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SUMMARY 

This paper addresses the need for a rapid, multi-disciplined and rational approach to floating system concept development 
and selection during the very earliest stages of project definition. It describes the implementation of a modified multi-
objective Genetic Algorithm for this purpose. A formulation of the NSGA-II algorithm is combined with additional Target 
Functions to reduce otherwise large multi-disciplined problems to more tractable solution using tools commonly available 
in the design office. It also provides a rational basis for the comparison of different design solutions each of which are 
Pareto Optimal with respect to the technical and economic performance of each underlying concept.  A specific example 
of marginal field development using a novel FPSO concept is presented. Starting with just the oil field location and reserves 
estimate, the algorithm provides the means to define preliminary hull form and production facility capacities, match 
performance to payload, and give preliminary indicators of likely investment performance. The method may also be 
applied more generally in preliminary ship design, particularly where it is possible to model economic performance 
alongside efficiency, safety and key technical factors in hydrodynamics and structures. 

NOMENCLATURE 

BM Second moment of water-plane area/immersed 
volume 

C1, C2 Constants relating Steel and Outfit Mass to 
Displacement 

DDPSO Deep Draft Production, Storage and Offloading 
F(t) Total reservoir fluids handling capacity (BOPD) 
GM Metacentric height (m) 
Hs Significant wave height (m) 
IRR Internal Rate of Return 
K1, K2 Constants relating topsides mass to initial 

production rate P0 
KB Height of the centre of buoyancy above keel (m) 
KG Height of the centre of gravity above keel (m) 
M1, M2 Genetic algorithm objective functions 
MSOW Steel and Outfit Mass. 
P Payload/Topsides mass (Te) 
P0, PR(t) Initial and time varying production rate (BOPD) 
P(S) Probability of crossover swap 
P(M) Probability of a mutation 
R Oil reservoir depletion rate (% vol/year) 
RAO Response Amplitude Operator 
RNPV Net Present Value of field reserves (USD) 
ROI Return on Investment 
S, S0 GA fitness measures 
TIC Total Installed Cost 
TN GA Target function 
WACC Weighted Average Cost of Capital 
Zs Significant heave (double amplitude, m) 
α Weighting for objective functions 
Δ Hull mass displacement (Te) 

Hull geometry definitions are given separately in 
Appendix A1. 

UNITS 

MKS units are used throughout with the following 
additional accepted industry definitions: 
bbl International standard volume – Barrel. 
BOPD Production rate; Barrels of Oil Per Day 
MM Short form for millions, as in MMBBL 
M Short form for thousands, as in MBOPD 
Te Metric Tonnes 

1. INTRODUCTION

1.1 STUDY BACKGROUND 

Many naval and offshore engineering projects involve 
early development studies to select the most 
economically advantageous and technically feasible 
engineering solutions.  Such concept studies are critical 
to success since good decisions made early save 
considerable time and effort later in the project life cycle. 

For projects involving marginal economics, new 
technologies or safety challenges, it is essential that 
competing solutions are compared rationally, and on the 
basis that each alternative is, of its kind, “optimal” in 
terms of its potential performance, risks and returns on 
investment.  

A recent industry survey for the Energy sector (Jamieson, 
2020) points to a halving of the timescale involved in 
early stage engineering studies since 2015.  This paper 
describes the development of a straightforward approach 
to multi-disciplined optimisation that meets the challenge 
of such reduced timescales and provides an improved 
basis to compare alternatives at the earliest stages of 
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concept selection before the commitment of resources 
toward major design effort. 
 
1.2 TECHNICAL BACKGROUND 
 
The use of formal mathematical methods in optimisation for 
the refinement of design performance is now well 
established across a wide range of engineering disciplines. 
Examples include drag reduction or structural weight saving, 
typically using CFD and FE analysis (Tahara, et al., 2006, 
Trapani, et al., 2012, Nasseri, et al., 2014). 
 
In ship design, there has been extensive work in multi-
objective optimisation for hull performance, combining 
resistance, seakeeping, stability etc., taking advantage of 
advances in parametric modelling and CFD tools in 
hydrodynamics (Papanikolaou, 2010, Biliotti, et al. 2011, 
Guha, & Falzarano, 2015, Vasudev, et al., 2017, 
Maisonneuve, et al., 2018, Cheng, et al, 2019). 
 
However, application to offshore engineering problems is 
relatively rare despite extensive early work in the field 
(Claus & Birk, 1996, Klanac & Jelovoka, 2008), although 
there are some recent signs of increasing interest (De 
Oliveira, et al, 2017, Nasseri, et al, 2014, Pillai, et al, 2017). 
 
Commercial analysis software now often features 
optimisation as part of parametric design, and stand-alone 
software platforms such as ModeFrontierTM provide a 
broad range of options in data analytics, integrated 
analysis and design optimisation. However, this can be an 
expensive exercise and requires high levels of design 
definition and significant computing resources. 
 
Unlike the above advanced design applications, early 
stage concept definition starts with relatively little data 
and limited scope for detailed performance analysis. 
Requirements are often both multi-disciplined, and multi-
objective, with significant potential for conflict in the 
absence of design detail. 
 
Here this problem is addressed using a multi-objective 
genetic algorithm based on the Non-dominated Sorting 
Genetic Algorithm, NSGA-II, (Deb, 2001), but modified to 
include novel features aimed at managing complexities 
common to multi-disciplined early stage design problems. 
 
Key objectives are: that the method used is simple and 
cost effective; that it can be implemented without the 
need for expensive engineering software and hardware; 
and that it can be performed efficiently and repeatedly 
to shorten the time-scale of a typical concept 
development or feasibility study (i.e. days rather than 
weeks or months). 
 
The example chosen to test the approach is that of concept 
development for a marginal, stranded offshore oil field. 
 
