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SUMMARY

Modelling and simulation provide a systematic approach for evaluating system design and control concepts with respect 
to energy efficiency and operability. Adding optimization offers a way to utilize the models more comprehensively. This 
research deals with simulation-based optimization with the leading principles to use an existing system simulator as black-
box in the optimization, and to take advantage of cloud computing. A case of an environmentally sustainable cruise ship 
design was selected. Alternatives for enhancing the ship’s energy efficiency were investigated by introducing different 
waste heat recovery technologies and battery systems in the machinery. The ship designer’s in-house ship energy system 
simulator was prepared for the optimization framework. Multi-objective optimization scenarios with economic and 
environmental objectives were conducted using genetic algorithm. Also, the main engines’ running hours were of interest. 
The method was successfully used for finding the best overall solution in this complex ship energy system design task. The 
results suggest that adding battery capacity alone contributes very moderately to reducing the case ship fuel consumption 
and, therefore, carbon emissions. A combination of steam turbines and organic Rankine cycle units offered the largest fuel 
saving potential with the lowest investment cost. The presented optimization approach can bring significant added value 
for sustainable ship design with minor additional effort on top of the normal modelling activities in the design phase. 
The research revealed that to streamline the optimization step the simulation input and output management, the resultant 
validity checking, and the error handling should be anticipated already during the construction of the simulator.
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NOMENCLATURE

BMS battery management system
BPST back pressure steam turbine
CAPEX capital expenditure
CST condensing type steam turbine
FMU functional mockup unit
EGB exhaust gas boiler 
GA genetic algorithm
GHG greenhouse gas
HUE heat utilization efficiency
HT high temperature
IMO International maritime organisation
LT low temperature
MEPC Marine Environment Protection Committee
MDO marine diesel oil
NSGA-II non-dominated sorting genetic algorithm II
OPEX operational expenditure
ORC organic Rankine cycle
PMS power management system
SFOC specific fuel oil consumption
ST steam turbine
STT steam turbine types

1. INTRODUCTION

Like any modern industrial sectors, the maritime 
industry must also meet the challenges of environmental 
sustainability. Marine Environment Protection Committee 
(MEPC) under IMO (International maritime organisation) 
recently approved draft of new regulations that would 
require majority of new and existing ships to combine both 
technical and operational measures to reduce their carbon 
intensity (IMO, 2020). The first new regulations regarding 
this dual approach, including ship energy efficiency 
design index for operational ships of 400 gross tonnage 
and above and carbon intensity index for all ships above 
5000 gross tonnage are entering into force during 2023. 
Decarbonisation of a ship can be promoted by operational 
improvements, technical system optimization, by utilizing 
low-GHG fuels and through market-based measures 
(Serra and Fancello, 2020). To achieve the best available 
environmental sustainability requires a combination of 
the energy technology chosen onboard and the way it is 
operated in the given constraints such as route, operating 
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speed, weather, cargo and passengers’ comfort. This 
increased complexity poses challenges for the ship design, 
which has made modelling and simulation an appreciated 
method. The pressure on the ship’s environmental 
footprint will increase even more in the future, and this 
pushes ship designers, shipyards and shipping companies 
to embrace their sustainability policies and practises. In 
this, the ability to consider and study different scenarios 
is important, which emphasizes the role of modelling and 
simulation.

At its best, simulation aided design covers different aspects 
holistically, considering the ship construction, synthesis 
of the system parts, functions and interactions, as well as 
safety and sustainability over the whole ship life-cycle. 
Furthermore, to find the best design solution, mathematical 
optimization methods can be applied using the same model. 
This ambitious concept has been called a holistic approach 
to ship design (Boulougouris et al., 2011; Papanikolaou, 
2019). Nevertheless, if focusing on the design of efficient 
energy systems onboard, a typical simulation should 
cover different energy disciplines and consider variable 
operational and environmental conditions of the planned 
shipping. This suggests dynamic or pseudo-dynamic 
system-wide modelling.

Early modelling studies, such as (Kyrtatos et al., 1999), 
were focusing on some energy sub-system, most often 
addressing propulsion. Later studies have broadened 
the scope of modelling, and also considered the altering 
conditions during the cruise, to ensure the feasibility of 
the design, such as in (Zou et al., 2013; Elg et al., 2015; 
Lepistö et al., 2016; Theotokatos et al., 2017; Zheng and 
Zhou, 2019). It has been common to use general purpose 
modelling and simulation platforms, yet also specialized 
software for ship energy system simulation have been 
developed, such as DNV COSSMOS (Dimopoulos et al., 
2014), and the dynamic simulation tool developed by 
(Cichowicz et al., 2015). In a typical simulation study, 
fuel consumption of different design variants is compared. 
More detailed energy analysis can be found, for example, 
in waste heat utilization studies, where exergy analysis is 
combined to energy modelling, such as in (Baldi et al., 
2015) and (Marty et al., 2016).

