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SUMMARY 

An isoparametric plate bending element with nine nodes is used in this paper for dynamic analysis of isotropic cut-out 
plate having concentrated and uniformly distributed mass on the plate. The Mindlin’s first-order shear deformation theory 
(FSDT) is used in the present finite element formulation. Two proportionate mass lumping schemes are used. The effect 
of rotary inertia is included in one of the mass lumping schemes in the present element formulation. Dynamic analysis of 
rectangular isotropic plates with cut-out having different side ratio, thickness ratio and boundary condition is analysed 
using a finite element method. The present results are compared with the published results. Some new results on isotropic 
plates with cut-out having different side ratio, ratio of side-to-thickness of the plate, different position and size of cut-out 
in plates subjected to transversely concentrated and distributed mass are presented. 

NOMENCLATURE 

[B] Strain-displacement matrix
[D] Rigidity matrix
[K] Global stiffness matrix
[N] Shape function
[𝑀] Consistent mass matrix 
|𝐽|  Jacobian matrix 
[Nr] Interpolation function of the rth point 
[K0] Overall stiffness matrix 
[M0] Overall Mass matrix 
𝑢, 𝑣 In-plane displacement  
w Transverse displacement 
E Modulus of elasticity 
G Modulus of rigidity 
ν Poisson’s ratio 
h Thickness of plate 
a, b  Plate dimensions 
D Flexural rigidity 
ω Natural frequency 
𝜃𝑥 𝜃𝑦 Total rotation in bending 
{𝜎} Stress vector 
{𝜀} Strain vector 
𝑀𝑥, 𝑀𝑦 Bending moments in x and y-direction 
𝑀𝑥𝑦 Twisting moment 
Qx Qy Transverse shear forces 
𝜉, 𝜂 Natural coordinates 
𝜌 Density 
HBM Hencky bar-net model 
FEM Finite element method 
FSDT First-order shear deformation theory 
HSDT Higher order shear deformation theory 
TSDT Third-order shear deformation theory 

1. INTRODUCTION

Plates with cut-out are generally used in civil, mechanical, 
aerospace and marine structures. In aerospace and marine 
industry generally, thin plates are used. Effect on plates 

due to large oscillations are essential for the design of the 
aircraft wings and watercraft cashing. Cut-out plates are 
used for lift passage on a floor and window in aircraft etc. 
Also, plates with different attachment are used in 
engineering application.  

The literature on free vibration of isotropic plates is vast. 
Here only a few important papers are discussed which is 
related to the present work. Zhang et al. (Zhang, Wang, 
Pedroso, & Zhang, 2018) studied vibration analysis of a 
rectangular plate with rectangular cut-out using the Hencky 
bar-net model (HBM). They extended Hencky bar-net 
model considering rotationally elastic and transverse spring 
stiffnesses at the cut-out corners. They presented non-
dimensional frequency parameters for cut-out plates and 
also for cracked corner cut-out plates with different 
boundary conditions. Influence of rotary and shear on 
flexural motions of isotropic elastic plate was examined by 
Mindlin (Mindlin, 1951), and he presented closed-form 
solution of isotropic plate. Vibration analysis of cut-out 
plates using a modified Rayleigh-Ritz method was 
investigated by Lam et al. (Lam, Hung, & Chow, 1989). 
They divided the plate into a rectangular segment and 
subtracted elements which are in cut-out location to obtain 
the cut-out plate. They presented non-dimensional 
frequencies for the cut-out isotropic and orthotropic plates 
and compared with the previously published literature. 
Abbas et al. (Abbas, Abdullah, & Wasmi, 2015) presented 
static and free vibration of a thin plate using finite element 
analysis (FEA). For the finite element analysis, they used 
ANSYS finite element software. Manna (Manna, 2005) 
studied free vibration analysis of isotropic rectangular plate. 
He used a higher-order triangular finite element having 18 
nodes on the side and 6 internal nodes and also considered 
first-order shear deformation theory (FSDT). He presented 
a variation of non-dimensional frequency in different 
thickness ratio, aspect ratio, and boundary conditions. 
Kalita and Haldar (Kalita & Haldar, 2016) investigated free 
vibration of rectangular central cut-out plates using a 9-
node isoparametric plate element for the finite element 
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formulation. Park and Choi (Park & Choi, 2018) considered 
Mindlin’s theory for free vibration analysis of isotropic 
plates. Free vibration of rectangular cut-out plates was 
examined by Liew et al. (Liew, Kitipornchai, Leung, & 
Lim, 2003). They used the Ritz method for the formulation. 
Free vibration analysis of plate having rectangular shape 
using a finite element method was studied by Ramu and 
Mohanty (Ramu & Mohanty, 2012). Free vibration analysis 
of isotropic rectangular plates carrying a concentrated mass 
has been investigated by Boay (Boay, 1995). He 
incorporated Ritz method and presented the effect of non-
dimensional frequency due to different locations of the 
concentrated mass on a plate. Ciancio et al. (Ciancio, Rossit, 
& Laura, 2007) carried out vibrational analysis of a 
cantilever anisotropic plate subjected to concentrated mass 
at the free end. They used Ritz method for the analysis and 
presented the variation of frequency due to variation of 
mass ratio and aspect ratio. Yu (Yu, 2009) carried out a 
study on free and forced vibration of cantilever plates 
subjected to point mass. He used Gorman’s method of 
superposition for vibration analysis. and presented the 
variation of results for different aspect ratios. Dynamic 
analysis of laminated cylindrical shells (Jin, Ye, Chen, Su, 
& Yan, 2013), laminated plates (Ye, Jin, Su, & Chen, 2014), 
composite cylindrical shells with general elastic boundary 
conditions (Jin, et al., 2013), functionally graded cylindrical 
shells (Jin, Xie, & Liu, 2014), composite laminated 
structure elements of revolution (Jin, Ye, Jia, & Gao, 2014) 
has been carried out using an energy-oriented modified 
Fourier method. 
 