The economic viability of such oil and gas fields is often 
dependent on the choices made during the earliest stages 

of concept selection and engineering. This issue becomes 
acute at the lower end of field size, for example for 
reserves between 25 and 75 million barrels of oil 
equivalent, and in a climate of low oil prices. 
 
The suitability of small ship shaped FPSOs to operate in 
harsh environments, particularly in the Northern North 
Sea or West of Shetland, is often debated.  The problem 
is therefore to find concepts that balance the conflicting 
pressures of low capital and operating costs, safety and 
hydrodynamic performance, and also meet specific 
design targets and constraints. 
 
A working example is presented based on the Atkins 
Deep Draught Production, Storage and Offloading 
(DDPSO) floating system. This provides a clear 
demonstration of how genetic algorithms can be used to 
drive the preliminary definition of a novel hull form 
subject to multiple constraints and objectives, and so 
enable rational comparison with traditional alternatives. 
 
 
2. THE DDPSO CONCEPT 
 
Figure 1 illustrates the DDPSO concept used in this study.  
The design intent is to provide a small, low CAPEX 
FPSO suitable for marginal field developments in 
relatively harsh environments. 

 
Figure 1:  Atkins DDPSO Concept (GB Patent 2507370, 
US Patent 98228072). 
 
 
The hull form is “SPAR-like” in appearance, and certainly 
the aim is to gain the benefit of deep draught with respect to 
motion response. However, unlike SPARs, intact stability is 
derived largely from the second moment of the water-plane 
(i.e. BM), with a hull form and distribution of mass such that 
the centres of gravity (KG) and buoyancy (KB) are 
practically co-incident.  The use of a so-called “oil-over-
water” crude oil storage tank as shown in Figure 1, ensures 
that there are only small variations in KG and KB, and 
displacement throughout operation.  This removes the need 
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for an extensive water ballast system, giving savings in steel 
mass and outfit costs. 
 
Consequently, this hull form is quite specialised, with a 
specific balance of dimensions needed to give its desired 
characteristics (i.e. a minimum practical GM and a high 
heave natural period (~ 20s)). It is therefore a good 
candidate for demonstration of the methods described in 
this paper. 
 
 
3. THE OPTIMISATION ALGORITHM 
 
3.1 OVERVIEW AND CHOICE OF GA 
 
The optimisation technique used here is based on a 
genetic algorithm (GA), wherein design solutions are 
found through the repeated generation and testing of 
discrete populations by simulation.  Only the fittest 
survive each testing phase, to be used as the “parents” of 
each new generation.  Design solutions evolve to a point 
where each new population cannot improve on the 
performance of the previous one. 
 
Such so called “Evolutionary Algorithms” were 
originally developed by Holland (Holland, 1992) and 
others (Deb, 2001, Konak, et al, 2006), and have seen 
wide application in engineering and design as noted 
earlier. 
 
The NSGA-II algorithm used here was chosen because: 
• It adheres closely to the simple but fundamental 

principles of evolutionary algorithms, and so may 
easily be implemented or programmed. 

• It works with primary variables, rather than 
constructing binary code representations of gene 
sets. 

• It utilises simple scoring and ranking, and the 
concept of an Elite within each population, which 
aligns with the practical engineering need to 
“converge” on a clear solution. 

• Nevertheless, it can be shown to enhance the fitness 
of populations more generally, ensuring that the 
parents of each generation also approach Pareto 
status. 

• It appears able to work with relatively small 
populations and has rates of convergence that are 
reasonable and reliable. 

 
Alternatives to NSGA-II, applications and comparative 
performance may be found in Konak, et al, 2006, and 
more recently, Sobey, et al. 2019. An overview of the key 
elements of the method as applied here is given below, 
with further added detail where relevant in later sections. 
 
 
3.2 FITNESS 
 
Two primary performance objective functions are used 
here, namely: 

• M1: A measure of first order motion response in a 
one-year maximum sea-state (HS). 

• M2: A suitable measure of weight, cost, or return on 
investment. 

 
The DDPSO hull form is symmetric in the X-Y plane and 
so critical modes of motion are surge, heave and pitch.  
For SPAR type platforms, surge (when moored) and pitch 
modes have high natural periods, well above any wave 
spectrum energy content. This is not the case for heave, 
and it is a fundamental requirement of the optimisation 
process to de-tune this natural period, and overall 
response, from the peak of the wave spectrum.  Therefore, 
the ratio of significant heave to significant wave height 
(ZS/HS) is chosen as the measure M1 to be minimised. 
 
M1 is calculated for each design variant using a first 
principles calculation of its heave response amplitude 
operator (RAO) derived from geometry and weight 
models, and a suitable wave spectrum for a given 
significant wave height (HS). 
 
M2 needs to be a performance measure that is at conflict 
with M1, and typically, steel weight, capital cost or ROI 
are all suitable candidates. 
 
These two objective functions are combined into a single 
measure of fitness given by: 
 
S0 = α.M1 +(1 – α).M2    (1) 
 
Where the weighting α is varied from 0 to 1 through a 
sequence of simulations in order to map out the Pareto 
Front.  The value of α may be allowed to vary about a 
defined mean following a normal distribution with a 
small standard deviation. This helps increase variation in 
the population and, as the solution converges, supports 
the generation of parents that are close to the Pareto Front. 
 
To provide consistent scaling both M1 and M2 are 
normalised by their minimum values in each population.  
Thus, M1 and M2 become measures of the relative 
performance of each design and scaled such that S0 will 
always tend to unity for the best solution within a population. 
 
Equation 1 can be expanded to take on multiple objective 
functions, MN (N = 2, 3…) involving N-1 weights (αN-1).  
However, this increases computational effort significantly 
and introduces unwanted levels of complexity for this early 
stage of design and feasibility assessment.  
 