While the energy simulations provide tools for system 
analysis, such as determining system efficiency or 
confirming smooth operation in transients, mathematical 
optimization looks one step further. It searches the best 
parameter values for minimizing/maximizing a cost 
function of interest, considering the decision variables 
and the system constraints. As energy system modelling 
capabilities have evolved, combining optimization with  
simulation has emerged. For instance, one study presented 
a problem of identifying the optimal main design 
parameters in the early phases of the design process as a 
multi-objective, combinatorial optimization problem, and 
suggested different methods for handling the trade-offs 

between different objectives (Ölçer, 2008). In another 
study a tool was proposed for optimizing ship main 
parameters based on a combination of heuristics and 
statistical analyses of previous ship designs and known 
modelling approaches for ship propulsion (Boulougouris 
et al., 2011). The work of (Diez and Peri, 2010) and 
(Hannapel and Vlahopoulos, 2010) explored robust 
optimization framework for ship design, emphasizing 
importance of considering the uncertainty of the input 
data to the optimization. Ancona and coworkers (Ancona 
et al., 2018) utilized genetic algorithm (GA) based energy 
grid software as a starting point for finding a proper load 
allocation for a defined machinery in a cruise ship. Trivyza 
et al., (Trivyza, et al., 2018) presented a method for 
synthesis of both environmental and economic objectives 
over an expected operational profile. For the optimization, 
they employed a method, which was as well applied in 
this study: Non-dominated Sorting Genetic Algorithm II  
(NSGA-II). In the work of (Marques et al., 2019a) 
an energy system design optimization approach was 
developed for liquified gas carriers considering economic, 
technical and weather aspects, and they presented a related 
case study in (Marques et al., 2019b). Ritari et al., (Ritari 
et al., 2020) developed a multi-period mixed-integer 
linear programming model for deriving a globally optimal 
power management strategy for the auxiliary engines of 
a ferry including a battery, with the goal of minimizing 
the total cost of the battery installation. Huotari et al., 
applied optimization in a cruise ship case (Huotari et al., 
2020), where the ship’s local emissions near the coast 
were minimized with the aid of a fuel cell and battery 
in addition to a diesel generator set. These studies show 
that the domain of mathematical modelling and multi-
objective optimization involves high computational load 
and uncertainties in the parameters. Priftis et al., presented 
a method for a multi-objective, robust, early stage ship 
design optimization under uncertainty (Priftis et al., 2020). 
They used surrogate modelling (Kriging) for reducing the 
otherwise high computational load. Deep learning has also 
been proposed as a method for improving ship design. 
Miglianti et al., developed a tool for predicting spectra of 
cavitating marine propeller generated noise at the design 
stage (Miglianti et al., 2020).

To introduce mathematical optimization methods 
into a simulation assisted ship design process is not 
straightforward in most cases. For example, the available 
optimization methods may limit the modelling work 
itself. On the other hand, developing an optimization 
scheme for each ad-hoc need requires a lot of extra 
work on top of the very limited time and resources in 
the concept design stage. Therefore, this article focuses 
on combining the optimization to existing ship design 
models and simulation tools. This is seen as a potential 
path for bringing considerable added value to the 
simulation aided ship engineering. The approach used 
in this study incorporates optimization with black-box 
simulation models, which is known as simulation-based 
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optimization (April et al., 2003; Gosavi, 2015). To deploy 
this approach, simulation-based optimization framework 
in the cloud was developed. This research was initiated 
with the following hypothesis: Today’s cloud computing 
infrastructure enables an easy and flexible framework for 
taking out-of-a-box marine simulators and solving related 
optimization problems, as reported in (Lappalainen et al., 
2019; Korvola et al., 2020). The optimization framework 
has been published as open source code in (Korvola and 
Rummukainen, 2021).

Section 2 introduces the optimization framework. In order 
to evaluate it in an actual ship design process, a generic 
energy simulation model of a cruise ship was used. 
The case ship and the model structure are described in 
Section 3. The work focused on finding the best solution 
for enhancing the ship energy efficiency and thus lowering 
the carbon footprint by introducing a waste heat recovery 
system, a battery or both. Section 4 reports the main results. 
Besides the actual optimization results, also experiences 
gained in the model conversion to be compatible with 
the optimization framework are given, and insights of 
using the presented optimization approach in industrial 
engineering projects. Finally, conclusions and a look at the 
future steps are given.

2. OPTIMIZATION FRAMEWORK

One of the main goals in this research was to enable 
optimization for simulation models that were not 
originally intended for that. Accordingly, gradient-based 
optimization algorithms are excluded, as simulators do not 
commonly provide the gradients. The model would have 
to be transformed into a representation that provides the 
gradients. This potentially tedious step was to be avoided 
in this research. Consequently, the focus was on black-box 

optimization algorithms that only require the ability to 
set parameters, run simulations and get results. Of these, 
evolutionary algorithms were chosen as the primary 
approach, because their calculations parallelise well. 
Parallel computing is lucrative in the cloud, because the 
pricing criterion is typically based on number of resources 
and time. If the algorithm parallelises well, more CPUs can 
be rented to run it on for a shorter time, obtaining results 
faster for the same cost.

The general software architecture of the framework, 
presented in Figure 1, remains essentially as reported 
previously (Lappalainen et al., 2019). However, the 
computations were moved from the Microsoft Azure cloud 
to Rahti, a container cloud provided by CSC – IT Center 
for Science Ltd. This changed the container orchestration 
system from Kubernetes to OpenShift. OpenShift is a 
variant of Kubernetes, thus only minor changes were 
required in the framework.

