
TRANS RINA, VOL 164, PART A4, INTL J MARITIME ENG, OCT-DEC 2022

©2022: The Royal Institution of Naval Architects A-415

A NOVEL APPROACH TO ROBUST CONCEPT DEVELOPMENT FOR OFFSHORE 
FLOATING SYSTEMS

Reference NO. IJME 1206, DOI: 10.5750/ijme.v164iA4.1206

P Gallagher. PhD, C Eng, FRINA, UK 
Consultant

KEY DATES: Submitted: 18/08/22; Final acceptance: 31/01/23; Published: 27/03/23 

SUMMARY

This paper describes a new approach to the application of robust design optimisation to the development and selection of 
floating systems during concept and early-stage engineering. The basis of the approach is to combine a genetic algorithm 
with an efficient non-intrusive statistical model to allow both uncertainties in modelling (intrinsic uncertainty) and 
requirements (extrinsic uncertainty) to be accounted for within a Robust Design Framework that directs optimisation 
toward unique design solutions. A particular interpretation of the Pareto design objective space enables required levels 
of performance margin and meaningful measures of confidence in design objectives to be achieved. The approach can 
be used to provide a systematic series of optimal hull geometries (geosims) that meet the most likely variations in design 
requirements, and so mitigate the impact of change early in the design cycle. This paper follows on from and earlier 
publication (IJME648) on multi-objective, multi-discipline, optimisation and uses the same case study.
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NOMENCLATURE

BM Second moment of water-plane area/immersed  
 volume
C1, C2 Constants relating Steel and Outfit Mass to   
 Displacement
GM Metacentric height (m)
Hs Significant wave height (m)
KB Height of centre of buoyancy above keel (m)
KG Height of the centre of gravity above keel (m)
U1, U2 Genetic algorithm objective functions
MSOW Steel and Outfit Mass.
P Payload/Topsides mass (Te)
P0, PR(t) Initial and time varying production rate (BOPD)
RAO Response Amplitude Operator
RNPV Net Present Value of field reserves (USD)
F GA fitness measure
TN GA Target function
Zs Significant heave (double amplitude, m)
α Weightings for mean objective functions
γ Weighting for standard deviations
ꞵ Weighting between mean and standard deviations.
μ1,μ2 Mean values of objective functions U1, U2
σ1,σ2 Standard Deviations of U1, U2
Δ Hull mass displacement (Te)

Hull geometry definitions are given separately in  
Appendix A1.

UNITS
MKS units are used throughout with the following 
 additional accepted industry definitions:

bbl International standard volume – Barrel.
BOPD Production rate; Barrels of Oil Per Day
MM Short form for millions, as in MMBBL
M Short form for thousands, as in MBOPD
Te Metric Tonnes

1. INTRODUCTION

1.1  STUDY BACKGROUND

This paper describes the application of robust design 
optimisation (RDO), and a novel inverse design method 
(IRDO), to early-stage concept development and selection 
of offshore floating systems.

The use of optimisation at the concept development stage 
might seem premature, not least because the level of 
design definition is often insufficient for the application 
of sophisticated engineering models, and levels of 
uncertainty in design requirements are high. However, 
decisions taken at the early stages of design and system 
definition are fundamental to success (Andrews, 2018), 
and so optimisation tools that incorporate and mitigate 
such uncertainties are of great value.

When choosing between different concepts, it is 
common to develop preliminary designs for each and 
carry out performance and cost/benefit comparisons. 
Decisions are often based on a single design point, and 
later changes that might lead in a different direction 
may either result in sub-optimal choices or significant 
re-work and delay.
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The solution proposed here is to model the potential 
for change and other uncertainties using robust design 
optimisation, but focus on generating “populations” of 
designs, rather than comparing “one-off” cases.

A successful concept select would therefore generate 
a systematic series of geometries (geosims) that show 
the greatest resilience to early-stage uncertainties in 
design definition and performance prediction. In design 
objective space, such a series is represented by a line 
segment (rather than a single design point), bounded at 
each end by statistical limits in design requirements, and 
with uncertainties in performance prediction built in as a 
margin.

To make this possible, it is assumed that the design 
objective space is smoothly varying as a function of design 
requirements and constraints, and that Pareto Fronts are 
contours representing unique solutions which are optimal 
with respect to different weightings of design objectives 
(performance, weight, cost etc.).

The range of design requirements, constraints and 
performance margin can be set deterministically, but it is 
more useful to use statistical models from which levels 
of confidence can be derived, and so elements from both 
Robust Design Optimisation and Inverse Design are 
adopted here.

The key elements of the resulting search algorithm are that it:

• First selects a mean (P50) optimal concept 
geometry with a defined performance margin 
against uncertainties in design modelling (intrinsic 
uncertainty).

• Then generates additional geometries meeting the 
same performance margin that allow calculation of its 
statistical properties subject to uncertainties in design 
requirements (extrinsic uncertainty).

• And finally, combines the resulting statistical 
properties of the design objectives arising from both 
sources of uncertainty to fully define the line segment 
along which robust solutions can be found.

By using this approach there is no need for complete 
Pareto Fronts to be generated nor does it require “manual” 
post-processing to further select design solutions from a 
Pareto set.

This paper describes the methodology in detail and 
provides a worked example to illustrate its application in 
practice.

1.2 TECHNICAL BACKGROUND

The use of formal mathematical methods in optimisation 
for the refinement of design performance is now well 
established across a wide range of engineering disciplines.

For ship design, applications to hull performance that 
take advantage of advances in parametric modelling and 
advanced analysis tools (Papanikolaou, 2010, Biliotti, 
et  al. 2011, Guha, & Falzarano, 2015, Vasudev, et al., 2017, 
Maisonneuve, et al., 2018, Cheng, et al, 2019), demonstrate 
how specific design objectives can be optimised.

Other publications in the field either focus on application 
of these techniques during detailed design and analysis 
(Diez, M et al. 2015, Serani, A., et al. 2015), and/or, 
holistic principles that integrate the many different tools 
used throughout the design lifecycle (Papanikolaou, 2020). 

For ships, use in concept development often includes factors 
that drive design requirements such as routing analysis, 
cargo and transport economics etc., and focus on defining 
principal particulars, dimensions, hull form coefficients and 
powering, that support a through-life perspective (Diez & 
Peri., 2010, Kim & Vlahopolous, 2012).

Sensitivity to uncertainty has been included within 
optimisation to both quantify effects (Wei et al. 2019), and 
more practically, apply the principles of Robust Design 
Optimisation to ship design more generally (Hannapel & 
Vlahopolous, 2010, Li, et al., 2016, Diez et al. 2013). 

However, for other types of floating systems, for example 
FPUs, FPSOs, or in offshore wind, Floating Offshore Wind 
Turbines (FOWT), there is insufficient data from which to 
develop the types of correlation and design relationships 
needed for early-stage application of Robust Design 
Optimisation using typical parametric approaches.

This paper aims to provide the detail necessary to enable 
use of these methods for early-stage decision making in 
concept design and the selection of such offshore floating 
systems, but without needing to resort to an extensive 
toolbox of engineering analysis techniques to gain the 
benefits of the approach.

1.3 RESEARCH METHOD

The research approach adopted here is one of systematic 
numerical experimentation and testing.

The underlying robust optimisation algorithm has several 
key elements, described within the Appendices to this 
paper, that were tested individually and, where needed, 
tuned accordingly. This applied chiefly to the so-called 
Target (penalty) functions and associated power laws 
used to apply selection pressure within the genetic 
algorithm, and the order of numerical integration rules 
used for statistical modelling.

As is typical for most iterative numerical methods, 
measures of convergence are critical. Throughout this 
work, a maximum of 1.0% error in the sum of target 
functions was applied before examining whether results 
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were Pareto. Runs were carried out repeatedly to ensure 
consistency and uniqueness in solutions.

A Case Study based on the single discipline of hull 
definition is used to illustrate the method. A previous 
publication (Gallagher, 2020) demonstrated multi-
discipline optimisation, combining an Oil & Gas Process 
facility with hull definition for the same novel FPSO. 
Here however, the process facility definition is instead 
linked to oil reservoir characteristics, and so provides 
the source of uncertainty in design requirements, 
specifically topsides weight (payload) and storage 
capacity.

A summary description of the Case Study is given in 
Appendix 1 for completeness.

1.4  STRUCTURE OF THIS PAPER

The core elements of the work presented here are:

• Tools that allow the design objective space to 
be explored in a more directed approach than in 
conventional optimisation.