This problem can in part be addressed through the 
introduction of targets that meet specific design 
requirements. The measure of fitness (S0) is weighted with 
additional Target functions (TN) such that the overall fitness 
measure of each design is expressed as the product: 
 
S = (T1.T2….TN). S0     (2) 
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The general form of Target function (TN) as applied to a 
typical target parameter (XN) used here is: 
 
TN = (1 + | XN – T | / T)(1+m)    (3) 
 
As XN tends toward the target value T, TN tends to unity, 
regardless of whether XN is greater or less than T initially, 
and thus S tends to S0.  Here, the power m has also been 
introduced as a factor to modify the relative influence of 
the Target constraint. 
 
Typical target values for the DDPSO are measures such 
as topsides payload, cargo capacity and BM.  However, 
targets can also be set that account for the multi-discipline 
nature of the problem, such as the total crude oil reserves 
that can be extracted, offloading frequency (to match 
storage capacity with production rate), etc. examples of 
which are given in later sections. 
 
3.3 HULL PARAMETRIC MODEL 
 
A simplified parametric model for the hull and process 
facility is used to create each generation of designs.  This 
consists of: 
1. A preliminary set of dimensions as described in 

Appendix A1, which form the so-called “Genes” of 
each design. 

2. A set of remaining calculated dimensions that 
complete the definition of the hull form. 

3. A mass and centre of gravity model for hull steel and 
outfit. 

4. The payload model – representing the topsides 
process facility and its capacities, production rate and 
relationship to reservoir characteristics. 

 
Each population of designs is initially generated from 
random variations in selected key dimensions from a 
baseline geometry. These key dimensions are tabulated in 
Appendix A1. The range of variation used was typically 
±15% of the baseline, applied both in the generation of 
the initial population, and in subsequent mutation 
operations. 
 
All other dimensions, weights, payload and capacities are 
derived using a mix of geometrical relationships and 
design correlations. 
 
For the DDPSO parametric model there are 4 critical 
mass groups, namely: 
a) The hull steel and outfit mass and centre of gravity. 
b) The cargo mass and centre of gravity. 
c) The topsides process facility (payload) and its centre 

of gravity above the deck. 
d) The solid fixed ballast added at the keel. 
 
The payload capacity and solid ballast mass for each of 
the generated hull forms are calculated for required 
values (or range) of GM.  In other words, each hull form 
that is randomly generated has a unique combination of 
GM, payload and fixed ballast mass. 

The payload capacity of each hull form and the payload 
requirement (derived from a simplified process facility 
model) are used as one of the target functions 
(Equation 3). The hull steel and outfit mass (MSOW) is 
calculated using a design correlation as described in 
Section 4.1 below. 
 
The models used to represent process facilities, reservoir 
and field economics that make up fitness parameter M2 
are case dependent and also described in section 4.1. 
 
3.4 HYDRODYNAMIC MODEL 
 
The heave response amplitude operator (RAO) is 
calculated from first principles and subsequently used to 
generate a heave response spectrum for the specified 
wave climate. This is then integrated numerically to 
calculate significant heave (ZS) in the usual way. 
 
Direct use of a 3D boundary element or panel diffraction 
model to calculate the heave RAO would lead to an 
excessive computing requirement (of order 50,000 
geometries may be needed) inappropriate for early stage 
concept design. 
 
For optimisation studies, alternatives do exist including 
various forms of surrogate or so-called Metamodels using 
diffraction analysis results, CFD or even experimental 
data on a much reduced but still representative sets of 
geometries (Viana, Simpson, et al., 2014, Harries,  
Papanikolaou, et al. 2017).  Such methods would be less 
time consuming than 3D diffraction calculations but 
would still represent significant effort at the earliest 
stages of concept development. 
 
The approach taken here therefore, was to apply well 
established empirical models and assumptions for heave 
added mass and damping coefficients, with Froude-
Krylov and inertial wave loads integrated analytically for 
the relevant wetted surfaces (Newman, 2017, Sarpkaya & 
Isaacson, 1981). Data for the additional effect of heave 
plates on inertia and damping were also used (Tao, Molin, 
et al. 2007, Thiagarajan, et al., 2002).  However, to reduce 
complexity and ensure consistency through the 
optimisation process, a simple linearised damping ratio of 
0.1, consistent with the above for the relatively high sea-
states and large Keulegan-Carpenter numbers chosen as a 
basis for optimisation, was applied. 
 
Additional hydrodynamic constraints have been applied 
to avoid Mathieu instabilities.  These cover both, the pitch 
period being an integer multiple of the heave period, and 
the envelope between the heave natural period and the 
wave peak period giving a second order excitation in 
pitch (Haslum, 2000).  
 
The significant heave response for a one-year maximum 
significant wave height (Hs) of 10m, modal period 
15.85s, (SMB spectrum) was used here as the basis of 



Trans RINA, Vol 162, Intl J Maritime Eng, Oct-Dec 2020 

©2020: The Royal Institution of Naval Architects                   A-385 

measure of fitness M1, but this could be extended to cover 
more detailed descriptions of environmental statistics. 
 
3.5 THE ALGORITHM 
 
The overall algorithm consists of the following stages: 
1. Generate the starting population of design 

geometries by random variation (see Appendix A1). 
2. Calculate their fitness parameters, M1 and M2, and 

Target functions (TN), to give the α weighted fitness 
measure S (Equations 1 and 2). 

3. Select a group of so-called “Elite” solutions based on 
the minimum value of S from the population of 
possible geometries. 

4. Generate the next population using a mix of genetic 
algorithm operators (described below) from this elite 
group. 

5. Calculate the fitness parameters of this new 
population and repeat this process from step 3 until 
convergence is achieved. 

 
This process is repeated for a range of α values to create 
the Pareto Front describing the boundary of design 
solutions with the best possible combinations of measures 
M1 and M2. 
 
The initial Elite group (step 1) is made up of 8 design 
solutions selected as the best (i.e. lowest value of S) from 
8 populations of 128 randomly generated geometries 
each.  This variation on the standard NSGA-II approach 
was introduced to help pre-condition each initial parent 
group within the design space, minimise the risk of false 
minima, and improve starting population quality. 
 