The framework aims at providing an efficient service 
for distributed execution of simulations, as they usually 
comprise the most significant workload in this type of 
optimization. The service is implemented in Python 
using the Flask web service framework (Grinberg, 2018). 
There is also simple a Socket.IO (Rai, 2013) interface 
that notifies the client when simulation jobs finish. The 
Dask library (Dask Development Team, 2016) is used 
for distributing the simulations. Simulation results are 
stored in a ZODB database (Fulton, 2000). The client 
is implemented as an optimization problem module in 
Opt4J (Lukasiewycz et al., 2011), a Java optimization 
framework, which provides optimization algorithms, such 
as the genetic algorithms NSGA-II (Deb et al., 2002) and 
SPEA2 (Zitzler et al., 2001), particle swarm (Coello et al., 
2002) and differential evolution (Price, 2013).

Figure 1. Schematic view of the cloud-based optimization framework.
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3. CASE DESCRIPTION

3.1 CASE SHIP

The case vessel is a generic cruise ship which is expected 
to run on MDO fuel. It represents a typical example 
of a 4000-passenger cruise ship with diesel electrical 
propulsion plant. The total installed engine power is  
75.6 MW consisting of six medium-speed Wärtsilä 
12V46F engines.

The ship main machinery and heat recovery are illustrated 
in Figure 2. Each engine is equipped with an exhaust gas 
boiler (EGB). It is assumed in the study that these boilers 
could produce superheated steam and additional steam can 
be produced with oil-fired boilers. Also, high temperature 
(HT) cooling water heat is collected from the engines using 
a separate waste heat recovery circulation. From this circuit, 
the waste heat is distributed to all consumers that can utilize 
the HT water as their heating source. It was assumed that this 
HT heat could be utilized for air conditioning heating and 
for evaporators for producing fresh water. The engines’ HT 
heat consists of both high temperature charge air heat and 
jacket water cooling heat. Generally, also low temperature 
(LT) heat is produced in the engines, due to lubrication oil 
cooling and low temperature charge air heat, but this was 
not utilized in the case vessel.

The operation profile for this study included one year 
of typical operation regarding vessel propulsion and 
hotel power in a global operation considering both 
time in tropical conditions and in Mediterranean and 
even Northern Europe during summer. The vessel heat 
consumption was evaluated for the entire year in average 
conditions with average air temperature being 25 °C. 
In the current model, the assumption of a constant 
ambient temperature had impact only for the ship’s 
heat consumption requirements. Figure 3 and Figure 4 

illustrate the operation profile with a period of 10 days 
regarding the most relevant energy flows that were 
simulated.

3.2 SIMULATION MODEL

Most of the development work for the simulation model 
had been done years before, and independently of this 
optimization study. The principles and structure of the 
model was introduced originally in the 13th COMPIT 
conference (Elg et al., 2014). The main principles have 
still applied in the current version of the tool, but the 
modelling for Deltamarin’s energy flow simulation tool 
was done in the Matlab Simulink environment without 
Simscape, which was earlier utilized for more accurate 
modelling of cooling water circuits, for example. Fixed 
simulation time step of five minutes was used. The ship 
heat system structure and analysis is described separately 
in a recent article (Elg, 2022). In the model, the operation 
profile sets the power demand for the ship. The engine fuel 
consumption as well as heat production was estimated 
using the project guide for the Wärtsilä engines. The 
utilized parameters are included in a separate Appendix. 
The part-load behaviour was estimated by interpolation 
between the values provided in the engine guides. The 
power management system (PMS) logic was assumed to be 
simplified, including determining the number of operating 
engines based on a specified load range. These load ranges 
are also included in the Appendix.

For this study, a possibility to install battery capacity for 
the ship was included in the model. Without the battery, 
the ship energy production is calculated at each time step 
based on the energy conservation principle between the 
ship power requirements, the available fuel energy content 
and the engines. Battery brings a dynamic element to the 
model by either releasing or absorbing all or part of the 
electricity that the ship systems require. Therefore, battery 

Figure 2. Schematic of the case ship heating and waste heat recovery system.



TRANS RINA, VOL 164, PART A3, INTL J MARITIME ENG, JUL-SEP 2022

©2022: The Royal Institution of Naval Architects A-331

Figure 3. Example of the case ship power profile during 10 operation days.

Figure 4. Example simulation of the case ship heat flows during 10 operation days without any waste heat to electricity 
conversion: LT Dump is the rejected low temperature heat, HT Dump the rejected high temperature waste heat and 

Steam Dump the non-utilized steam. Steam and HT Consumers illustrate the ship average heat consumption.

either increases or reduces the ship generating sets loading 
during each time step. The only decision variable used for 
the optimization regarding the battery was the size of the 
battery energy storage. In other words, the state of charge 
range as well as C-rating were fixed and the eventual 
degradation of the battery over time was not considered.

