and the maximum bending moment 
occurs at 0=x  m.

When 2 1.4=t  s (Figure 5b), displacement coordinate 
point data 1,1.4y , 0,1.4 y , 1,1.4−y  at the left end interface of the 
head hose of the floating hose string are extracted:

( ) 1,1.4 0,1.4 1,1.4
0 2

2
0,1.4 20.0 −− + 

= = − 
 

y y y
M EI kNm

h
 

 
(58)

The floating hose string is affected by wave load 
and dynamic boundary. According to Figure 4b, the 
bending moment ( )0,1.4 20.15 kNm= −M  at 0=x  m, 

( )100,1.4 5.23 kNm= −M  at 100=x  m, the maximum 
bending moment occurs at  92=x  m, and the bending 
moment is ( )94,1.4 63.89 kNm= −M .

Similarly, when 3 2.8=t  s:

( ) 1,2.8 0,2.8 1,2.8
0 2

2
0,2.8 23.65 −− + 

= = − 
 

y y y
M EI kNm

h
 (59)

b) at time t = 1.4 s

c) at time t = 2.8 s

d) at time t = 4.2 s

Figure 4. Vertical displacement diagram of the floating 
hose string
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According to Figure 5c, the bending moment 
( )0,2.8 23.65 kNm= −M  at 0=x  m, 
( )100,2.8 33.2 kNm= −M  at 100=x  m, the maximum 

bending moment occurs at  93=x  m, and the bending 
moment is ( )93,2.8 53.8 kNm= −M . When 4 4.2=t  s:

( ) 1,4.2 0,4.2 1,4.2
0 2

2
0,4.2 55.68 −− + 

= = − 
 

y y y
M EI kNm

h
 (60)

According to Figure 4d, the bending 
moment ( )0,4.2 55.68 kNm= −M  at 0=x , 

( )100,4.2 46.38 kNm= −M  at 100=x  m, the maximum 
bending moment occurs at  0=x  m, and the bending 
moment is ( )0,4.2 55.68 kNm= −M .

According to the above results, we can find that there 
are irregular bending moments at every 10m of the hose, 
which is due to the large stiffness difference between the 

c) at time t = 2.8 s

a) at time t = 0 s

flanges at both ends of the hose and the hose tank, resulting 
in a large change in the axial force of the hose at both ends 
of the flange and the middle part.

4.3 VERIFICATION THROUGH ORCAFLEX 
SIMULATION

Firstly, the buoy, FSO and floating hose string are modelled 
respectively. In Orcaflex software, the buoy, hose string and 
FSO are connected by flanges in turn to form a complete 
offshore crude oil loading and unloading system.

Under normal circumstances, the buoy-hose interface is 
located below the horizontal plane and forms a certain 
angle with the horizontal plane. In this model, the 
commonly used angle of  is selected, and the buoy and the 
head hose of the floating hose string are connected through 
flanges (see Figure 6). The buoy is modelled according to 
the basic dimensions in Table 6.

b) at time t = 1.4 s

d) at time t = 4.2 s

Figure 5. Vertical bending moment diagram of the floating hose string
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Due to the complex structure of the hose, in order to 
simplify the modeling process and considering the 
existence of flanges at both ends of the hose, the hose is 
simplified into three parts: flange, reinforcing layer and 
inner glue layer for modeling.

Figure 6. The buoy and floating hose string connection

The main part of the hose is selected as general category 
line type, which is modelled by common methods, and 
Profiled line type is selected for the end flange, modeling 
is conducted by using the homogeneous hose category 
method (see Figure 7). The hose reinforcement layer has 
a variable diameter, in this paper, a stiffener attachment is 
added to the main body of the hose, and the profile of the 
attachment is the same as that of the end flange (Roveri 
et al., 2002). Next, ten hoses connected end to end are 
established to form a floating hose. The left end of the hose 
is connected to the buoy through a flange, and the right end 
of the hose is connected with the FSO through a flange.

Figure 7. The floating hose modeling equivalent diagram

Connect buoys, hose string and FSO, as shown in Figure 
8 to obtain the finite element model of offshore crude oil 
loading and unloading system.