These 8 Elite designs are then paired off as parents and 
used to generate 4 new sub-populations of 32 new 
candidate solutions, i.e. a single new population of 128. 
 
Objective functions M1, M2 and fitness S are re-calculated 
for this new population and ranked by minimum S values. 
 
The design with the lowest S value is the new single Elite 
for this population and is retained.  A further 4 design 
geometries are selected randomly from the next best 20 
performing members of the population.  The new Elite 
design is then paired with each of these 4 geometries to 
generate the next 4 sub-populations of 32, i.e. the next full 
generation of 128 designs. This process is repeated until 
convergence is achieved. 
 
The generation of each new population from the parent 
pairs is achieved using the two primary GA operators, 
Crossover and Mutation.  The principle dimensions of the 
DDPSO hull form (Appendix A1) are used to form the so-
called “Gene set” to which the GA operators are applied. 
 
The Crossover operator involves the random swapping of 
elements of the Gene set between each parent pair.  This 
is the so called “uniform crossover” approach, chosen for 
simplicity and practicality. The probability of a swap P(S) 

is fixed, (typically 0.3 to 0.5) and crossover controlled by 
generating a random number R between 0 and 1, such that 
if R < P(S), then a swap is made. 
 
For each parent pair, this is repeated 7 times, to create 16 
new sets of design dimensions, including the original 
parent pair. 
 
The Mutation operator applies random variation to the above 
new set of 16.  The probability P(M) of whether a mutation 
occurs is handled in the same way as for Cross-over. The 
range of possible variation in each dimension is a set fraction 
of its current value, and the actual variation is calculated as 
a random proportion of that fraction.   
 
The 50/50 split between Crossover and Mutation was 
arrived at through numerical experiment but is typical of 
similar work (Pillai, et al., 2017).  It appears that 
Crossover provides the initial drive to the overall 
improvement in performance of the population, but then 
Mutation takes over to create variations that test whether 
the Elite solution is optimal. 
 
The scoring and subsequent ranking of each design was 
based on both the fitness measure S (equations 2 and 3), 
and some specific additional weights used to eliminate 
undesirable solutions.  These include for example, those 
that violate the Mathieu instability criteria, or hull 
geometries that have unfeasible payload capacities. Such 
cases are simply assigned an additional weighting factor 
in the calculation of their overall performance score 
which has the effect of ranking them at the bottom of the 
population. This is a similar philosophy to the Penalty 
Function approach to constraints (Klanac & Jelovoka, 
2008, Campana, et al., 2012), but much simplified. 
 
Convergence is assumed to have occurred when: 
• The same design geometry is repeatedly retained 

over 10 generations and has evolved such that both 
its M1 and M2 measures are ranked highest. 

• Certain tolerances are met with respect to the Target 
values used.  A value of 1.0% of the Target was used 
in all calculations presented here. 

 
 
4. CASE STUDIES 
 
The following case studies are aimed at showing how the 
algorithm described here selects principle hull 
dimensions and process system characteristics to produce 
a consistent Pareto boundary for a range of different 
working scenarios. 
 
4.1 GENERAL RELATIONSHIPS 
 
For concept development simple but consistent 
relationships between design variables provide a reliable 
basis for preliminary hull and systems definition.  
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For this study, hull and outfit steel mass for past designs 
based on scantlings derived from Codes of Practice were 
used as reference benchmarks for a simple design model: 
 
MSOW/Δ = C1.(1 + C2. (T-TR)/TR)   (4) 
 
Where: 
 
C1: is the ratio of steel and outfit mass to total mass 

displacement (Δ) at reference draught (TR). 
C2: is an additional factor to account for variations in 

steel mass with draught (T). 
 

 
Figure 2:  Simplified model for steel and outfit mass. 
 
 
Reference values of C1 = 0.225, C2 = 1.25 and TR = 75m 
were selected.  The factor C2 accounts for an increasing 
shell thickness with draught to maintain a consistent 
compression stress due to self-weight across the designs.  
It has an important role in counteracting trivial solutions 
that otherwise exhibit ever increasing draught to 
minimise heave response. 
 
Conventionally, a combination of reservoir modelling, 
exploration well testing and process design drives 
specification of topsides systems, with hull selection 
based on resulting weights and oil storage requirements. 
Here, a simple empirical model is used to match reservoir 
and process design with hull definition, relating initial 
daily production rate (P0, in Mbbl per day) to payload (P 
- Tonnes), and crude oil storage requirements: 
 
P = K1 + K2.P0     (5) 
 
Where K1 is a constant representing a minimum fixed 
mass of topsides steel (in Tonnes), and K2 linearly relates 
process facilities mass to production rate (Tonnes per 
bbl).  Values of K1 = 2000Te and K2 = 0.15Te/bbl/day 
were used throughout these studies. Crude oil volume 
storage requirements were subsequently calculated using 
an assumed year 1 offloading frequency of once every 15 
days throughout. 
 
We also seek to optimise the system for a specific 
reservoir size and life-of-field.  Therefore, a simple 
exponential decay in oil production with time with 
reservoir depletion rate R is assumed: 

PR(t) = P0.e-Rt      (6) 
 
For a given value of depletion rate R, P0 can be found by 
equating (6), integrated with respect to time, to a target 
field size.  In practice, depletion rates need their own 
detailed reservoir modelling and optimisation (e.g. 
Barnes et al., 2002, Hoffmann et al. 2019), but this simple 
approach was considered sufficient for design 
comparison purposes. 
 
The net present value (NPV) of the crude oil extracted 
over the life of field is found using equation 6 factored by 
the weighted average cost of capital (WACC) and again 
integrated analytically. 
 
The NPV of the field increases with increasing initial 
production rate (oil extracted and sold now is more 
valuable than oil extracted in the future). However, 
increasing P0 leads to an increased payload and storage 
requirement, driving up the CAPEX of both hull and 
topsides.  This gives one of the critical competing factors 
within the optimisation algorithm. 
 