The battery model logic is based on the principle that the 
battery management system (BMS) knows the engine 
loads and specific fuel oil consumption (SFOC) from 
the previous time step. At the same time BMS predicts 
the SFOCs of the engines without the battery in the current 

time step by reviewing the incoming power demands. The 
battery model compares the two readings. If the SFOCs in 
new time step are better than in the previous one, the engines 
may change their loading or even number of the operating 
engines. In a case when the engine performance is worse 
in the new time step without the battery, the battery will 
be utilized. In this case, the battery absorbs the difference 
by either charging or discharging and keeps the engines 
running at the same load as in the previous time step. The 
battery size and the allowed range for the state of charge 
determine if the battery can be operated to the full extent 
of the BMS request.
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Besides the battery option, the case ship has several 
options to include waste heat recovery: back pressure 
steam turbine, condensing type steam turbine and organic 
Rankine cycles (ORC) at two different temperature levels. 
These chosen technologies represent existing technology 
that is available today for the ships.

The condensing type steam turbine partly condenses and 
lowers the steam pressure down to 0.2 bar in a vacuum 
condenser and the steam is finally condensed with the 
low temperature water. The turbine power production is 
defined as: 

P = 473.7 ∙ m – 131.6,

where P denotes the turbine power production (kW) as a 
function of steam massflow denoted with m (kg/s).

The back pressure steam turbine power production (kW) is 
estimated with the following equation:

P = 204.01 ∙ m – 33.33,

where m is steam mass flow (kg/s). The back pressure 
steam turbine lowers the steam pressure only down to 
1.4 bar, which means that there is still a major part of 
the recoverable steam enthalpy left after the turbine. 
Therefore, a steam fired ORC can still be connected in the 
back pressure turbine exhaust.

While studying optimal dimensioning of the steam 
turbines, a fixed size for the ORCs was selected. 
Accordingly, Climeon’s 150 kW Heat Power modules, as 
introduced by (Trota et al., 2019) were utilized in the study 
for representing the ORCs in two different temperature 
ranges.

Figure 5 illustrates the simplified system level layout of the 
studied waste heat recovery alternatives. The ORCs could 
be operated either as connected to the ship HT circulation 
loop with the option to boost the circuit temperature with 

excess steam, or as connected to a separate hot water 
circulation in somewhat higher temperature. This circuit 
would be connected to the back pressure steam turbine 
exhaust. The schematic picture does not visualize all 
relevant pumps, condensers or coolers, but it illustrates 
the hierarchy of the modelled processes at a high level. In 
the model, an assumption was made that the two different 
turbine types cannot be used simultaneously, but all other 
combinations of the options were possible.

3.3 OPTIMIZATION PROBLEM

In ship design projects, a typical target is to maximize the 
ship transport efficiency and environmental sustainability 
but also to minimize the related costs, both capital and 
operational expenditures (CAPEX and OPEX). As a 
modern ship is a highly complex, multi-domain energy 
system and the input data for any design task may include 
a large degree of variation, it is often hard to define a 
single exact target for the optimization. Multi-objective 
optimization can be used instead, providing the designer a 
set of optimal solutions to choose from rather than aim for 
a single answer.

One objective was to reduce the ship’s fuel consumption, 
thus lowering carbon dioxide emissions. However, the 
investment (CAPEX) should also be kept small. The 
third objective was to reduce the average number of 
main engines running hours, leading eventually to lower 
maintenance costs.

Table 1 presents the heat recovery options and technical 
variables used in the optimization.

3.4 MODEL CONVERSION FOR THE 
FRAMEWORK

The simulation model had to be converted from Simulink 
into a form that allows parallel execution in the cloud, 
without requiring Matlab installations there. The ideal 
form for this is a shared library that can be called 

Figure 5. Schematic of the system with the waste heat recovery options: condensing type steam turbine, back pressure 
steam turbine and organic Rankine cycles in two temperature levels.
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Table 1: Options and variables used in the optimization study.

Option 
name

Description Variables Fixed values Installed size, 
feasible range

Pieces of 
equipment 

System 
price

Included in 
experiments 

Battery Improving the ship 
engines power plant 
efficiency by having 
the possibility to either 
charge or discharge 
electricity at each time 
step

Battery size, 
kWh

Allowed state 
of charge is 
25–95 % of 
the battery 
capacity. The 
C-rating was 
set to 3.

0 – 10 000 
kWh electric-
ity storage 
capacity

1 1000 €/
kWh

1,2,3

Back pres-
sure steam 
turbine

Reduces the ship steam 
pressure from 10 bar 
(a) to 1.4 bar (a). 

Maximum 
power produc-
tion, kW.
Number of 
steam turbines. 

Min power 
generation 
limited to 33% 
of the max 
power.

100 – 1000 
kW produced 
electricity

0 – 4 1000 €/
kW

1,2

Condens-
ing type 
steam 
turbine

Reduces the ship steam 
pressure from 10 bar 
(a) to 0.2 bar (a). 

Steam turbine 
unit size as 
max power 
production, 
kW. Number of 
steam turbines 

Min power 
generation 
limited to 10% 
of the max 
power.

400 – 1000 
kW produced 
electricity

0 – 4 0,1489€/
kW + 
658900€ 

3

Organic 
Rankine 
cycle 

Utilizes as heat source 
excess steam from ship 
processes or back- 
pressure steam turbine 
outlet steam via inter-
mediate pressurized 
hot water circulation at 
the temperature of app. 
110 C°.