• An efficient statistical model for dealing with 
uncertainties in modelling (intrinsic uncertainties) and 
design requirements (extrinsic uncertainties), namely 
by Non-Intrusive Polynomial Chaos (NIPC).

• Robust design optimisation and the IRDO approach 
itself.

The first two of these core elements are key steps on the 
way to the IRDO method. They provide useful tools in 
themselves but are largely drawn from existing literature 
and so are confined here to a summary in section 2, 
and Appendices. The exception is a variation on the 
usual NDSA method that allows specific solutions on 
the Pareto Front to be identified, which is described in 
Appendix 3.

The main body of this paper therefore concentrates on 
robust design optimisation and the IRDO approach to 
concept design.

The next section summarises the overall modelling 
objectives and the methods used for uncertainty analysis. 
Section 3 describes robust design optimisation (RDO) 
and the inverse design method IRDO. Section 4 provides 
a worked example to illustrate the different treatment of 
intrinsic and extrinsic uncertainties. Section 5 provides 
discussion and conclusions.

2. OVERVIEW OF KEY PRINCIPLES

2.1 MODELLING OBJECTIVES

At the concept development stage, we need to generate 
design solutions that:

• Provide unique, consistent and smoothly varying 
results for geometry and other principal particulars.

• Are optimised for their design objectives.
• Meet specified performance criteria.
• Are robust with respect to modelling uncertainties.
• Are robust with respect to uncertainty and potential 

for change in design requirements.
• Provide bounding values for the effect of statistical 

uncertainty (even when minimised) on factors such as 
cost/weight or similar design objectives.

The first three objectives are key to good quality optimisation, 
independent of uncertainty modelling. Appendices 2, 3 and 
4 describe the approach to optimisation used in this paper, 
which is based on the non-dominated search (NDSA) 
genetic algorithms (Deb, 2001., Konak et al., 2006, Seada 
& Deb, 2015), along with modifications that enable designs 
meeting specific performance targets to be found directly.

The remaining objectives are the main subject of this 
paper. They reflect the need to minimise the uncertainty 
in the location of the Pareto Front itself and the practical 
application of the IRDO method. 

2.2 MODELLING UNCERTAINTY

Modelling the impact of uncertainties, either in design 
requirements or modelling inputs, is critical to rational 
concept design and selection. Such uncertainties are large in 
the early stages of design and change as projects become 
better defined. Concept designs that are flexible in the face of 
change and are robust with respect to uncertainty are highly 
desirable.

Non-Intrusive Polynomial Chaos (NIPC) provides an 
efficient numerical method for estimating such effects and 
has been used across many fields such as CFD and FEA in 
recent years (Lee et al. 2009). The NIPC approach used 
here is described in Appendix 5.

It is important to distinguish between optimisation 
incorporating uncertainties, and robust design optimisation 
(RDO). The former treats optimisation in the same 
“deterministic” way as for example, CFD or FEA, and 
so allows results to be stated using statistical measures of 
confidence.

In Robust Design Optimisation, the additional aim is to 
find Pareto optimal solutions that minimise the impact of 
uncertainty by incorporating statistical measures within 
the fitness ranking of competing design solutions. 
Optimisation incorporating uncertainty in either design re-
quirements or modelling is nevertheless one of the build-
ing blocks of RDO and IRDO, and so is described in more 
detail in Appendix 6.

The following section describes the integration of these 
concepts into an inverse robust design optimisation 
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approach that can be applied to generating robust 
design solutions with defined statistical properties and 
performance margins.

3.  ROBUST DESIGN

3.1 RDO FOR CONCEPT ENGINEERING

For early-stage concept engineering, Extrinsic uncertainties 
that lead to changing requirements during the Front-End 
and Detailed Design and Engineering are of particular 
concern. Similarly, as the level of engineering detail 
increases, modelling assumptions made earlier may come 
under challenge from more detailed computational analysis 
and/or physical testing.

Therefore, this study places particular emphasis on the 
need to focus on not only optimisation as a tool to reduce 
sensitivity to uncertainty, but also to develop:

• Forms of mitigation to changing requirements and 
increased levels of engineering detail,

• Rational design margins that account for uncertainties 
and at the same time support decision making.

To this end, two different forms of RDO algorithm are 
described here.

The first is a conventional RDO approach using a weighted 
minimisation of the mean and standard deviation of design 
objectives applied to find a single elite solution, but with 
additional mitigation measures built into the design.

The second is based on the use of a design performance 
margin to drive the selection of elite robust solutions. This 
is effectively an inverse approach and so the acronym 
IRDO is used.

3.2 THE GENERAL RDO METHOD

The key changes to the conventional NDSA are in the 
calculation of the fitness measure (F) based on the 
weighted design objectives U1, U2, UM, and the selection of 
the parent designs for each new generation of populations 
within the genetic algorithm.

For a simple two objective optimisation problem, the usual 
(α) weighted fitness function:

 F = α. U1 + (1-α) U2 (1)

Becomes:

 F = ꞵ.[α.μ1 + (1-α). μ2] + (1-ꞵ).[γ.σ1 + (1-γ).σ2] (2)

Where:

μ1, μ2  are the mean values of design objectives (U1,U2)

σ1, σ2  are the standard deviations of the design 
objectives (U1,U2)

α  is, as before, weighting between the mean values 
of the design objectives.

ꞵ  is an additional weighting between mean and 
standard deviation of the design objectives

γ  is an additional weighting between the standard 
deviations of design objectives.

This is a more generalised version of weighted fitness 
functions than can be found elsewhere (Murphy, Allen  
et. al. 2010), and gives greater flexibility, particularly when 
there is a need to weight the relative standard deviations of 
the design objectives.

For the optimisation scheme used here, the fitness of each 
design is further weighted by Target Functions as described 
in Appendix 2, which ensure that selection pressure 
favours members of the population which are closest to the 
stated design requirements (e.g. payload, storage capacity, 
GM etc), and indeed converge to satisfy them to within a 
suitable tolerance criterion.

The optimisation process therefore remains as described in 
Appendix 2, but with the additional need to calculate the 
mean and standard deviation of the design objectives for 
each member of the population.

When using NIPC as the statistical integration model, this 
is achieved by:

• Using the mean value of the inputs as the basis of a 
mean design (a P50 design basis) to be optimised.

• Generating (MxN – 1) additional design realisations 
for each of the quadrature points (N) for range (M) of 
uncertain input values.

These additional design realisations are evaluated within an 
inner loop at each generation within the genetic algorithm 
(See Figure A2.1 for a summary flow chart).

Values of ꞵ and γ are often set at 0.5 (or equivalent in other 
formulations), i.e. an equal ranking between mean and 
standard deviation, and the value of α varied between 0 and 
1 to generate a Pareto Front for the mean design solution, 
with accompanying values for standard deviations in the 
design objectives.

For RDO methods, it is generally observed (Jin & Sendhoff, 
2003) that the mean design optimum falls slightly short 
of the equivalent deterministic Pareto design, but with 
reduced sensitivity to uncertainty (minimised standard 
deviations in design objectives).

An example of the application of this general RDO method, 
which also describes a practical approach to mitigating 
changes in design requirements, is given in Appendix 7. A 
summary of weighting values used is given in Appendix 8.
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3.3 INVERSE RDO (IRDO)

The aim of Inverse Robust Design Optimisation is to 
generate only those design solutions which satisfy specific 
criteria with respect to the design objectives (Lim et al, 
2005, Nellippallil et al., 2020). The method described here 
generates designs that meet given performance criteria by 
including an additional Target Function to favour members 
of the population that have statistical properties leading 
to a required margin or level of confidence. This can be 
achieved within a conventional RDO algorithm using the 
following additional steps:

1. For each generation, use the mean and standard 
deviation in the performance objective to calculate a 
suitable statistical measure, such as the 90th percentile 
(0.9 probability level) or P90.

2. Compare this with a target P90 performance level to 
weight each member of the population and apply to its 
overall ranking, favouring those that are closest to the 
target.

3. Additionally, adjust the value of the weighting (α) 
dynamically (Appendix 3), to ensure convergence to 
the target level is met by a Pareto solution.

As described in Appendix 6.3, this approach requires the 
definition of a characteristic line (for example, a normal to 
the Pareto Front) along which to integrate, and so relies on 
knowledge of the mathematical form of the Pareto Front 
for the mean of the modelling inputs.