The literature review reveals that there is a lacuna on the study 
of plates with arbitrary cut-outs carrying concentrated and 
distributed loads. In this paper, an attempt is made to tackle 
such interesting test cases using a highly accurate FSDT 
approach. Though newer and more accurate plate theories like 
higher-order shear deformation theory (HSDT) (Pandit, 
Sheikh, & Singh, 2010) (Chalak, Chakrabarti, Sheikh, & Iqbal, 
2014), third-order shear deformation theory (TSDT) etc. exist, 
FSDT has been the choice of many researchers due to its 
computationally inexpensive nature. FSDT has been used from 
applications ranging from isotropic plates/shells (Kalita & 
Haldar, 2017) to composites (Lair, Hui, Sofiyev, Gribniak, & 
Turan, 2019) (Najafov, et al., 2014) (Sofiyev, 2018a) to 
functionally graded structures (Sofiyev, 2018b) (Haciyev, 
Sofiyev, & Kuruoglu, 2018) (Orakdöğen et al., 2010).  
 
In the current work, the numerical analyses are carried out 
by developing a finite element model considering a nine-
node isoparametric element. The paper begins with a 
general introduction to the problem and its scope. The 
second section details the finite element formulation along 
with the FSDT theory considered in this paper. The third 
section begins with benchmarking the current formulation 
with existing FSDT solutions. Further, in a novel attempt, 
certain interesting test cases relating to arbitrary positions 
of cut-outs, plates with cut-outs carrying concentrated 
mass, plates carrying distributed mass are studied. A 
concise conclusion of the work is presented in the final 
section of the manuscript. 

2. FINITE ELEMENT FORMULATION 
 
In this study, a nine-node isoparametric element is used in 
the current finite element formulation. One of the main 
advantages of the element is that any form of the plate can 
be well managed with an elegant mapping technique that 
can be defined as 
 
𝑥 = ∑ 𝑁𝑟𝑥𝑟 9

𝑟=1 𝑎𝑛𝑑 𝑦 =  ∑ 𝑁𝑟𝑦𝑟9
𝑟=1   (1) 

 
Thus, by using this simple mapping technique the coordinates 
at any place within the element (x, y) are expressed as the 
summation of the product of the Lagrange interpolation 
function (Nr) and the coordinates of the rth nodal point (xr, yr). 
Considering the bending rotations as independent field 
variables (since they are not derivatives of w), the effect of 
shear deformation may be incorporated as  
 