Number of 
installed units

Unit size 150 
kW. Minimum 
operation load 
50%

150 kW 
produced 
electricity

0 – 8 2000 €/
kW

2,3

Organic 
Rankine 
cycle with 
hot water

Uses any excess waste 
heat available from 
the ship machinery 
after serving ship heat 
consumers. Installed 
in the ship HT water 
recovery circuit, with 
inlet of 90–98 C° hot 
water. If steam ORCs 
onboard, the excess 
steam is primarily 
utilized by them due 
to higher temperature 
(higher power plant 
efficiency).

Number of 
installed units

Unit size 
150 kW, 
minimum 
operation load 
50%

150kW 
produced 
electricity

0 – 8 2000 €/
kW

2,3

repeatedly to execute the simulations. The model is 
simulated with different input parameters received from 
the optimizer, and the output values are then returned to 
the optimizer.

Fortunately, a standard packaging and interface for 
such executable simulation models exists, namely the 
functional mockup interface (FMI, https://fmi-standard.
org/). Model packages conforming to this standard are 
called functional mockup units (FMU). Simulink Coder 
was used to translate the Simulink model into C code and 

an open source tool called Simulix (Wallentin et al., 2018) 
to package the generated C code as a FMU. The compiled 
C code runs much faster than the original Simulink model, 
but some features of Simulink were not supported by 
the code generation. This caused, unfortunately, some 
re-engineering for the case model, especially related to 
its error management. The most relevant cause for the 
re-engineering was that the model relied on the Matlab 
assert function, which was ignored by the code generator 
and had to be replaced with Simulink assertion blocks that 
could be compiled properly.
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3.5 OPTIMIZATION

The optimization algorithm used was NSGA-II, as 
implemented in Opt4J. The population size (alpha) was 
100, the generation size (lambda) was 25, likewise the 
number of parents (mu). Five rounds of binary tournament 
were used for selecting parents. Other algorithm parameters 
were left at their default values. The real type decision 
variables were encoded in one vector and integers in 
another, using the composite genotype of Opt4J. Crossover 
was performed separately for each type.

Simulations were executed on 13 Dask workers with 2 
threads each, allowing a whole generation to be evaluated 
in parallel. The optimization algorithm was executed on 
a local workstation, allowing progress to be monitored 
with the Opt4J graphical user interface. Optimization was 
allowed to run for roughly three hours, then stopped. This 
was done manually, thus the run times and the number of 
processed generations varied.1 

4. RESULTS

4.1 ENERGY SYSTEM OPTIMIZATION

Three experiments with various optimization set ups were 
conducted, as listed in Table 2. Experiment 1 was performed 
with only batteries and back pressure steam turbines as the 
technology options. This scenario represents a typical ship 
design task with limited technology selection for a specific 
reason. The potential reasons for limiting the optimization 
problem are customer’s preferences for a specific solution, or 
technology cost and physical size related issues. Experiment 2  
added the ORC units listed in Table 1. Experiment 3 replaced 
the BPSTs with the condensing steam turbines. Although 
the results of the second and third experiment are presented 
together, it is worth noting that optimization did not attempt 
to decide between BPST and CST. Instead, it tried to find the 
best BPST solutions and the best CST solutions, which were 
then just combined into the plots.

Table 2: The optimization experiments.

# ST 
type

ORC 
included

Run time 
[h:min]

Generations

1 BPST no 3:32 61

2 BPST yes 2:47 31

3 CST yes 3:30 50

The execution times of the experiments vary as discussed 
in Section 3.5. The progress of multiobjective optimization 
can be measured with the dominated hypervolume indicator 
(Zitzler et al., 2003). Even in the shortest experiment, the 
progress has slowed towards the end, as visualized in 
Figure 6. The reference point for the hypervolume was 

1 The generations are always full generations; after commanding to stop, Opt4J still finishes the current generation.

obtained by taking for each objective the maximum (worst) 
value that occurred in the entire experiment.

Figure 6. Dominated hypervolume by generation for 
Experiment 2. As there were three objectives, it is just 
three-dimensional volume in the units of the objectives 

[k€ kg/s].

Figures 7–9 and 11–13 illustrate the optimization objectives 
plotted pairwise against each other. Figures 7–9 show the 
results for Experiment 1 and Figures 11–13 simultaneously 
for Experiments 2 and 3. The red highlighted dots represent 

Figure 7. Experiment 1: Ship average fuel consumption 
and CAPEX with only batteries and back pressure turbine. 

All simulations shown, non-dominated solutions in red.
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Figure 8. Experiment 1: Average number of main engines 
in operation and CAPEX with the batteries and back 

pressure turbine options.