This dependency can be replaced by selecting a specific 
ratio of standard deviations (γ) within the Fitness 
relationship (equation 2), and modifying parent selection 
within the optimisation algorithm to include members of 
those populations of quadrature points that both minimise 
the Fitness function and align dynamically according to the 
value of γ. This approach leads to the following additional 
steps within the IRDO loop described above:

1. Perform each optimisation step for all quadrature point 
sets of modelling inputs simultaneously, adjusting the 
value of weighting α of each to drive alignment as 
needed (note: α for the mean is fixed, γ is fixed, within 
this inner loop).

2. For each generation of design solutions at each 
quadrature point, select the Top 10 using the local value 
of weighting α of the design objectives to rank fitness.

3. Generate a new “group population” (around 100 
members) made up by collecting sets of randomly 
selected members of the Top 10 quadrature point 
design solutions.

4. Calculate the fitness F of each group using Equation 
2, with mean and standard deviation values (μ, σ) 
calculated using the Gauss-Hermite quadrature rules 
described (Appendix 5)

5. Rank according to this new Group Fitness level and 
select new “Elite” population set.

6. Select new parents the next generation of design 
solutions at each quadrature point using the Elite 
population set and randomly selected others.

This process is consistent with the fundamentals of the 
NDSA, but with parents across all quadrature points 
selected not only by their individual ranking, but also by 
those of their population’s statistical measures.

The characteristic line itself is evaluated dynamically using 
a least-squares best fit to the design objectives calculated 
for the Elite population set. Figure 1 below shows an 
example of the above population-based selection process 
for a simplified case involving uncertain inputs for the 
steel and outfit mass relationship (See Appendix 6), and 
with the critical damping ratio assumed in the calculation 
of the heave RAO (ζ); based on a mean of 0.125 with a 
standard deviation of 10% of the mean.

Figure 1. The top 10 design solutions for each set of 
Gauss-Hermite quadrature input values at convergence,  

γ = 0.25, α = 0.5 for mean input solution (C2.2)).

The Pareto fronts for the mean, upper and lower inputs 
for the damping ratio are shown for comparison (Cases 
1.2, 2.2 and 3.2) showing that the converged solutions for 
these quadrature points are close to or coincident with their 
respective Pareto Fronts.

Figure 2 shows how the best fit characteristic line through 
all quadrature point design solutions can be reasonably 
defined for the purposes of Gauss-Hermite integration.

As applied to intrinsic uncertainty modelling, and for any 
fixed value of the weighting α, this “inner loop” solution 
provides the mean and standard deviation for the location 
of the Pareto Front. When applied within the IRDO 
structure, the weighting α for the mean of the modelling 
inputs is allowed to vary according to the additional 
selection pressure exerted by the performance requirement 
and using the search method described in Appendix 3.

In summary therefore, optimisation of the solution for the 
mean inputs is driven by the inverse design process, and the 
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dynamic alignment of the optimised solutions for all other 
Gauss-Hermite Quadrature Points to the characteristic 
line is a function of the selected ratio of the standard 
deviations (γ). For each value of weighting (γ) and chosen 
performance criterion, there is a unique design solution at 
the intersection of the characteristic line so formed with 
the Pareto Front for the mean of the modelling inputs.

3.4 EXTRINSIC UNCERTAINTY AND 
GENERATING A SYSTEMATIC SERIES.

The IRDO approach described above gives a Pareto 
solution for the mean of the uncertain modelling inputs 
with a built-in performance margin. It does not need any 
complete Pareto Fronts to be generated and, by definition, 
goes directly to a robust mean design solution for the 
defined modelling (intrinsic) uncertainties.

We now wish to generate a line segment in design objective 
space along which Pareto design solutions that satisfy the 
performance margin can be found, and for which bounding 
values of other design objectives can be defined by suitable 
statistical measures.

Figure 3 illustrates this mean or P50 design point and the 
margin ΔT2 against a defined P90 performance Target level T2.

Figure 3. Illustration of where a P50 Robust design 
solution may sit relative to a P90 performance limit.

Figure 2. Example of best fit characteristic line as evolved 
during the RDO simulation.

The horizontal line Z = T2 - ΔT2 can be viewed as the line 
along which a systematic series of Pareto design solutions 
can be generated, all of which will satisfy the performance 
margin. It is also a line along which optimal solutions 
subject to extrinsic uncertainty (Appendix 6.2) may be 
calculated.

Indeed, a systematic series of robust solutions generated 
along this line and bounded by P10 to P90 confidence 
limits, represent a range of designs that are robust in terms 
of performance and bounded in terms of weight and cost.

Finally, the effect of extrinsic and intrinsic uncertainties 
can be combined as they are independent. This can be 
achieved by either simply summing the variances in the 
design objectives, or to be more rigorous, performing a full 
numerical Gauss-Hermite integration across all uncertain 
variables. These two approaches are compared in the 
following case study.

4. CASE STUDY

The following case study is aimed at showing how the 
RDO/IRDO algorithms are applied in practice following 
the three key stages described in 1.1.

The concept of interest is the so-called Deep Draught 
Production, Storage and Offloading (DDPSO) floating 
described previously (Gallagher, 2020), and summarised in 
Appendix 1. Here, we are interested only in optimising the 
hull geometry for performance and capital cost, with the 
process facility definition provided as input requirements 
and subject to (extrinsic) uncertainty.

A summary of the weighting values (α,ꞵ,γ) used for each 
stage is given in Appendix 8.

4.1 PROBLEM DEFINITION

Consider a marginal field development scenario defined as 
follows:

Table 1: Defined Field Development Data.

Inputs Mean (μ) Std Dev (σ)
Reserves 50.0 mmbbl 2.5mmbbl
Field Life 8 Years 1 year
Water Cut 50% 10%
Offloading Interval 14 days 1 day

These properties may be combined to give an initial 
production rate (P0) based on the assumption of an 
exponential depletion of reserves, and that after 8 years 
of production, the total fluids handling capacity including 
water-cut is equal to P0, and that the total production is 
equal to the estimated reserves (Gallagher, 2020).

This simple model may be re-formulated statistically, 
using either Monte-Carlo Simulation or Gauss-Hermite 
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quadrature, and can be shown to give a P10 lifetime 
production of 69.6Mbbl, and a P90 lifetime production of 
33.1Mbbl, along with matching upper and lower limits on 
production rate.

We use a simple model (Gallagher, 2020) to equate the 
total topsides mass/payload (P) to the production rate:

 P = K1 + K2.P0 (3)

With uncertainties defined as follows:

Mean K1μ  = 2000Te,

Standard Deviation K1σ = 100Te

Mean K2μ  = 0.15,

Standard Deviation K2σ  = 0.015

Assuming a normal distribution for all variables, the 
following statistical inputs for optimisation subject to 
Extrinsic uncertainties in Cargo volume and Topsides 
Mass are:

Table 2: Statistical Definition of Design Requirements.

μ - σ Mean (μ) μ + σ

Prod Rate 20,625                 24,195                27,766             BOPD

Cargo Vol 280,968               336,301              391,635           BBL

Topside Mass 4980.2 5629.3 6278.4 Te

Statistical Model - Mean (μ) and Std Deviation (σ)

Which are used to calculate the NIPC quadrature points for 
target design inputs to the optimisation model incorporating 
extrinsic uncertainties.

Intrinsic uncertainties in the modelling of hull steel 
and outfit mass (MSOW) and heave damping ratio are as 
described earlier in section 3.3.

4.2 MEAN (P50) DESIGN USING IRDO

We use the IRDO formulation to calculate the P50 design 
geometry for the mean design inputs of payload (5,629Te) 
and cargo capacity (336.3MBBL), with the additional 
constraint that GM = 2.0m. 

Figures 4 and 5 below show results for two sets of IRDO 
calculations for which P90 targets of 10.0m and 11.0m 
significant heave in a 1-year maximum sea-state are set. 
For illustration, the full Pareto Front for the mean design 
inputs is also shown.

The following tables summarise the resulting statistical 
properties of these robust solutions subject to intrinsic 
uncertainty.

Table 3: Summaries of P90 Mean results for γ = 0.125 (above) 
and γ = 0.5 (below).