{𝜙𝑥𝜙𝑦} =  {
𝜃𝑥 −  

𝜕𝑤
𝜕𝑥

𝜃𝑦 −  
𝜕𝑤
𝜕𝑦
}  

 
Since this is an isoparametric formulation, the same 
interpolation functions are used for element geometry that 
have been used to describe the displacement field 
 
w = ∑ 𝑁𝑟𝑤𝑟9

𝑟=1  
𝜃𝑥 =  ∑ 𝑁𝑟𝜃𝑥𝑟9

𝑟=1       (2) 
𝜃𝑦 =  ∑ 𝑁𝑟𝜃𝑦𝑟9

𝑟=1            
 
The stresses and strains of any continuous elastic material 
are connected by a linear relationship that is mathematically 
similar to Hooke's law and may be expressed as  
 
 
{𝜎} = [𝐷]{𝜀}     (3) 
 
 
Where,  
 
{𝜎} =  [𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦 𝑄𝑥 𝑄𝑦]   (4) 
 
 

{𝜀} =  

{
 
 
 
 

 
 
 
 −𝜕𝜃𝑥 𝜕𝑥⁄

−𝜕𝜃𝑦 𝜕𝑦⁄

−𝜕𝜃𝑥 𝜕𝑦⁄ − 𝜕𝜃𝑦 𝜕𝑥⁄

𝜕𝑤
𝜕𝑥⁄ − 𝜃𝑥

𝜕𝑤
𝜕𝑦⁄ − 𝜃𝑦 }

 
 
 
 

 
 
 
 

   (5) 

 
 

[𝐷] =  

[
 
 
 
 
𝐷11 𝐷12 0 0 0
𝐷21 𝐷22 0 0 0
0 0 𝐷33 0 0
0 0 0 𝐷44 0
0 0 0 0 𝐷55]

 
 
 
 
  (6) 
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Here, 𝑘 is the shear correction factor. 
 
From Eqns. (2) and (5) the strain vector may be expressed as  
 
{𝜀} = ∑ [𝐵]𝑟

9
𝑟=1 {𝛿𝑟}𝑒    (7) 

 
[B] is the strain-displacement matrix containing 
interpolation functions and their derivatives. 
 
Using the virtual work method, the stiffness may be 
expressed as 
 
[𝐾] = ℎ ∫ ∫ [𝐵]𝑇+1

−1
+1

−1 [𝐷][𝐵]|𝐽|𝑑𝜉𝑑𝜂  (8) 
 
where |𝐽|is the determinant of the Jacobian matrix. 
 
Applying the concept of consistent mass matrix, a lumped 
mass matrix has been derived and it may be expressed as 
 

[𝑀] = 𝜌ℎ ∫ ∫ [[𝑁𝑢]𝑇[𝑁𝑢] + [𝑁𝑣]𝑇[𝑁𝑣] ++1
−1

+1
−1

[𝑁𝑤]𝑇[𝑁𝑤] + ℎ2

12
[𝑁𝜃𝑥]𝑇[𝑁𝜃𝑥] +

ℎ2

12
[𝑁𝜃𝑦]

𝑇
[𝑁𝜃𝑦]] |𝐽|𝑑𝜉𝑑𝜂  

 
(9) 

 
The global stiffness matrix [K0] and global mass matrix 
[M0] are calculated by assembling individual stiffness 
matrix and the individual mass matrices of all the elements. 
Using the equation of motion, we get,  
 
[𝐾0] = 𝜔2[𝑀0]                (10) 
 
The calculated frequencies are presented in non-
dimensional form 𝜆 = 𝜔𝑎2√𝜌ℎ 𝐷⁄  where 𝐷 = 𝐸ℎ3

12(1−𝜈2)
. 

 

3. RESULTS AND DISCUSSION 
 
To exhibit the accuracy and applicability of the present 
formulation, few examples are studied in this section to show 
how the cut-out and its size affect to the natural frequencies 
of an isotopic plate having different boundary condition, 
different aspect ratio and thickness ratio. A finite element 
formulation is written in FORTRAN language.  
 
3.1 CONVERGENCE AND VALIDATION STUDY 
 
Example 1: A square plate with simply supported 
boundary condition having different thickness ratios and 
mass lumping schemes. 
 
A simply supported (SSSS) square plate having different 
thickness ratios (ℎ 𝑎⁄ ) is considered. Vibration due to two 
different mass lumping schemes is studied. In one mass 
lumping formulation rotary inertia is considered. The 
effect on non-dimensional frequencies due to rotary inertia 
and without rotary inertia are presented in Table 1 and also 
convergence study of the present formulation is presented. 
The solution converges at a mesh division of 20×20.  Non-
dimensional frequencies decrease when mass lumping 
with rotary inertia is considered. The effect of rotary 
inertia is less for thin plates and more in thick plates. 
Results obtained considering rotary inertia are very close 
to the closed-form solutions of Mindlin (Mindlin, 1951) 
for thin as well as thick plates.  
 