An additional, practical factor for process system 
definition is the increasing proportion of water that makes 
up the composition of well fluids, from which oil and gas 
are separated, through the life-of-field.  This so-called 
“water-cut” is a key driver in the design of the topsides 
separation systems, and later life revenue generation. 
 
The simple model for P0 used here is therefore based on: 
 
P0 = MAX [ Poil (t=0), F(oil+water) (t = Tmax)]  (7) 
 
There is an optimal combination of depletion rate R and 
water-cut for which Poil at t=0 and F(oil+water) at t=Tmax are 
equal, i.e. the initial production capacity is matched to the 
through-life fluids handling capacity F(t), and so 
represents a minimum payload requirement. 
 

 
Figure 3:  Simplified illustration of the effect of including 
water-cut on sizing process system capacity (Water-cut of 
50% equivalent to a 50/50 composition of oil and water 
process fluids after 8 years). 
 
Whether this represents the best return on investment 
however depends on whether the rate of change of 
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CAPEX and OPEX with P0, payload and storage 
capacity, outstrips the rate of change in NPV of the 
reserves recovered. 

The following Case Studies feature increasing levels of 
complexity as follows: 

Case 1: Matching hull and topsides according to set target 
values for storage volume and payload, with the 
objectives being to minimise response in waves and steel 
mass (hull + outfit). 

Case 2: Matching of hull and topsides for a given target 
level of recoverable reserves and fixed life-of-field, to 
minimise response in waves and maximize the return on 
investment on the Total Installed Cost (TIC). 

Case 3: Matching of hull and topsides for a given level of 
recoverable reserves and life-of-field, to minimise 
response in waves and maximise return on total through-
life cost expressed as an Internal Rate of Return (IRR), 
and including the effect of water-cut. 

For all cases, the fitness measure M1 is the non-
dimensional significant heave (ZS/HS).  The definition of 
M2 varies according to the Case definition as will be 
described in each section.  For Cases 2 and 3, a fixed oil 
field reserves target of 50.0 MMbbl recovered over a 
period of 8 years, at an oil price of $50.0 per barrel, and 
WACC of 8% was used. 

4.2 CASE 1 

Case 1 considers only hull form and sizing for target 
values of payload and storage capacity.  The target values 
considered are: 

Table 1: Summary of Case 1 Target Parameters. 
Case Label Payload (Te) Storage (Mbbl) 

1.1 250CT4 4000.0 250.0 
1.2 300CT5 5000.0 300.0 
1.3 350CT6 6000.0 350.0 

The calculations follow the methodology described in 
Section 3.  The Pareto front describing the design the best 
possible combinations of heave responses versus steel 
and outfit mass, is generated by successive runs across 
values of weights α from 0.1 to 0.9. 

Figure 4 shows a “snapshot” of the heave RAO for a 
typical population of designs from the GA simulation for 
Case 1.3. 

Figure 5 shows the results from each of the cases 1.1, 1.2 
and 1.3.  Each data point represents a specific design 
combination of hull dimensions for the final parent 
populations for each set of α values.  A lower bound line 
has been fitted to illustrate the expected Pareto front in 
each case. 

Figure 4: Typical heave response amplitude operators for 
a single population 

Figure 5: Pareto front solutions for Case 1. 

The general shape of the Pareto front follows the expected 
convex form.  There is some variation which is attributed 
to the 1% Target Function convergence criterion used 
being not quite sufficient to eliminate all scatter. 

The emergence of two different water-plane 
configurations is also observed, i.e. populations that are 
(see definitions in Appendix A1): 
a. exactly octagonal, i.e. dimensions a1 = a2 and b1 = b2

- Type A.
b. those for which a1 > a2, and b1 > b2, tending toward

larger water-plane areas and second moments, and
shallower draughts – Type B.

Type A populations are most prominent for high α and 
deeper draughts, hence lower heave response, and low α 
Type B configurations have lower steel and outfit mass 
but higher response. 

4.3 CASE 2 

In Case 2, we seek the Pareto front that represents the 
optimal combinations of hull sizing to give minimum 
significant heave versus Total Installed Cost (TIC).  

The explicit steel and outfit mass objective function is 
replaced by a measure of the TIC based on the sum of the 
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hull and topsides CAPEX, mooring system and 
installation costs.  The former is calculated using a simple 
cost per tonne norm based on steel and topsides 
fabrication costs ($7,500 and $45,000 per Tonne 
respectively), and the latter is combination of fixed and a 
variable cost proportional to displacement. 
 
 

 
Figure 6: Examples of hull form variation with α = 0.2 
(left) and α = 0.7 (right). 
 
 
Equation 5 is used to equate year 1 oil production rate to 
payload, and an offloading frequency of 15 days selected 
to give the crude oil storage capacity. The depletion rate 
(R) is randomly generated for each design and, along with 
the year 1 production rate, is used in Equation 6 integrated 
to give a life-time production volume and its target factor 
(TN) from Equation 3. 
 

The fitness measure M2 is calculated as the Total 
Installed Cost divided by the NPV of the crude oil 
revenue (RNPV) earned at the production capacity and 
depletion rate (R) of each design, and so drives the 
solution towards the lowest TIC for the largest possible 
crude oil revenue. 
 
GA simulations follow the process as described before, 
with the Pareto front generated for a range of values of α. 
Figure 6 shows the typical variation from low α (left) to 
high α (right), type B and A hull forms respectively, as 
identified in Case 1. 
 
Table 2 summarises properties of each example design 
configuration for comparison. 
 
 
Table 2: Example properties of design configurations 
generated at low and high α. 