Target Zs DO Alpha Mean Std Dev P10 P90
Zs 9.05 0.750 8.09 10.03

MSOW 26.27 0.352 25.81 26.72
Zs 9.99 0.797 8.97 11.01

MSOW 24.23 0.473 23.62 24.83

0.79

0.59

10.0

11.0

Target Zs DO Alpha Mean Std Dev P10 P90
Zs 9.28 0.552 8.58 9.99

MSOW 25.27 1.308 23.59 26.94
Zs 10.43 0.462 9.84 11.02

MSOW 23.24 1.265 21.62 24.86

0.76

0.49

10.0

11.0

The principal observations from these results are that:

• The parameter γ, being the weighting between 
standard deviations in the fitness ranking, controls the 
gradient of the characteristic line intersecting with the 
Pareto Fronts for each set of input quadrature points.

• The different α values found for the mean P50 design 
reflect the adjustments needed to ensure that the P90 
performance criteria are met and are consistent.

• Although the mean P50 designs differ, their P90 steel 
and outfit mass values are practically the same for the 
same target P90 Zs values.

Figure 4. Alignment of Quadrature Points for γ = 0.5 for 
two P90 Significant Heave Targets of 10.0m (lower line) 

and 11.0m.

Figure 5. Alignment of Quadrature Points for γ = 0.125 
for two P90 Significant Heave Targets of 10.0m  

(lower line) and 11.0m.
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That the P90 steel and outfit mass values should agree (as 
also found for other values of γ) suggests that there is both 
smoothness and consistency within the design objective 
space.

This also implies that (for this case study at least) robust 
design optimisation may give upper bound P90 estimates 
that are relatively insensitive to the choice of γ, even though 
different values for the P50 mean result from IRDO.

4.3 RDO FOR EXTRINSIC UNCERTAINTY

The next stage is to apply robust design optimisation 
subject to extrinsic uncertainties at the performance level 
calculated for the intrinsically robust mean P50 designs at 
selected γ. For example, the following cases might be of 
interest (ꞵ = 0.4 all cases).

Table 4: Definition of Mean Values for Performance Design 
Objective Zs in each Case of Interest.

Case P90 Zs γ α Zs (Mean)
1 10.0 0.125 0.79 9.05
2 10.0 0.5 0.76 9.28
3 11.0 0.125 0.59 9.99
4 11.0 0.5 0.49 10.43

As described in Appendices 3 and 4, the new mean Zs values 
represent horizontal lines in the design objective  space.

To apply RDO we combine the approach described in 
Appendix 6.2, along with fitness Equation 2 to rank each 
generation, and the selection process described in 3.4, to 
establish the population of quadrature points along this line 
segment in design objective space that gives the required 
minimum standard deviation in steel and outfit mass.

In this case, values for weights (ꞵ, γ) are held fixed, and α 
varied as described previously to locate intersections with 
the relevant Pareto Fronts.

Figure 6 below illustrates the result of performing such a 
robust optimisation process to the cases identified above.

Figure 6. Location of RDO solutions at Quadrature Points 
for Extrinsic Uncertainties.

The table below summarises the resulting statistics 
for the steel and outfit mass (Te), calculated using the 
Gauss Hermite integration rules as before, applied to 
the above.

Table 5: Summary of RDO Solutions for Steel and Outfit Mass.
Case P90 Zs Mean (μ) σ - MSOW P90 - MSOW

1 10.0 26,370 3,107 30,352
2 10.0 25,522 3,034 29,410
3 11.0 23,766 2,844 27,411
4 11.0 22,682 2,362 25,709

4.4 COMBINING UNCERTAINTIES

To complete the picture, we need to combine the effect 
of intrinsic and extrinsic uncertainties. Assuming the 
PDF for each of the extrinsic uncertainty quadrature 
points arising from local intrinsic uncertainty is, to 
close approximation, the same as that calculated for the 
basis P50 design solution, the standard deviation of the 
combined intrinsic and extrinsic uncertainties (σc) can be 
calculated by simply summing variances for the mean P50 
design point, i.e.

 σc = ( σI
2 + σE

2 )½ (4)

However, a more rigorous approach is to calculate the 
effect of local intrinsic uncertainty at each of the Gauss-
Hermite quadrature points for the extrinsic uncertainty, 
and then integrating the (now) 4D problem.

Figure 7 below shows the results of carrying out this 
analysis for Cases 1 and 2 using the same values of weights 
(ꞵ,γ) for each as originally applied for the P50 mean in 4.2 
above. The weighting of α is varied as before, but with the 
target for Zs now set at the calculated means (9.05m and 
9.28m respectively) rather than the P90 level used in the 
IRDO calculation.

A summary of the steel and outfit weight statistics for 
Cases 1 and 2 is given below, showing the resulting 
standard deviations for the combined intrinsic and extrinsic 
uncertainties as calculated using equation 4, and the full 
4D integration.

Table 6: Comparison of 4D Gauss-Hermite Integration with 
Simplified sum of Variances.

Case 1 Case 2
Σσ2 4D Σσ2 4D

σc 3,127 3,238 3,304 3,242
P10 22,363 22,313 21,287 21,424
P50 26,370 26,463 25,522 25,579
P90 30,378 30,613 29,756 29,734
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The reasonable agreement in results for total standard 
deviation achieved in both cases appears to point toward 
the assumption underlying Equation 4 to provide a 
reasonable approximation in this case, given the consistent 
values of weights (ꞵ,γ).

The differences in P10 and P90 estimates between 
Cases 1 and 2 therefore attributed for by the differences 
in the mean values associated with choice of weight γ 
(0.125 and 0.5 respectively) and the different margins in 
significant heave that implies. It would therefore appear 
sufficient, at least during very early concept select, to 
use Equation 4 to make rapid assessment of the P90 cost 
estimate.

4.5 APPLICATION

The following table provides a complete picture of the 
results from this robust concept design optimisation 
process as might be reviewed in practice. Results for P90 
targets in significant heave (P90-Zs) of 10m and 11m in 
a one-year sea-state (Hs = 10.0m) are given as indicated, 
with some selected key measures of hull geometry (Cases 
1 and 3 from above).

Figure 7. Plot Showing all Quadrature Points for Intrinsic 
and Extrinsic Uncertainty Models for Cases 1 and 2  

(γ =0.125 above, 0.5 below).

Table 7: Summary of Design Properties for two Performance 
Criteria.

Requirements Mean σ P90 P10
Reserves (MMbbl) 50.0 2.5 33.1 69.6
Field Life (Years) 8.0 1.0 6.7 9.3
Prod Rate (BOPD) 24,190 3,570 19,615 28,765
Topsides Mass (Te) 5,629 649 4,797 6,461
Cargo Vol (Kbbl) 336.3 55.3 265.4 407.2

Design bounds Mean σ P90 P10
MSOW – 10 (Te) 26,370 3,127 22,363 30,378
MSOW – 11 (Te) 23,766 2,883 20,071 27,461

P90-ZS =10m Mean σ P90 P10
Displacement (Te) 99,387 11,960 84,060 114,714
Draught (m) 86.72 0.99 85.45 87.99
Max Beam (m) 42.95 2.628 39.58 46.32

P90-Zs =11m Mean σ P90 P10
Displacement (Te) 96,246 11,369 81,676 110,816
Draught (m) 80.22 0.542 79.53 80.91
Max Beam (m) 43.78 2.618 40.42 47.14

It is important to note here the convention for the definition 
of requirements and design outputs. For the former, P10 is 
the most optimistic and P90 the most conservative. For the 
IRDO method, the P90 measure also gives a conservative 
view of the performance margin. Matching design solutions 
to the highest confidence in reserves and production rate 
(P90), leads to the smaller facility and visa-versa.

The “Line Segments” in design objective space of interest 
are given here by the horizonal lines Zs = 9.05m (Case 1) 
and 9.99m (Case 3) and bounded by the P10 and P90 
values for Steel and Outfit Mass (MSOW) as shown.

The primary initial use for these data is to provide estimates 
of capital cost (CAPEX). At early concept stage, this would 
typically be based on simple norms for key items; steel 
and outfit mass (Msow), fixed/solid ballast, and topsides 
mass (i.e. Process equipment and secondary structures) for 
construction (ex-works).

Clearly, these data might also be sought from industry 
statistical databases, and so a further level of modelling 
using Monte-Carlo or the simpler integration methods 
used here is possible but is not the subject of this paper.

As such projects progress through from concept 
development and selection to Pre-FEED, FEED and 
detailed design, the effect of change can be monitored. 
New optimal hull geometries can be generated quickly in 
response to updates in payload and storage requirements 
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using the methods described in Appendix A3 to find 
the intersection of the Pareto front for each new set of 
requirements with the line segments in design objective 
space identified using this approach.

5. DISCUSSION

The case study described above illustrates the three main 
elements of the inverse and robust design method proposed 
here for early-stage concept development.