Figure 9. Experiment 1: Ship average fuel consumption 
and average number of main engines in operation with 

only batteries and back pressure turbine.

the so-called archive of the genetic algorithm, which 
approximates the Pareto optimal surface. Figure 7 and Figure 
11 illustrate the relationship between ship fuel consumption 
and the investment costs. Figure 8 and Figure 12 illustrate 
the average number of engines running. Thus, the smaller 
the number, the lower amount of engine hours was needed. 
Figure 9 and Figure 12 plot the ship fuel consumption 
against engine hours. Unsurprisingly, these objectives are 
co-aligned; the trade-offs are against CAPEX. The full 
Experiment 1 results can be examined with Figure 10, where 
the main decision variables, optimization objectives and 
some other quantities of interest are plotted together. Figure 
14 presents a corresponding summary for Experiments 2 
and 3. Table 3 presents the variables that are illustrated in 
the figures.

4.2 EXPERIMENT 1: ENERGY SYSTEM 
OPTIMIZATION RESULTS WITH ONLY 
BATTERY CAPACITY AND BACK 
PRESSURE STEAM TURBINE AS 
OPTIMIZATION VARIABLES

As Figure 7 illustrates, the average fuel consumption of 
the ship varies between 1.193 kg/s and 1.210 kg/s when 
the optimization was performed with only batteries and 
back pressure steam turbine capacity as the decision 
variables. This translates into a fuel saving range from 0 
to 1.3% of the ship total fuel consumption in relation to 
the situation without batteries or waste heat recovery 
technologies. Interestingly, the most relevant reduction in 
the fuel consumption can be achieved with a rather modest 
investment, less than 1 M€.

Figure 8 illustrates the relationship between the average 
number of main engines running and the investment costs. 
In this case a rather linear behaviour can been seen in the 
results.

Figure 9 illustrates the similar trend between fuel 
consumption and average number of main engine operated 
than Figure 7; the most significant reduction in fuel 
consumption is obtained with rather modest changes in the 
number of running engines. The results indicate that the 
back-pressure turbine introduction does not significantly 
influence in the number of engines running, but rather it 
improves the overall ship machinery power plant efficiency.

Figure 10 suggests that slightly less than 1 MW steam turbine 
installed power leads to the best results. Battery capacity 
does not bring much improvement for the fuel consumption 
in the results. Increasing battery capacity continues to 
contribute to reduced main engine running hours, while the 
steam turbine configurations over 1 MW installed power 
yield only small benefit. Such configurations appear in the 
results usually after the maximum battery capacity is met, 
as it would otherwise be more profitable to invest in the 
battery.

The results, in this case, suggest to favour the steam turbine 
capacity over the battery capacity, if the retrofit project 
mainly aims at lowering the fuel consumption and, thus, 
carbon emissions of the ship. However, the heat utilization 
efficiency (HUE) indicator in the result matrix (Figure 10) 
shows rather low values in all cases. This is an in-built 
indicator in the simulation model of the ship total waste heat 
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Compared to the Experiment 1 results, the optimization 
runs with all the optimization variables give better results 
in all aspects of this case study. For instance, the fuel 
consumption range in Figure 11 covers from the lowest 
value 1.162 to 1.2095 kg/s at the highest. This translates 
into maximum fuel savings of 3.9%, even though these 
results are gained at a very high investment cost. Also, 
Figure 11 indicates similar pattern with regards to the 
largest drop in fuel consumption happening with the 
lower end of the investments. The best combinations 
both regarding CAPEX and fuel consumption are, 
primarily, starting with adding condensing type steam 
turbine capacity and HT-water ORC (htorc) capacity, 
as this is the more flexible type of ORC being able to 
consume both HT-heat and leftover steam. Figure 12 
and Figure 13 show also that the fastest drop in average 
engine running hours occurs with the lower investment 
range.

4.4 DISCUSSION AND FUTURE WORK

This research had two major targets. Firstly, to explore the 
feasibility of performing cloud-based optimization that is 
based on existing simulation models which are already an 
established part of a ship design process. And secondly, to 

utilization efficiency, and the expectation is in this type of 
ship to reach values closer to 20 with the waste heat recovery 
technology currently available, based on the previous 
simulation results in the ship design projects. In general, the 
reason for choosing only this type of waste heat recovery 
technology for the ship might be the expected very compact 
size of the technology, compared to the alternatives. The 
space requirement aspect was, nevertheless, not a parameter 
in the current optimization study.

4.3 EXPERIMENTS 2 AND 3: ENERGY 
SYSTEM OPTIMIZATION RESULTS 
WITH ALL OPTIMIZATION VARIABLES 
INCLUDED

The optimization Experiments 2 and 3 were performed 
with various technology options and thus also more 
decision variables, in order to test more the simulation-
based optimization approach and potentially, to identify 
larger potential for fuel savings. The results are presented 
together, but separated by marking those, where back 
pressure steam turbine, denoted with “bpst” is utilized 
(Experiment 2) and where condensing type steam turbine is 
utilized (Experiment 3), denoted with “cst”. Thus, the two 
turbine types were never mixed during the experiments.

Table 3: Optimization objectives, decision variables and other plotted quantities.