Property Example 1 Example 2 
Displacement 68,290 Te 118,890 Te 
Steel/Outfit 13,720 Te 36,730 Te 
Payload 4,930 Te 5,755 Te 
Draught 66.3 m 94.9 m 
Cargo Capacity 289,950 bbl 378,640 bbl 
Heave Response 12.5 m 6.6 m 
Production Rate 19,950 BOPD 25,033 BOPD 
Depletion (R) 3.6% 9.6% 
Oil Revenue $1878 Bn $1980 Bn 
TIC $374 MM $ 608 MM 

 
 
Figure 7 shows the trend across the range of α values for 
depletion rate (R) and initial production rate (P0) for 
converged elite solutions in each case. 
 
Converged (Elite) design solutions and their approximate 
Pareto Fronts are shown in Figure 8 for TIC and steel and 
outfit mass respectively.  Each black square represents an 
Elite solution at the end of the simulation, accompanied 
by previous iterations (grey triangles). 
 
Solutions for low α, that are weighted toward 
generating designs with lowest total installed cost, tend 
toward lower year 1 production rates and reservoir 
depletion rates. Although they generate lower NPV 
from the 50MMbbl of reserves, it remains sufficiently 
high to result in a lower ratio of total installed cost to 
oil field revenue (TIC/RNPV).  
 
Therefore, according to this analysis, the optimum 
solution that gives the best overall return on initial 
capital cost should be that which spreads production 
across the full life-of-field, rather than that which 
seeks a high year 1 production rate, higher NPV, and 
fastest time to break-even. However, the penalty can 
be seen clearly in the significantly larger heave 
motions that the smaller platform suffers in the chosen 
environmental conditions. 
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Figure 7: Trends in Depletion Rate (R) and Production 
Rate with Weighting α (Converged Values as black 
squares) 

Figure 8:  Trend and approximate Pareto Front for Heave 
Response versus Total Installed Cost and Steel and Outfit 
mass with Elite solutions highlighted (crosses). 

4.4 CASE 3 

In Case 3 we seek the Pareto front that represents the 
optimal combinations of hull sizing to give minimum 
significant heave versus a through-life return on 
investment expressed as an Internal Rate of Return (IRR). 

There are two additional factors in this case. The first is 
the introduction of the operating cost (OPEX) into the 
field economics. Here, we define the operating cost 
(ONPV) as the sum of a fixed percentage of the capital cost 
and a variable lifting cost per barrel at year 1 production 
rates, adjusted for Net Present Value. The fitness measure 
M2 is therefore now calculated as: 

M2 = TIC / (RNPV – ONPV) (8) 

The second is the inclusion of water-cut.  Equation 7 is 
used alongside an assumed water-cut of 50% at year 8. 
This implies an optimum topside mass (Payload) using 
equation 5 equivalent to the total through life liquid 
processing capacity and depletion rate R. 

The question of interest is whether the design solutions 
generated will converge around a process facility that has 
this local optimum in payload and processing capacity, 
for all α values along the Pareto front, or whether it will 
behave as Case 2.  Two sets of calculations have therefore 
been performed:  
• with R set at 8.66% per year, the optimum payload

condition, P0 = 23,750BOPD.
• With R allowed vary randomly (as in Case 2).

Figure 9 shows the results of these combined calculations. 

Results are presented grouped into three distinct 
populations as they emerged from the simulations. The 
first (Non-Optimal Depletion rate - NODR), are those that 
converged to a solution that had a depletion rate 
significantly at variance with the optimal value of 8.66% 
per year. The next two populations are those that evolved 
either from the benchmark simulations or converged to 
within 1% of the optimal value of depletion rate R. 

These two populations were further categorised into so-
called Type A (a1,b1 = a2,b2) and Type B (a1,b1 > a2,b2) 
geometries that were observed in the Case 1 studies. 

Through repeated calculations, it was observed that the 
Pareto Front for heave performance versus IRR is comprised 
of populations that align with both the optimal depletion rate 
ROPT of 8.66% and are of the Type A geometry. 

Plots of significant heave versus steel and outfit mass, and 
TIC, show some similar trends, but with more scatter 
around the best fit trend-lines through the data points 
representing the Type A Pareto population.  Unlike the 
plot for IRR, (where all non-Pareto solutions fall clearly 
above the line), there is more scatter of the various 
converged designs around the best fit curve to the Type A 
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designs. In other words, designs that are Pareto for heave 
response versus IRR may be neither least steel and outfit 
mass nor least Total Installed Cost. 
 

 
Figure 9:  Pareto fit to Heave vs IRR and best fit curves 
to Steel & Outfit Mass and TIC.

5. DISCUSSION 
 
 
5.1 RESULTS 
 
The three case studies presented in this paper illustrate a 
range of ways in which genetic algorithms may be used 
to establish optimal combinations of hull geometry and 
process facilities definition in concept design.  
 
For Case 1, using fixed targets for the DDPSO storage 
capacity and topsides mass (and so notionally unrelated 
to each other) the GA generates clearly defined Pareto 
fronts for heave response versus steel and outfit mass. 
 
For Case 2, allowing topsides mass and storage capacity to 
vary according to random variation in the reservoir depletion 
rate, the lowest TIC is associated with lowest reservoir 
depletion rates and initial production rates (and therefore 
topsides mass/cost, and oil storage requirement).  The low-
cost penalty is increased heave response. 
 
For Case 3, with additional factors included for the effect 
of water-cut and operational costs, the Pareto Front is 
formed by designs for which the optimal depletion rate 
defines the minimum topsides mass.  Pareto designs also 
favour a regular octagonal waterplane, Type A hull forms 
(a1,b1 = a2,b2), which feature deeper draughts, and 
improved heave performance. 
 
Design solutions that give a response of around 8.0m 
significant heave have been selected for comparison as 
might typically be considered during a concept design 
review and are summarised in Table 3.  Figures given 
in italics are post-processed values to aid comparison, 
those in bold are the specific parameters for which each 
case was optimised (i.e. M2 objective). 
 