Figure 8. Orcaflex model of offshore crude oil  
offloading system

According to the established finite element model of offshore 
crude oil handling system and the settings of the above 

sea state parameters, the calculation results of Orcaflex 
software simulation for vertical displacement of hose string 
axes at four time instants t1, t2, t3 and t4 are obtained. The 
comparison between the calculation and simulation results 
of the vertical displacement of the hose string at four times 
t1, t2, t3 and t4 is shown in Figure 9 and Table 6.

a) at time t = 0 s

b) at time t = 1.4 s

c) at time t = 2.8 s



TRANS RINA, VOL 164, PART A4, INTL J MARITIME ENG, OCT-DEC 2022

©2022: The Royal Institution of Naval Architects A-353

In Orcaflex software, the vertical bending moment values 
of floating hose string are extracted and simulated into 
curves. The vertical bending moment of the hose string 
axis at times t1, t2, t3 and t4, and the comparison between 
numerical calculation and simulation results is shown in 
Figure 10 and Table 7.

Data of the maximum bending moment and the maximum 
axial force of the section in the calculation period are 
extracted respectively to draw a histogram of the maximum 
bending moment (Figure 11) and the maximum axial force 
of the section (Figure 12).

As can be seen from Figure 11, within 0~10 m, i.e. the 
maximum bending moment of the head hose is relatively 
concentrated, so the head hose is very easy to be bent and 
broken in the whole hose string. At the same time, when 
 100 mx = , the bending moment of the section of the hose 
string also appears abrupt change, so the rigidity design 
should be strengthened at the flange end of the interface 
between the tail hose and the FSO.

As shown in Figure 12, within 0~10 m, i.e. within the scope 
of the head hose, the head hose is subject to relatively 
concentrated maximum axial force, so the head hose is 

very vulnerable to bending fracture and tensile fracture in 
the whole hose string.

As for the displacement caused by wave load on 
the hose string, due to the influence of the dynamic 

d) at time t = 4.2 s
Figure 9. Vertical displacement comparison diagram of 

the floating hose string

Table 6: Vertical displacement comparison of the hose string. 

Vertical displacement (m)
t1 = 0 (s) t2 = 1.4 (s) t3 = 2.8 (s) t4 = 4.2 (s)
Ma Sb Ma Sb Ma Sb Ma Sb

x = 0 (m) −0.18 0.0079 −0.73 −0.46 −1.1 −0.97 −0.50 −0.63

x = 100 (m) 7.5 7.2 6.1 6.8 6.5 6.8 6.8 7.2

Maximum 
displacement 1.1 1.3 −0.75 −0.75 −1.1 −0.97 −0.60 −0.78

a  Results obtained by mathematical models. b  Results obtained by simulation 

software.

b) at time t = 1.4 s

a) at time t = 0 s

c) at time t = 2.8 s
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boundary of the buoy, the floating hose string usually 
has a large displacement near the buoy, and the vertical 
displacement curve of the hose string shows a triangular 
function trend with the change of the direction 
displacement of the hose string gradually becoming flat. 
At the same time, due to the influence of the dynamic 
boundary of the FSO on the tail hose of the hose string, 
the last hose in the hose string is usually not subjected 
to wave load.

Due to the influence of the boundary between the buoy 
and the FSO, the maximum bending moment of the 
floating hose string mostly occurs at the joint of the 
buoy and the FSO. The bending moment in the middle 
part of the hose string shows a smooth transition trend. 
And the head hose of the floating hose string is subjected 
to a large bending moment, and the shear force at the 
interface between the head hose and the buoy flange 
is the largest. Therefore, a certain section stiffness 
transition structure should be designed at the joint of 
the head hose and the buoy, and the reinforcement end 
is designed to act as a shock absorber to absorb the 
horizontal motion of the buoy.

d) at time t = 4.2 s

Figure 10. The vertical bending moment comparison 
diagram of the floating hose string

Figure 11. Maximum bending moment distribution of the 
cross section in one period

Figure 12. Maximum axial force distribution of the cross 
section in one period

5. CONCLUSION

In this paper, theoretical analysis and simulation calculation 
are carried out for the dynamic performance of floating oil 
delivery hose string in the overall offshore oil delivery 
system. The correctness of mechanical performance 
analysis is verified by Orcaflex software.

According to relevant assumptions, the bending 
differential calculation formula of floating hose string 
vibration is established. According to DNV report (2007) 
and based on the impact of actual working conditions 
and specific environmental parameters, the expression of 
vertical displacement of hose string under wave load is 
deduced.

Bending moment (kNm)
t1 = 0 (s) t2 = 1.4 (s) t3 = 2.8 (s) t4 = 4.2 (s)

Ma Sb Ma Ma Ma Sb Ma Sb

x = 0 (m) 94.3 90.093 −20.15 −17.675 −23.65 −21.984 −55.68 −53.418

x = 100 (m) −35.8 −37.975 −5.23 −7.33 −33.2 −31.699 −46.38 −44.726
Maximum bending 
moment

94.3 90.093 −63.89 −60.8783 −53.8 −51.78 −55.68 −53.418

a Results obtained by mathematical models. b Results obtained by simulation software.