As applied to the influence of intrinsic uncertainty on 
optimisation, the IRDO method allows a set performance 
level, and performance margin, to be used to select 
design solutions that are Pareto for a set of given design 
requirements. The critical factor is the choice of weighting 
values used in calculation of fitness (Equation 2), and the 
value of γ, defining the relative importance of the standard 
deviations of the design objectives.

Nevertheless, the approaches described here avoid the need 
to work through many combinations of the weightings 
(α,ꞵ,γ) and the significantly greater computational effort 
that would entail.

The results presented in section 4.2 infer that, for this case 
study and choice of performance limits, predictions of the P90 
steel and outfit mass subject to the intrinsic uncertainties as 
defined are the practically the same. This is because variations 
in standard deviation were compensated for by changes in the 
location of the mean design solution along the Pareto Front.

Clearly, this may not always be the case, and it is 
conceivable that a steeper Pareto Front and higher levels 
of intrinsic uncertainty would lead to a greater dependence 
in the calculated statistics of the design objectives to the 
choice of the weighting γ.

Section 4.3 shows that, not surprisingly, changes to design 
requirements provide the most significant uncertainties and 
largest influence with respect to overall weight and cost. 
The spread of mean design solutions that lay between the 
P10 and P90 estimates however provide good bounding 
values for geometries that are Pareto and meet required 
performance margins.

For the specific case study used here, combining intrinsic 
and extrinsic uncertainties can be achieved with reasonable 
accuracy by summing their individual variances. 
Consequently, in practical applications, it may be sufficient 
to carry out just one IRDO simulation for the required 
performance margin/confidence level against intrinsic 
uncertainty, and one RDO calculation at the subsequent 
mean performance level to calculate bounding values for 
cost/weight subject to extrinsic uncertainties.

Computationally, the work presented here was carried 
out using a combination of MS Excel and VBA, and so 

is easily repeatable in any design office environment. 
This does however give a practical limit with respect to 
the number of uncertain variables and order of numerical 
integration (M<3, N<5 as individual limits).

Clearly, if the algorithm were to be implemented using a 
compiled and parallel programming language, this would 
greatly improve run-times and give scope to increase both 
N and M. However, for the purpose of early-stage concept 
development, it is more likely that only leading order 
uncertainties (such as heave damping) and competing 
design objectives need to be addressed in practice, making 
such calculations more easily manageable.

6. CONCLUSIONS

An Inverse Robust Design Optimisation approach has 
been presented that takes advantage of various techniques 
for exploring design objective space and non-intrusive 
polynomial chaos based statistical modelling, to establish 
an efficient and directed approach to concept design.

Its principal benefit is that, through an inverse design 
approach, it directs solutions efficiently toward satisfying 
specific performance targets, is robust with respect to 
changing design requirements, and gives statistically 
bounded cost estimates that better reflect best practice in 
early project investment decision making.

The application demonstrated is based on a combination of 
empirical relationships and classical hydrodynamic theory, 
but the overall IRDO/RDO approach is independent of 
the models used. It is fully general and can be applied to 
the preliminary design of all forms of floating systems, 
particularly those that are novel and for which classical 
ship hull form definition coefficients are not appropriate, 
such as semi-submersibles, SPARs and TLPS as found in 
offshore engineering. 

7. REFERENCES

1. ANDREWS, D., The Sophistication of Early-
Stage Design for Complex Vessels. Trans RINA, 
Special Edition, IJME 472, 2018.

2. CAMPANA, E.F., FASANO, G., PERI, D., 2012, 
Penalty Function Approaches for Ship Multi-
disciplinary Design Optimisation (MDO), European 
Journal Industrial Engineering, Vol 6, No. 6.

3. DEB. K., 2001, Multi-Objective Optimization 
using Evolutionary Algorithms. Chichester: 
Wiley & Sons.

4. DIEZ, M., CHEN, X., CAMPANA. E.F., STERN, 
F., Reliability-Based Robust Design Optimisation 
for Ships in Real Ocean Environment. 12th 
International Conference on Fast Sea Transport, 
FAST 2013. Netherlands.

5. DIEZ, M., PERI, D., FASANO, G., CAMPANA, 
E.F., Multidisciplinary Robust Optimisation for Ship 



TRANS RINA, VOL 164, PART A4, INTL J MARITIME ENG, OCT-DEC 2022

©2022: The Royal Institution of Naval Architects A-425

Design, 28th Symposium on Naval Hydrodynamics, 
Pasadena, California, September, 2010.

6. DIEZ, M., PERI, D., Two-Stage Stochastic 
Programming Formulation for Ship Design 
Optimisation under Uncertainty. Ship Technology 
Research, August 2010.

7. DIEZ M., VOLPI S., SERANI A., STERN F., 
CAMPANA E.F., Simulation-based Design 
Optimization by Sequential Multi-criterion Adaptive 
Sampling and Dynamic Radial Basis Functions.” 
Proc. EUROGEN 2015 - International Conference 
on Evolutionary and Deterministic Methods for 
Design, Optimization and Control with Applications 
to Industrial and Societal Problems, University of 
Strathclyde, Glasgow, UK, (14-16 Sept. 2015)

8. GALLAGHER, P., Multi-Objective Optimisation 
and its Application to Concept Development in 
Floating Offshore Systems. Trans RINA, IJME 
648, 2020.

9. GUHA, A. AND FALZARANO, J. 2015, 
Application of multi objective genetic algorithm 
in ship hull optimization, Ocean Systems 
Engineering, Vol. 5, No. 2, 91-107.

10. HANNAPEL, S.E., VLAHOPOLOUS, N. Robust 
and Reliable Multidiscipline Ship Design. 2010, 
13th AIAA/ISSMO Multidisciplinary Analysis 
Optimisation Conference, AIAA 2010-9394.

11. HASLUM. H.A., 2000, Simplified Methods 
Applied to Non-linear Motions of SPAR Platforms. 
PhD Thesis, NTNU Trondheim.

12. JIN, Y., SENDHOFF, B., Trade-off between 
Performance and Robustness: An Evolutionary 
Multi-Objective Approach. Evolutionary Multi-
Criterion Optimisation, LNCS 2632, pp 237-
252, 2003.

13. KIM, H.Y., VLAHOPOULOS, N., A Multi-Level 
Optimization Algorithm, and a Ship Design 
Application. 12th AIAA Aviation Technology, 
Integration and Operations Conference, 2010. 
AIAA 2012-555

14. KONAK. A, COIT, D.W., SMITH A.E., 2006, 
Multi-Objective Optimisation using Genetic 
Algorithms: A Tutorial. Reliability Engineering 
and System Safety 91, 992-1007.

15. LEE, S-H., CHEN, W., KWAK, B., Robust Design 
with Arbitrary Distributions using Gauss-Type 
Quadrature. Structural and Multidisciplinary 
Optimisation, September 2009.

16. LI, D-Q., JIANG, Z., ZHAO, X., Ship 
Multidisciplinary Robust Design Optimization 
under Multidimensional Stochastic Uncertainties. 

26th International and Polar Engineering 
Conference, June 2016.

17. LIM, D., ONG, Y-S., LEE, B-S., Inverse 
Multi-Objective Robust Evolutionary Design 
Optimisation in the Presence of Uncertainty. 
GECCO ’05, June 25-29, 2005 Washington.

18. MAISONNEUVE, JJ., HARRIES, S., MARZI, 
J., RAVEN, H.C., VIVIANI, U., PIIPPO, H., 
2018, Towards Optimal Design of Ship Hull 
Shapes, Project FANTASTIC, ResearchGate 
Publications.

19. MURPHY, T.E., TSUI, K-L., ALLEN, J.K., A 
Review of Robust Design Methods for Multiple 
Responses. Research in Engineering and Design, 
2005, Vol. 16: pp 118-132.

20. NELLIPPALLIL, A.B., MOHAN, P., ALLEN, 
J.K., MISTREE, F., An Inverse, Decision Based 
Design Method for Robust Concept Exploration. 
ASME Journal of Mechanical Design, Vol 142, 
August 2020.

21. NEWMAN. J.N., 2017, Marine Hydrodynamics, 
MIT Press, 40th Anniversary Edition.

22. PAPANIKOLAOU, A., 2010, Holistic Ship 
Design Optimisation, Journal Computer-
Aided Design, Elsevier, Vol. 42, Issue 11, pp. 
1028-1044.