Exact comparison is not strictly possible as there are some 
subtle differences in the formulation of each case.  For 
example, simulation 250CT4 yields a production rate that 
would not generate 50MMbbl over 8 years as indicated. 
 

 
 
Table 3:  Properties of Pareto solutions across all case studies at a nominal significant heave of 8.0m 

      
Design Parameter Case 1: 250CT4 Case 1: 300CT5 Case 1: 350CT6 Case 2 Case 3 
Significant Heave (m) 7.92 8.11 8.14 8.13 7.93 
Displacement (Te) 81,465 92,079 108,106 98,105 101,935 
Cargo Capacity (bbl) 251,204 300,699 349,983 334,882 361,383 
Steel/Outfit Mass (Te) 22,699 26,091 31,155 25,092 27,844 
Payload (Te) 4,022 4,992 5,993 5,321 5,593 
Production Rate (BOPD) 13,480 19,950 26,620 22,140 23,955 
Total Installed Cost ($MM) 406.9 493.1 572.3 491.7 526.5 
Reservoir depletion rate (R) - 3.83% 11.30% 6.70% 8.66% 
Reservoir NPV ($MM) (<50MMBBL) 1920.0 2002.0 1970.0 1975.0 
Ratio: RNPV/TIC N/A 3.83 3.50 3.91 3.75 
IRR (%) N/A 40.7% 40.3% 44.1% 42.2% 
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Nevertheless, there are some interesting observations that 
can be made across these different design solutions.  

Firstly, minimising hull steel and outfit mass alone (Case 
1 studies) is less effective than optimisation with respect 
to the ratio of reservoir NPV to Total Installed Cost (Case 
2) in maximising IRR. This confirms the benefits of using
a multi-disciplined approach over otherwise fixed
combinations of payload and storage capacity.

Next, as noted earlier, the effect of modelling total fluid 
processing capacity in Case 3, as opposed to simply oil 
production rate (Case 2), creates a local optimum in 
payload and production rate for the genetic algorithm to 
search for. 

At first sight however, Case 2 appears to generate a better 
Internal Rate of Return for a lower production rate, 
topsides mass and reservoir depletion rate than Case 3. 

However, this direct comparison is misleading. If the 
fluids handling capacity for a 50% water-cut in year 8 
were to be specified for Case 2, its payload capacity 
would need to increase by around 500Te, with increasing 
fixed ballast and hull displacement accordingly, pushing 
up capital cost and reducing IRR. 

This demonstrates that the proposed Target Function 
approach correctly models the effect of including water-
cut, reducing IRR in comparison with designs for which 
TIC is targeted, but capturing the optimum depletion rate 
for minimum topsides mass. It therefore offers a good 
alternative to increasing the number of objective 
functions and complexity in multi-disciplined 
optimisation problems. 

Finally, solutions achieved with depletion rates that are 
higher than the local optimum (e.g. Case 1, 350CT6), 
always lead to higher TIC and lower IRR, regardless of 
their capacity to generate higher net present value from 
the available reserves. 

5.2 COMMENTS ON APPLICATION 

The application of optimisation tools as described in this 
paper uses some key design correlations and simplified 
relationships to both drive solutions to convergence and 
link together the different disciplines. 

The form of these models (e.g. Equations 4, 5 and 7) may 
be derived either from historical design data or separate 
benchmark studies. 

For example, the process system mass model, relating 
production rate to payload, may be derived from 
preliminary topsides facilities studies for which well-
established commercial tools are available.  Similarly, 
estimates of steel-mass to minimum scantlings, according 
to offshore Codes of Practice, with suitable margins form 

a good starting point for the hull where historic “as-built” 
data might be unavailable or sparse. 

In practice, all such relationships are subject to 
uncertainties. These can arise from the statistics of 
underlying databases, or changes to design definition as 
the project evolves, i.e. so called “growth”, as each 
discipline progresses in level of detail. 

Sensitivity studies are therefore essential to decision 
making.  Similarly, the benefit of maintaining extensive 
design and “as-built” databases from which to extract 
design correlations is clear. Modern AI tools and the 
growing development of Metamodels (Li, et al., 2008, 
Viana, et al., 2014) should enable better exploitation of 
such data in optimisation. 

The application of formal methods of robust design that 
include such modelling uncertainties (e.g. Diez, et al., 
2010), is worth further investigation if an efficient 
approach can be developed that is consistent with the key 
objective here of simplicity in application. 

The methods described here are equally applicable across 
all ship and floating system preliminary design so long as 
suitable sets of design correlations that link the key 
disciplines can be developed. Alternative performance 
measures such as efficiency and risk may easily be 
included as either primary Objective Functions (M1, M2) 
or Target Functions (TN). 

5.3 THE ALGORITHM 

The genetic algorithm used here includes key features 
that should prove useful in other applications, including: 
• The NSGA-II algorithm structure provides an

effective approach to optimisation in early stage
concept development that is straightforward to
implement as part of preliminary design definition.

• The use of Target functions as an alternative
approach to full multi-disciplined optimisation,
reduces computational effort, and generates
additional selection pressure in the evolution of
design solutions.

• The initial definition of the parent group, by selecting
the first 8 elite from 8 randomly generated
populations, reduces the number of generations
needed for convergence.

• The selection of a single Elite design solution from
each population as a common parent for each new
generation is well suited to concept design
applications where there is a need for rapid
convergence and testing of ideas.

Typically, solutions that might be close to Pareto would 
emerge within 10 to 20 generations from the initial parent 
group, albeit that up to 40 generations were used in 
practice to ensure consistency.   
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There was an occasional tendency for simulations to get 
“stuck”, the prime cause of which appeared to be conflict 
between Target Functions. The power law m in Equation 
3 proved an effective way to modify the ranking of 
solutions and generate local variation in the population to 
solve this problem. Similarly, the use of random, bounded 
values for weights α, was successful in creating variation 
in the population close to the Pareto front and again 
helped avoid such issues. 
 