Label Short name Unit Description Included in 
experiments

batt_cap battery capacity kWh total battery capacity installed 1,2,3

bpst_n back pressure turbine 
number

- the number of back pressure steam turbines installed 1,2

bpst_P back pressure turbine 
power

kW maximum power of each back pressure steam turbine 1,2

bpst_P_tot total back pressure tur-
bine installed power

kW total power of back pressure steam turbines installed 1,2

capex capital expenditure 1000 € capital expenditure of the installed new energy solution 1,2,3

fuel fuel consumption kg/s average fuel consumption over the entire operation profile 1,2,3

htorc_n HT-ORC number - number of installed ORC units installed that are connected to 
the ship high temperature waste heat recovery circuit

2,3

hue Heat Utilization 
Efficiency

% efficiency of utilization of the exergy in ship waste heat flows 
considering also ship heat consumers. The efficiency is com-
pared to a theoretical situation without any waste heat recovery.

1,2,3

n_me main engines in 
operation

- average number of main engines in operation 1,2,3

P_me_tot average engine power kW time average of total main engine power 1,2,3

P_bpst_act back pressure turbine 
actual power

kW average power actually produced by the back pressure 
turbines

1,2

sorc_n steam ORC number - number of installed ORC units that are connected to steam 
turbine exhaust or steam dump condenser via intermediate hot 
water circulation

2,3

st_P_tot total steam turbine 
power

kW total power of steam turbine capacity installed, either back 
pressure or condensing type

1,2,3
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Figure 10. An overview of the results of Experiment 1, optimization with only batteries and back pressure turbines. 
Quantities are plotted pairwise; plots in the same column share the x axis and those in the same row the y axis, as 

indicated on the diagonal. Only non-dominated solutions shown.

find relevant design solutions and insights for improved 
environmental sustainability in the selected case study. 
These targets were reached, yet not without challenges.

The chosen simulation-based optimization approach was 
capable to reveal nontrivial patterns in the ship design case 
and, therefore, it is a very promising way to support the 
design towards more sustainable shipping. Since an energy 
simulation model can be developed for a ship at any 
design stage and nowadays being a rather normal part of 
the design process, it is important to be able to utilize the 
existing model as such (or with minimal modifications) for 
the optimization studies. In the case example, the energy 

model includes a system level description and analysis of 
the ship entire energy system. Moreover, it also provides 
analysis of the profitability of the proposed concepts. 
After successful optimization experiments, the most 
promising results can be added to the ship design and the 
design process may continue without interruptions. The 
optimization task could be performed at any relevant stage 
of the design process.

Once the optimization activity is made an integral part 
of the design process, it is also natural to evaluate the 
result with the existing conventions and methods, which 
are already applied in the energy simulation work or 
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Figure 11. Experiments 2 and 3: Ship average fuel 
consumption and CAPEX with all optimization variables, 

including the results with two different steam turbine 
types (stt). Only non-dominated solutions shown.

Figure 12. Experiments 2 and 3: Average number of main 
engines in operation and CAPEX with all optimization 

variables.

Figure 13. Experiments 2 and 3: Ship fuel consumption 
and average number of main engines in operation with all 

optimization variables.

other design disciplines. For instance, the heat utilization 
efficiency analysis, which was also a part of the results 
in Figure 10 and Figure 14, reveals that the HUE index 
shows values between approximately 11 to 20. The 
analysis is to certain extent case-specific, but the earlier 
ship design cases with the same modelling framework 
have shown that this is the expected range for the ship 

waste heat recovery system performance. Therefore, the 
first optimization experiment with only back pressure 
steam turbines did clearly not include the most promising 
waste heat recovery equipment. The results of the second 
optimization experiment indicated clear improvement 
in terms of the HUE analysis and, eventually, in the fuel 
consumption performance. Depending on the optimization 
task, various other process efficiency or similar indicators 
can be utilized to support the evaluation and interpretation 
of the optimization process results.

An important motivation for this research was to lower 
the threshold for using optimization in the practice of 
simulation aided marine engineering. As the ship energy 
system model already existed in the Matlab Simulink 
environment, the original assumption was that it could be 
easily adapted for the optimization. In practice, the task was 
not that straightforward. The first step in the process was 
to translate the model into a form that could be executed 
outside of Matlab. Simulink Coder does that but produces 
C code with a rather unusual interface. Simulix adapts 
this interface to FMI. Unfortunately, not all Simulink or 
Matlab features are supported by these tools. In particular, 
runtime error checking is lost in the process: the current 
case model mostly relied on the Matlab “assert” function 
in error checking, which Simulink Coder essentially 
ignores, i.e., the calls to assert disappeared in translation. 
This created additional work for the designer team to 
improve the original simulation model for being less prone 
to these errors. Nevertheless, Mathworks has recently 
introduced a new product, Simulink Compiler, that is able 
to generate standalone FMUs from Simulink models. This 
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tool is adapted now in the ongoing practical design work 
as a result of this study.

In the study, the translation tools created the FMU 
interface from the parameters and the top level ports 
defined in the Simulink model. The existing energy 
system model originally had none of these. Instead, 
it reads its inputs from a custom format Excel file into 
global variables and used the Simulink logging facility 
to write outputs into a file. Adapting this, particularly 
the input, took some effort from the research team. It is 
also fair to assume that this kind of case-specific work 

for interfacing of inputs and outputs for the translated 
simulator is a common effort with coming future cases as 
well. Alternatively, if the calculation time is not of great 
concern to the ship designer, also the energy simulation 
model could be called directly with the optimization 
interface, which reduces the steps in the model treatment. 
The optimization workflow should, thus, be applied to the 
specific process of the designer.