23. PAPANIKOLAOU, A., et al, 2020, Tools and 
Applications for the Holistic Ship Design, 
Proceedings of 8th Transport Research Arena 
TRA 2020, ResearchGate Publications.

24. SARPKAYA. T., ISAACSON. M., 1981, 
Mechanics of Wave Forces on Offshore Structures. 
Van Nostrand Reinhold co.

25. SEADA, H., DEB, K., U-NSDA-III: A Unified 
Evolutionary Algorithm for Single, Multiple and 
Many-Objective Optimisation. COIN Report 
Number 2014022. Springer, pp.34-49, 2015.

26. SERANI A., DIEZ M., CAMPANA E.F., Single- 
and multi-objective design optimization study 
for DTMB 5415, based on low-fidelity solvers. 
INSEAN Tech, rep. 2015-TR-002 (2015a)

27. TAO, L., MOLIN, B., SCOLAN, Y.-M., & 
THIAGARAJAN, K., 2007, Spacing Effects on 
Hydrodynamics of Heave Plates on Offshore 
Structures. Journal of Fluids and Structures, 23, 
pp.1119-1136.

28. WEI, X., CHANG, H., FENF. B., LUI. Z., Sensitivity 
Analysis Based on Polynomial Chaos Expansions 
and Its Application in Ship Uncertainty-Based 
Design Optimization. Hindawi Press, Mathematical 
Problems in Engineering, 2019, Article ID 7498526.



TRANS RINA, VOL 164, PART A4, INTL J MARITIME ENG, OCT-DEC 2022

A-426 ©2022: The Royal Institution of Naval Architects

A1. CASE STUDY GEOMETRY

The geometry of the DDPSO concept used in the case 
studies was described in detail in IJME648 (Gallagher, 
2020) and is illustrated in Figure A1.1 below.

The DDPSO was originally conceived as a marginal 
field development solution for the UKCS, with the focus 
being on a combination of low CAPEX (less than $500m 
TIC) and good motion response characteristics for harsh 
environments for a relatively small floating system. It is 
aimed at the “niche” that fits around a storage capacity 
of around 300Kbbl, with production rates around 25,000 
BOPD or less.

Figure A1.1. General view of the DDPSO concept used in 
these case studies.

It has the following main features:

• An upper hull section to provide the buoyancy 
required.

• A central oil-over-water storage tank, extending from 
the main deck down almost to the keel, within which 
lower density crude oil floats on seawater, such that 
the tank is permanently pressed full.

• An upper deck and hull paces for various hull utilities, 
mooring system equipment, offloading facilities etc.

• A central, internal seawater caisson to provide pressure 
balance.

• A fixed solid ballast compartment at the keel.
• One or more heave plates, or for this case study, two 

heave plates combined also to form a keel box, open 
to the sea.

• Minimal water ballast needed to meet damage stability 
regulations and balance differing specific gravities of 
crude oil and seawater.

• Additional water ballast to allow mitigation of changes 
in requirements during concept optimisation.

For the purposes of optimisation, the hull form is described 
using selected key dimensions as shown in Figures A1.2 
and A1.3, along with certain parametric relationships 

that maintain the fundamental DDPSO concept. Starting 
conditions for the optimisation algorithm are based around 
a prototype, with the above dimensions varied randomly 
within a set of bounds to establish an initial population of 
(n ϵ N) designs. 

 Xi,n = Xi,0 ± R.Δxi A.1.1

Where:

Xi,n  represents any of the chosen dimensions
Δxi  is a small variation in Xi,n (or so called search  

radius)
R is a random number between 0 and 1.

Figure A1.2. Elevation, Principal Dimensions of DDPSO.
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Figure A1.3. Plan View, Principal Dimensions of DDPSO.

The optimisation of the hull form is based on two key (and 
conflicting) design objectives.

• Hull Steel and Outfit Mass (MSOW) as a proxi for 
capital cost

• Significant heave motions (Zs) in a given sea-state 
with a one-year return period.

The critical weight items for the system as modelled here 
were the payload (topsides mass), hull steel and outfit 
mass, fixed (solid) ballast, water ballast and cargo mass.

For the purpose of the current work, the total mass of the 
topsides and the position of its centre of gravity, are treated 
as an inputs, albeit subject to (extrinsic) uncertainty (see 
Equation 3, Section 4.1).

The hull steel mass is assumed to be linearly proportional to 
a combination of the overall displacement and the draught 
(See equation A6.1 later). This relationship was based 
on a number of separate studies into typical scantlings 
established as weight estimates and using appropriate 
Codes Of Practice, for different sizes of hull, with the likely 
levels of uncertainty based on typically accepted margins.

The treatment of the other weights is as described in 
specific example cases reported here.

Significant heave motions were calculated using first 
principles linear hydrodynamic theory to generate a heave 
response amplitude operator (heave RAO). The hull was 
assumed sufficiently slender and deep draught such that 
a non-diffracting approximation to wave loading (i.e., 
Froude-Krylov, inertia and linearised drag loading), could 
be applied.

Froude-Krylov and inertial wave loads were integrated 
analytically for the relevant wetted surfaces (Newman, 
2017, Sarpkaya & Isaacson, 1981). 

The additional effect of heave plates on inertia and damping 
were used published data (Tao, Molin, et al. 2007) to 
provide the basis of a mean damping ratio, along with 
its standard deviation, as part of the intrinsic uncertainty 
analysis.

Additional design constraints were applied to avoid second 
order effects (Haslum, 2000). These cover both designs 
for which the pitch period is an integer multiple of the 
heave period, and those within the envelope of the natural 
pitch period and wave spectrum peak period. Such design 
configurations are penalised within the optimisation 
algorithm such that they cannot be carried through the 
selection process.

The significant heave response for a one-year maximum 
significant wave height (Hs) of 10m, modal period 15.85s, 
(SMB spectrum) was used throughout.

A2. SUMMARY OF NDSA OPTIMISATION 
ALGORITHM

A Non-Dominated Search Algorithm (Deb, 2001, Konak, 
2006) is used throughout the work described here, and is 
illustrated in the flow chart shown in Figure A2.1 below.

Figure A2.1. Flow Chart for Underlying Non-Dominated 
Search Algorithm

The optimisation process starts with a prototype geometry, 
from which a much larger population is generated (in 
this study, 128 members) by making small random 
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variations in selected dimensions. Its main properties, 
volumes, mass distribution, stability, natural periods, 
etc. are then calculated according to the design model/
correlations being applied. Performance and cost/weight 
design objectives are calculated for each member of the 
population, along with any penalties (e.g. the need to avoid 
particular combinations of natural periods of motion).

As in previous work (Gallagher, 2020) target functions 
that provide selection pressure towards specific 
requirements (e.g., payload, storage capacity, GM etc), 
are calculated. 

 WTi = 1 + (| X – Ti |/ Ti )N (A2.1)

Where:

Ti: is the required target value (e.g. payload, GM)
X:  is the calculated value for each member of the 

population
N:  is a power law based on the current “error”

For the work reported here, these are supplemented by 
additional target functions as follows:

• Following the NDSA III method, additional selection 
pressure toward a so-called “Utopia Point” (Seada & 
Deb, 2015) are used (See Appendix A3).

• For the IRDO method described here, additional 
selection pressure toward solutions meeting specified 
performance criteria for one or more design objectives 
is applied.

Fitness is the product of the of weighted design objectives 
(Equations 1 or 2 previously), and the target functions, 
giving overall ranking of each member of the population.

For the general NDSA method a single elite design is 
selected, along with 4 other randomly selected members 
of the population from the top 20, to be paired together for 
the next stage; cross-over and mutation, which generates 
the next, 128-member, generation.

For the RDO and IRDO methods specific to this paper, 
an alternative selection strategy is used as described in 
Section 3 of this paper.

The overall process its iterative and can be shown to 
converge to form the well-known Pareto Front of optimal 
design geometries in the design objective space as a 
function of the Fitness weightings used.

A3. FINDING SPECIFIC PARETO SOLUTIONS

Figure A3.1, taken from (Gallagher, 2020) illustrates a 
typical set of Pareto Fronts for 3 different sets of design 
requirements (crude oil storage capacity and payload in 
this case).

Figure A3.1. Typical Pareto Fronts for a range of design 
requirements from 250Kbbl storage with a 4000Te 

payload to 350Kbbl and 6000Te Payload.

It illustrates the general form of such Pareto Fronts, and 
leads to some key assumptions for this study that:

• That the Pareto Fronts for the different design 
requirements have similar characteristics and form a 
series of locally near parallel contours in the design 
objective space.