Table 7: Vertical bending moment comparison of the hose string.
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In this paper, the expression considering the influence of 
flange on the bending moment of the hose string is derived, 
and the vertical bending moment distribution of the hose 
string at different moments in a wave period is obtained by 
fitting with MATLAB. It was found that bending moment 
mutation occurred at each flange joint. 

The displacement and bending moment of each section of 
the floating hose string are extracted by Orcaflex software. 
Through the comparison and analysis of theoretical 
numerical calculation results and simulation results, the 
feasibility of the theoretical numerical calculation method 
of bending moment vibration based on elastic foundation 
beam theory proposed in this paper to analyze the dynamic 
performance of the floating hose string is verified.

6. ACKNOWLEDGMENTS

The work was supported by the National Key Research 
and Development Plan (Grant no. 2016YFC0303704), 
National Natural Science Foundation of China (Grant no. 
51879271), the 111 Project (B18054).

7. REFERENCES

1. AMAECHI, C.V., WANG, F.C., HOU, X.N., Ye, 
J.Q. Strength of submarine hoses in Chinese-lantern 
configuration	from	hydrodynamic	loads	on	CALM	
buoy. Ocean Engineering, 2019, 171: 429-442.

2. BROWN, M.J., Elliott, L. Two-dimensional 
dynamic	 analysis	 of	 a	 floating	 hose	 string. 
Applied Ocean Research, 1988, 10(1): 20-34.

3. DET NORSKE VERTITAS. Environmental 
Conditions and Environmental Loads. Technical 
Report, 2007. Høvik, Norway 

4. DYKE, P.P.G., MOSCARDINI, A.O., ROBSON 
E.H. Offshore	 and	 Coastal	 Modelling, Volume 
12. Springer-Verlag, Berlin, Germany, 1985

5. Gao, Q., ZHANG, P., DUAN, M.L., YANG, 
X.Q., SHI, W.B., AN, C., Li, Z.L. Investigation 
on	structural	behavior	of	ring-stiffened	composite	

offshore	 rubber	 hose	 under	 internal	 pressure. 
Applied Ocean Research, 2018, 79: 7-19.

6. O’DONOGHUE, T., HALLIWELL A.R. Vertical 
bending	moments	 and	 axial	 forces	 in	 a	 floating	
marine hose-string. Engineering Structures, 
1990, 12(2): 124-133.

7. ROVERI, F.E., SAGRILO, L.V.S., CICILIA 
F.B. Case	 study	 on	 the	 evaluation	 of	 floating	
hose forces in a C.A.L.M. system. Proceedings 
of the Twelfth International Offshore and Polar 
Engineering Conference, Kitakyushu, Japan, 
2002, 26-31 May.

8. SAYED, F.B. and PATEL, M. H. Mathematics of 
Flexible Risers Including Pressure and Internal 
Flow	Effects. Marine Structure-Special Flexible 
Risers Issue, 1992, 5: 121-150.

9. TONATTO, M.L.P., FORTE, M.M.C., TITA, 
V., AMICO, S.C. Progressive damage modeling 
of spiral and ring composite structures for 
offloading	hoses. Materials & Design, 2016, 108: 
374-382.

10. TONATTO, M.L.P., TITA, V., RICARDO, T.A., 
FORTE, M.M.C., AMICO, S.C. Parametric 
analysis	 of	 an	 offloading	 hose	 under	 internal	
pressure via computational modeling. Marine 
Structures, 2017, 51: 174-187.

11. TONATTO, M.L.P., TITA, V., FORTE, M.M.C., 
A.MICO S.C. Multi-scale	analyses	of	a	floating	
marine hose with hybrid polyaramid/polyamide 
reinforcement cords. Marine Structures, 2018, 60: 
279-292.

12. ZHANG, S.F., CHEN, C., ZHANG, Q.X., 
ZHANG, D.M., ZHANG, F. Wave loads 
computation	 for	 offshore	 floating	 hose	 based	
on partially immersed cylinder model of 
improved Morison formula. The Open Petroleum 
Engineering Journal, 2015, 8: 130-137.

13. ZHOU, Y., DUAN, M.L., MA, J.M., SUN, G.M. 
Theoretical analysis of reinforcement layers in 
bonded	flexible	marine	hose	under	internal	pressure. 
Engineering Structures, 2018, 168: 384-398.