Simulation-based optimization requires the simulation 
model to be rather robust. When formulating the 
optimization problem, one needs to specify feasible 

Figure 14. Experiments 2 and 3: Main result matrix of the optimization with all optimization variables included. Black 
colour indicates the results with the back pressure steam turbine and red indicates results with condensing type steam 

turbine applied.
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value ranges for all the parameters, and the optimization 
algorithm executes simulations exploring the whole 
range of feasible value combinations. If the model 
has only been used previously with manually picked 
“reasonable” parameter combinations, simulations 
may fail surprisingly frequently, when the parameters 
are picked by a machine with no sense of what is 
“reasonable”. For the Simulink model applied in 
this study, this problem was initially exacerbated by 
the loss of runtime error checking on translation to 
an FMU; instead of halting with an error message, 
simulations would typically hang, and possibly some 
may have finished with incorrect results. The error was 
subsequently resolved. A method was also developed for 
terminating the simulation in the FMU on error. These 
first rounds of result generation provided important 
information about the model configuration that is now 
considered in supporting the model’s later black-box use 
inside an optimization loop.

Robustness of the optimization solutions is an important 
area to consider. Firstly, there are numerous variables 
utilized in the set-up of the case that we present in this study. 
For instance, the main logic of utilizing ship machinery 
and the availability of low cost shore power could change 
the results considerably. Also, the limitations chosen for 
the current optimization case variables are influencing 
in the final solutions both in single case simulation and 
the optimization. Even though this study did not explicitly 
focus on exploring the robustness of the solutions of 
this study considering the simulation parameters, certain 
aspects were, nevertheless, highlighted. In general, one 
reason for the researchers to suggest and explore the 
utilization of existing simulation tools for the optimization 
task was to ensure as reliable basis for the optimization 
as possible. Typically, the ship simulation model as a 
part of the ship design project is created to represent as 
realistically the future operating ship as possible and 
various calibration and validation steps should be taken 
already during the creation of the simulation model. The 
validation typically would include in a ship design projects 
utilization of model tested hull results for propulsion loads 
or utilizing measured reference data from processes, such 
as ship engines as far as possible, considering the stage 
of the design. The simulation model robustness during 
optimization is a continuously developing process, but 
the various indicators such as the earlier mentioned HUE 
analysis help the designer to evaluate if the results are 
realistic and would there be reason to search for alternative 
improvements. The suggested approach of simulation 
based optimization allows to focus on the robustness of 
the optimization variables instead of the entire ship energy 
system model set-up.

The next phase in this research is to study how machine 
learning approaches could be incorporated in the 
optimization framework and what benefits it could bring.

5. CONCLUSIONS

A dynamic energy system simulation model of a cruise ship 
was successfully converted and used in the newly developed 
and released open-source cloud-based optimization 
framework. The research showed that to minimise any 
additional efforts in preparing for and conducting the 
optimization step, such as simulation input and output 
management, result validity checking and error handling, 
these aspects should be anticipated during the modelling 
(building a simulator) phase. The simulation model should 
have a reasonably clear interface that allows programmatic 
setting of the model parameters, execution of simulations 
and retrieval of reliable results. The case showed that there 
is an overhead in making the simulation model compatible 
for the optimization, but the task was worth the effort 
considering the value of the results, and the fact that the 
effort was a once-only duty for the in-house simulator used. 

Regarding the ship energy system design, the optimization 
provided two/three main fingings: within the specific ship 
case and optimization set-up the battery capacity did not 
contribute much to ship fuel savings, but with a combination 
of steam turbines and Organic Rankine Cycles considerable 
fuel savings, up to 3,9% could be made. These savings 
would translate to ship lower carbon intensity. Another 
practical result from the study was to visually examine the 
trends in profitability of the energy saving improvements. 
In practice, investments above 3 M€ in experiments 2 
and 3 did not seem to provide much added fuel savings. 
The economical comparison and the comparison between 
the back pressure and fully condensing steam turbines is 
naturally highly dependent on the optimization variable 
parameters and the final conclusions would demand 
studying the sensitivities further. 

The results showed that an optimization process that  
re-used existing models from an ordinary ship design 
process could bring significant added value with minor 
additional effort in the actual ship design task. An 
optimization step can expand the current design space 
providing increased insight for designers and most of 
all, support decision making during the project, resulting 
in a ship that is more efficient in her transport task, and 
environmentally more friendly. This means benefits for all 
parties in the design process, both for the customer and for 
the designer.

This study had two main impacts. Firstly, new insights 
were gained with the development method for increasing 
ship sustainability, considering also the related costs and 
impact to ship main machinery utilization. Secondly, 
whenever a proper simulator is developed during ship 
design process, it should be thoroughly exploited. Efficient 
means for this are crucial for increasing the impact of 
system simulation. The results gained indicate that the 
simulation-based optimization in the cloud is a promising 
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direction. This paper helps to raise awareness and provides 
ideas towards effective simulation-assisted ship design 
using modern resources such as open source software and 
cloud computing.
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