• Similarly, the effect of changes to constants/power 
laws within the various design models used lead to 
similar and consistent shifts in the location of the 
Pareto Fronts.

• Consequently, it can be assumed that within the Pareto 
Space, families of geometries forming systematic 
series can be generated that meet varying design 
requirements and variations in underlying design 
model coefficients or correlations.

Figure A3.2, illustrates this principle.

Figure A3.2. The concept of Population Sets that are 
Pareto for Specified Design Performance Requirements

This may be applied in two ways:

• To generate a systematic series of optimum designs to 
meet varying design requirements, all of which satisfy 
a given performance criterion.
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• To model uncertainties using Non-Intrusive 
Polynomial Chaos (NIPC), and subsequent application 
of Robust Design to optimise designs (RDO)

The first of the above applications is met by applying two 
modifications to the NDSA-II/III model. They are:

• to target the performance requirement (e.g. the 
horizontal line Zs = 10.0m in Figure A3.2), with 
a fitness weighting proportional to the difference 
between the design objective and the requirement,

• to include the weighting α used in the ranking (Rα) of 
each population within the overall search algorithm.

For the Pareto Fronts representing the different design 
requirements, the intersection points with the line (Zs = 10m) 
are achieved each with different values of the weighting α. A 
regular updating of α is therefore applied based on:

If:  U1 > Zs + ε: α = α + Δα 

 U1 < Zs - ε: α = α – Δα (A3.1)

Where:

U1:  Is the current value of the design objective 1 (the 
performance objective).

ε: Is a tolerance value for Zs
Δα: Is a small fraction of α 

The combined effect of weighting the fitness of each 
member of the design population according to its proximity 
to the target performance, iteratively adjusting α as shown, 
and the optimisation process itself, leads to the evolution 
of solutions at the required intersection points. Figure 
A3.3 below illustrates convergence to an intersection point 
using this iterative approach.

Figure A3.3. Example of how by stepping through the 
weighting α, the search region can be focused on a 

specific target requirement.

It should be noted that the NDSA-III algorithm, which 
includes a so-called “Utopia Point” in the design space to 
accelerate the evolution process, is helpful here. The Utopia 
Point can be located on the characteristic line (Zs = 9.0 in 

Figure A3.3) and used to weight the ranking of solutions 
closest to it more positively.

Appendix A4 describes with an example how this 
technique can be applied to generating a systematic series 
of design solutions for varying design requirements that 
meet a specific performance criterion.

A4. GENERATING A SYSTEMATIC SERIES

The performance targeting approach can be used to 
generate a systematic series of optimal designs in response 
to varying design requirements as illustrated by the 
following example case. 

Figure A4.1 illustrates a typical variation in topsides 
mass with storage capacity using relationships linking 
them to oil production rate and offloading intervals 
(Gallagher, 2020).

Figure A4.1. Design Inputs for Storage Capacity and 
Topsides Mass.

A significant heave response of 9.0m in a one/year sea state 
(Hs = 10.0m, Tz = 15.8s) was used as the performance 
requirement and represented in the design objective space 
by a characteristic horizontal line; Zs = 9.0m.

Using the approach described in Appendix 3, there is 
no need to calculate complete Pareto Fronts for each 
of the design requirements. Instead, convergence to 
the target performance level in significant heave and 
to a consistent value of the weighting α, are used as a 
stopping condition. Figure A4.2 shows how certain 
principal dimensions vary, quite smoothly, as a function 
of topsides mass for Pareto optimal solutions at the 
required performance objective, Zs = 9.0m. Figure A4.3 
shows the subsequent variation in hull steel and outfit 
mass for the same cases.

In conclusion, the above example demonstrates that 
systematic series of optimal solutions can be targeted 
without the need for full Pareto front definition. Such 
results are useful for decision makers needing to quickly 
understand the effect of changing requirements on 
capital cost.
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A5. NON-INTRUSIVE POLYNOMIAL CHAOS

Non-Intrusive Polynomial Chaos (Expansion) refer to 
a class of statistical modelling methods for which it is 
possible to apply deterministic analysis tools (e.g. FEM, 
CFD etc.) subject to uncertain inputs and boundary 
conditions and generate statistically meaningful levels of 
confidence in outputs.

We assume that uncertain modelling inputs can be 
represented by typical probability density functions 
(PDFs) as shown below:

Figure A5.1. Illustration of Typical, Normal, PDF

And that we can apply Gauss-Hermite integration rules 
with quadrature points given at:

Xi = μ ± Ci.σ.√2

Where:

μ,σ: are the mean and standard deviation of the inputs
Ci:  are a series of coefficients according to the order 

of integration (number of quadrature points)

The deterministic analysis is carried out for inputs at each 
of these quadrature points, and the resulting solutions post-
processed to generate outputs expressed statistically (i.e. 
mean and standard deviations etc.)

Figure A5.2. Schematic View of Non-Intrusive Modelling 
Approach.

The output statistics are generated using a weighted sum 
of output values (Uij), with weights derived again, from 
the chosen quadrature rules, i.e. for mean and standard 
deviation:

 Ū = Σ Σ wi.wj.Uij / Σ Σ wi.wj (A5.1)

 σU = ( Σ Σ wi.wj.U2
ij/Σ Σ wi.wj – Ū2

 )½ (A5.2)

The coefficients Ci and weights wi can be found in standard 
texts and on-line resources (e.g. Hermite-Gauss Quadrature 
-- from Wolfram MathWorld).

To be clear, this is a convenient and highly efficient method 
for introducing the effects of uncertainties in all forms of 
deterministic modelling.

For the purposes of RDO as used here in early-stage 
concept design, it relies on simplifying assumptions with 
respect to the PDFs used, i.e. those for which numerical 

Figure A4.2. Variation in Draught and other key 
Dimensions for Pareto Optimal Solutions with Varying 

Inputs.

Figure A4.3. Variation in Hull Steel and Outfit Mass for 
the Example Case.
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integration rules can be applied. Thus, inputs or modelling 
coefficients expressed as Normal or Raleigh PDFs are 
the most straightforward. Where input data is sparce or 
non-linear, there are several more complex data analytic 
tools that can be applied. However, at the early stages of 
concept development and selection, this is likely to over-
complicate matters

Similarly, despite significant advantages over techniques 
such as Monte-Carlo Simulation, there are practical 
limitations regarding the number of variables and order 
of integration that would be appropriate, particularly at 
concept stage, as discussed in the main body of the paper.

A6. OPTIMISATION UNDER UNCERTAINTY

A6.1 MODELLING UNCERTAINTY

The Non-Intrusive Polynomial Chaos approach described 
in Appendix A5 is used here to model the effect of statistical 
uncertainty on optimisation.

At concept stage, it is sufficient to assume particular forms 
of PDF, e.g., Normal/Gaussian, or Raleigh, for inputs of 
interest, and apply the Gauss-Hermite integration rules 
described earlier. Input quantities are simply defined by 
their mean and standard deviation, from which quadrature 
points are calculated according to the specific rule and 
order of integration applied as shown earlier.

Optimisation is carried out for each of these sets of inputs 
and then outputs post-processed to derive values for mean 
and standard deviation of the design objectives.

Clearly, this form of statistical modelling also leads to 
multiple Pareto Fronts (for each of the input quadrature 
points). If using an NDSA type optimisation model, we 
are again faced with the problem of which weighting of 
design objectives (α) to apply, and if being used for Robust 
Design Optimisation (RDO), how to minimise the standard 
deviation, or variance, of the outputs.

In these studies, NIPC integration is applied along 
characteristic lines in the Pareto design space, with 
quadrature points being at their intersection with the 
relevant Pareto Fronts and found as described in A3 above. 
The definition of the characteristic lines depends on the 
class of uncertainty of interest, and are of two types:

• For uncertainty in design requirements (i.e. payload, 
storage capacity, minimum GM etc. – so called 
“extrinsic uncertainty”).

• For uncertainty in modelling (i.e in relationships 
used to model critical weight items, hydrodynamic 
performance, shear force/bending moments etc.), so 
called “intrinsic uncertainty”.

Each of these is now discussed in turn.

A6.2 EXTRINSIC UNCERTAINTY

The main principle behind design for extrinsic uncertainties 
is that we wish to understand their impact on weight, cost, 
or similar decision critical factors, for a defined level of 
performance.