Finally, it should be noted that this algorithm has been 
implemented in nothing more complex than an Excel 
workbook.  This demonstrates that the method is well 
suited to the earliest stages of concept development offers 
significant benefits in cost and ease of application. 
 
 
6. CONCLUSION 
 
The application of a simplified genetic algorithm has 
been shown to be well suited to concept development or 
feasibility studies in multi-disciplined floating systems 
projects. The underlying approach of combining of both 
fitness and target measures from different disciplines into 
a single ranking as described here, simplifies what might 
otherwise be a significantly more complex multi-
objective problem. 
 
This study therefore demonstrates that the benefits of 
formal optimisation techniques are not just limited to 
advanced engineering design, but rather can be exploited 
at the very earliest stages of project definition. 
 
Crucially, this approach reduces the timescale needed in 
concept development or selection and improves the 
quality of engineering decision making.  It also provides 
a rational basis upon which to make comparisons between 
competing solutions, i.e. the Pareto front. 
 
Furthermore, it offers the opportunity at the very earliest 
stages of project definition for technical alignment of all 
disciplines and for the development of the design to 
proceed in parallel with consistent objectives and 
understanding of their inter-relationships. 
 
The method may be generalised to suit the early stage 
definition of any form of floating systems, and 
particularly multi-disciplined design where the matching 
of overall functional requirements is critical.  It is also 
valuable where other target criteria in areas such as 
efficiency, operability or safety, are key objectives, as is 
often the case in ship design. 
 
Further work to refine this approach is recommended the 
areas of: 
• Faster and more efficient methods in hydrodynamic 

response prediction are needed to widen application 
where performance assessment to higher order is 
required.  Traditional, purely analytical methods, or 
combinations of numerical and empirical approaches 

with meta-modelling, might offer improved 
prediction tools in this context. 

• Non-Intrusive approaches to Robust Design, to 
include the influence of uncertainties in the 
underlying design model correlations, functional 
requirements or other variables, would further 
inform good decision making.  Development of an 
efficient method for their use with the simplified 
genetic algorithm described here would also be 
welcome. 
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APPENDIX 1 – CASE STUDY GEOMETRY 
 
The geometry of the DDPSO concept used as the case 
study is illustrated in Figure A1.1.  It has the following 
key design features: 
• A central oil-over-water storage tank, extending 

from the main deck down almost to the keel, in which 
lower density crude oil floats on seawater, such that 
the tank is permanently pressed full. 

• An upper hull section to provide the buoyancy 
required. 

• An upper deck and hull paces for various hull 
utilities, mooring system equipment, offloading 
facilities etc. 

• A central, internal seawater caisson to provide 
pressure balance. 

• A fixed solid ballast compartment at the keel. 
• One or more heave plates, or for this case study, two 

heave plates combined also to form a keel box, open 
to the sea. 

• Minimal water ballast needed only to meet damage 
stability regulations and balance differing specific 
gravities of crude oil and seawater. 

 
The Figures A1.2 and A1.3 show the basic geometry 
definition and key dimensions, in plan and elevation, used 
in this paper. 

 

 
 
Figure A1.2 – Plan view showing upper side shell (width 
B2), lower tank shell (width B1), tank top and heave 
plate/box shell. 
 
 

 
 

 
 
 
Figure A1.1 – General Arrangement Sketch of DDPSO Concept 
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Compared with Figure A1.1, the geometry model is both 
generalised and simplified as follows: 
• The vertical height of transition from the lower 

section of the crude oil storage tank to its upper 
section (dimension T4) is above (not co-incident 
with) the external shell transition to the upper hull 
(T1). 

• Vertical transition extents T2 and T5 are independent 
variables. 

• The lower tank corner radius is fixed. 
• The upper tank top plan view is octagonal, of sides 

2a1 and 2a2, with no corner radius or flat. 
• Freeboard is fixed and tank top height above the 

external waterplane may not exceed 10.0m (to 
control internal pressure load). 

 
The principal dimensions and how they are treated within 
the genetic algorithm are summarised in Table A1.1 below. 
 
Table A1.1 – Summary of Principal Dimensions 

Plan View – Figure A1.2 
Item Description Treatment 
B1 Half beam -lower tank GA1 
B2 Half beam - hull/water-plane GA1 
b1 Half width - upper side shell 1 GA2 
b2 Half width - upper side shell 2 GA2 
a1 Half width - lower tank side 1 GA1 
a2 Half width - lower tank side 2 GA2 
R Lower tank corner radius Fixed 
Elevation – Figure A1.3 
Item Description Treatment 
T1 Height to hull Flare abv keel GA1 
T2 Vertical extent of hull flare GA1 
T3 Total height to sheer-line GA1 
T4 Lower tank height GA1 
T5 Inner tank reverse flare GA1 
T6 Tank Top height abv keel Calculated 
ZP Depth of heave plate “box” Fixed 
WP Width of heave plate = B1-B2 
F Freeboard Fixed 

 
Here, GA1 and GA2 refer to two different treatments for 
the random generation of dimensions used in the 
algorithm. 
 
GA1 refers to the random variation formula: 
 
XN+1 = XN + ꞵ.δX ………A2.1 
 
Used to both create the initial population from the base-
line geometry, or parent in later mutation steps, where: 
 
ꞵ a random number between -1.0 and +1.0 
XN the parent variable value at generation N 
XN+1 the variable value at the next generation 
δX maximum variation in the variable 
 
GA2 refers to cases where geometric constraints are needed, 
with random variation limited to specific elements of the 

geometrical definition.  For example, upper hull dimensions 
b1 and b2 are subject to the constraints that the radius of the 
side shell section between them must be greater than that of 
the lower tank, and lower than the radius that would make b1 
< a1 and/or b2 < a2. 
 

 
Figure A1.3 – Elevation showing details of the single skin 
lower tank, extending internally (dashed line), and 
principal dimensions. 
  