This is represented in design objective space by a 
horizontal characteristic line. The objective is to find the 
intersection points made by this line and the Pareto Fronts 
of designs evolved using statistically modelled inputs. The 
approach described in Appendix A3 is applied in order to 
align solutions with the specified target level, adjusting the 
weighting (α) for each.

Here however, the approach is applied simultaneously to 
all extrinsic quadrature points in order that calculations of 
mean and standard deviation can be made and also used in 
the evaluation of fitness for RDO.

Figure A6.1 below shows how the intersection of Pareto 
Fronts for each of the input combinations of payload and 
storage capacity used in the Case Study, and an arbitrary 
performance criterion (Zs = 9.8m in this case), can be 
found. These represent specific design solutions whose 
properties can then be post-processed to provide resulting 
statistics.

Figure A6.1. Example plot showing the intersections 
of Pareto Solutions and a Defined Performance 

Criterion.

To be clear, if the above method is applied without 
including the calculated standard deviation within the 
fitness measure, it simply finds the intersection of each of 
the Pareto Fronts with the stated performance criterion. In 
such a case, the calculated mean and standard deviation are 
measures of statistical variation properties of the Pareto 
solutions along this line, which can also be of value.

A6.3 INTRINSIC UNCERTAINTY

The principle used here is that uncertainties in modelling 
lead to uncertainty in the location of the Pareto front 
itself according to the statistical properties of the design 
objectives.
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Consider how the position of the Pareto Front might vary 
as the result of uncertainty in, for example, the design 
model used for the steel and outfit mass of the DDPSO 
Case Study. The model used (Gallagher, 2020) is:

 MSOW/Δ = C1.(1 + C2.(T-TR)/TR) (A6.1)

Where:

C1:  is the ratio of steel and outfit mass to total mass 
displacement (Δ) at reference draught (TR).

C2:  is an additional factor to account for variations in 
steel mass with draught (T).

The deterministic values C1 = 0.225, C2 = 1.25, used in 
(IJME648) are replaced by means of 0.225 and 1.25, and 
standard deviations of 0.0225 and 0.125 respectively.

Uncertainty in performance modelling is also included, in 
this case in terms of the level of linearised heave damping 
applied, being in this case, a mean of 12.5% of critical 
damping with a standard deviation of 10% of this.

Figure A6.2 illustrates this concept, showing how for 
example, Pareto fronts for an order N=5 Gauss-Hermite 
quadrature for a normal distribution of the coefficient C1 
might look.

Any characteristic line through the design point as shown 
can be used to define intersection points with the other 
Pareto fronts and therefore estimate the statistics of the 
design objectives for that point.

Figure A6.2. Geometric model in design objective space 
for estimating the effect of intrinsic uncertainty.

The key question here is how best to define this line, 
forming as it does the abscissa for the numerical integration. 
Its slope governs the relative proportions of standard 
deviation in the design objectives, and so becomes part 
of the decision making, as it reflects the properties of all 
design solutions lying along it.

This is illustrated in Figure A6.3, which shows the result 
of applying the methodology described in A3 to align each 
of the Pareto optimal solutions at intersections between the 
chosen characteristic line (the normal to the mean Pareto 

Front in this case), and so making up the quadrature points 
for the Gauss-Hermite integration (the small diamond 
points on the plot).

Clearly, a different choice of gradient would lead to a 
change in proportion of standard deviations of the design 
objectives because there are inherently different populations 
of designs aligned along each such characteristic line.

Figure A6.3. Illustration of the effect of choice of 
characteristic line on the relative statistical properties of 

the design objectives.

As with the Extrinsic modelling described in A6.2, this 
model of design uncertainty does not yet constitute a robust 
design method, rather it is a simple application of NIPC to an 
otherwise deterministic optimisation model, much as might 
be carried out with other forms of engineering analysis.

It does therefore have some value to decision makers who 
might prefer at concept stage to just to understand the 
impact of uncertainty and use that understanding to build 
confidence and establish performance margins.

Nevertheless, the following section describes how a useful 
Robust Design Optimisation methodology suitable for 
concept development can be built on the above principles.

A7. EXAMPLE APPLICATION OF RDO.

This following is an example of the application of the 
conventional robust design optimisation approach to the 
case study used here and previously (Gallagher, 2020). 

Generally, RDO allows the selection of designs for which 
the sensitivity of their design objectives to uncertainty 
is minimised. But a key consequence of introducing 
statistical variation in input quantities, is that other 
dependent variables also now exhibit statistical variation.

For example, in the case study used here, the intrinsic 
uncertainty in estimating steel and outfit mass will, for a 
given hull displacement, impact both payload capacity and 
the amount of fixed solid ballast required.

Consequently, fulfilling the design requirement for a 
particular payload capacity becomes subject to additional 
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uncertainty. This is clearly undesirable, but inevitable. A 
practical measure commonly used by naval architects to 
mitigate the effect of change is to include some flexibility in 
variable ballasting arrangements. In this way, any changes in 
weight items may be absorbed without the need for re-work.

The following example demonstrates how RDO can be 
used to help define how much variable ballast might be 
required when incorporating intrinsic uncertainty in steel 
and outfit mass as before. 

The model used for steel and outfit mass (Gallagher, 2020) 
is as given in statistical form as in section A6.3, Equation 
A6.1. The same treatment of heave damping as given in 
A6.3 is also applied. 

Figure A7.1 illustrates a typical Pareto Boundary based 
on a mean payload of 5600Te and storage capacity of 336 
KBBL generated using a wide range of weightings (α), for 
the DDPSO case study, using this relationship for Steel 
and Outfit Mass.

Figure A7.1. Typical Pareto Boundary for the DDPSO 
Case Study

The measure of Fitness used in the optimisation algorithm 
(Equation 2 in the main text of this paper) now includes the 
standard deviation in the design objectives, but with fixed 
weighting values (α,ꞵ,γ). The figure below shows a few 
discrete solutions for this RDO problem for γ=0.5, ꞵ=0.5, 
and weightings of α = 0.4, 0.5, 0.6 and 0.7.

Figure A7.2. Comparison of RDO and Conventional 
Pareto Solutions (circles), and solution with water-ballast 

margin (solid triangles).

The first general observation is that the mean design 
solution for each of the four α values, now optimised to also 
minimise the standard deviation of the design objectives, 
falls short of the original Pareto front. This feature is 
common in RDO, i.e. that the penalty for robustness is loss 
of optimality (Jin & Sendhoff, 2003).

Key design requirements such as payload capacity, now 
also show statistical variability because, given constant 
displacement, they must be adjusted for equilibrium and 
stability.

To counter this compensating water ballast can be included. 
This is modelled by carrying out the RDO calculations for 
a range of compensating water ballast mass values, with 
only the difference between this and the changes in steel 
and outfit mass now appearing as variations in payload 
capacity.

Figure A7.3 shows how, by including this “designed in” 
margin, uncertainties in the coefficients C1/C2 can be 
managed, minimising their impact on topsides payload 
capacity by reducing its standard deviation.

Figure A7.3. Variation in standard deviation of topsides 
payload capacity with increasing compensating water-

ballast.

In summary, applying a conventional RDO approach does 
help minimise the variance in design objectives due to 
uncertain design and modelling inputs, but as observed 
elsewhere, at the cost of reduced optimality, for example, 
increasing steel weight and cost in the example shown here.

It also reflects the very real issue that statistical variability 
in design modelling introduces uncertainty in achieving 
key design requirements but also shows how this problem 
can be mitigated.

A8. SUMMARY OF FITNESS WEIGHTINGS

The following table summarises values and provides 
comments on the weightings (α,ꞵ,γ) used in the fitness 
ranking of the design objectives (Equation 2) before 
application of the target/penalty functions used to exert 
selection pressure within the NDSA genetic algorithm.
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Table A8.1: Summary of Weighting Values used for each type of Robust Optimisation Approach.

Analysis Type Fitness Weightings
ꞵ α Comments γ Comments

Deterministic 1.0 0.1 – 0.9
Set range to generate Pareto Front, 

variable to meet performance 
targets.

N/A Not used in deterministic 
calculations

Intrinsic

RDO 0.5 0.25 – 0.75 User defined to give position on 
Pareto Front of interest 0.5 Generally equal balance  

between σ values 

IRDO 0.4 Variable
Included in search to match 

required performance level and 
alignment

Variable User defined to give required 
balance in σ values

Extrinsic RDO 0.6 – 0.75 Variable To ensure alignment with horizontal 
line segment defining performance. 0.25 To give σ weighting toward 

design objective 2