Example 2: Simply supported square plate with central 
cut-out having different cut-out size. 
 
A simply supported square plate as shown in Figure 1 with 
a thickness ratio ℎ 𝑎⁄ = 0.01 is considered. A central 
square cut-out having different cut-out size is considered 
for the analysis. The non-dimensional fundamental 
frequency obtained using the present formulation is shown 
in Figure 1 with that of Zhang et al. (Zhang, Wang, 
Pedroso, & Zhang, 2018). Zhang et al. analyzed the 
problem using Hencky bar-net model. As cut-out size 
increased stiffness decreases more compared to the 
reduction of mass of the plate up to a certain size of the 
cut-out (c=0.2a). After this as cut-out size increases, 
stiffness increases more compared to the reduction of 
mass of the plate. The present results are very close to 
those of Zhang et al. 
 

Table 1: Non-dimensional frequency parameter 𝜆 = 𝜔𝑎2√𝜌ℎ
𝐷

 for simply supported square plate having different thickness 

ratio and mass lumping system. (𝜈 = 0.3). 

ℎ 𝑎⁄  Mass Lumping 
Modes  

1 2 3 4 5 6 

0.01 
 
 
 

LSWORI (8×8)1 19.733 49.321 49.321 78.849 98.696 98.696 
LSWORI (10×10) 19.734 49.316 49.316 78.860 98.614 98.614 
LSWORI (12×12) 19.734 49.315 49.315 78.864 98.585 98.585 
LSWORI (16×16) 19.734 49.314 49.314 78.867 98.566 98.567 
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LSWORI (20×20) 19.734 49.314 49.314 78.868 98.561 98.562 
% Variation2 -0.010 -0.022 -0.022 -0.033 -0.045 -0.046 
LSWRI (8×8) 19.731 49.311 49.311 78.823 98.656 98.656 

LSWRI (10×10) 19.732 49.306 49.306 78.834 98.574 98.574 
LSWRI (12×12) 19.732 49.305 49.305 78.838 98.545 98.545 
LSWRI (16×16) 19.732 49.304 49.304 78.842 98.526 98.526 
LSWRI (20×20) 19.732 49.304 49.304 78.842 98.521 98.521 

Mindlin (Mindlin, 1951) 19.732 49.303 49.303 78.842 98.517 98.517 
% Variation3 0 -0.002 -0.002 0.000 -0.004 -0.004 

0.1 

LSWORI (12×12) 19.205 46.200 46.200 71.316 87.184 87.184 
LSWORI (16×16) 19.205 46.199 46.199 71.319 87.174 87.175 
LSWORI (20×20) 19.205 46.199 46.199 71.321 87.170 87.175 

% Variation -0.734 -1.576 -1.576 -2.188 -2.507 -2.513 
LSWRI (12×12) 19.065 45.483 45.483 69.789 85.052 85.052 
LSWRI (16×16) 19.065 45.483 45.483 69.793 85.043 85.044 
LSWRI (20×20) 19.065 45.483 45.483 69.794 85.040 85.042 

Mindlin (Mindlin, 1951) 19.065 45.482 45.482 69.794 85.038 85.038 
% Variation 0.000 -0.002 -0.002 0.014 -0.002 -0.005 

0.2 

LSWORI (12×12) 17.830 39.460 39.460 57.242 64.385 64.385 
LSWORI (16×16) 17.830 39.460 39.460 57.246 64.385 64.385 
LSWORI (20×20) 17.830 39.460 39.460 57.248 64.388 64.388 

% Variation -2.189 -3.428 -3.428 -3.804 1.162 1.162 
LSWRI (12×12) 17.449 38.152 38.152 55.146 64.384 64.384 
LSWRI (16×16) 17.449 38.152 38.152 55.150 64.387 64.387 
LSWRI (20×20) 17.449 38.152 38.152 55.154 64.388 64.388 

Mindlin (Mindlin, 1951) 17.448 38.152 38.152 55.150 65.145 65.145 
% Variation -0.006 0.000 0.000 -0.007 1.162 1.162 

1 Number within the bracket represents mesh division of the plate. 
2 represents % error of present work without rotary inertia with respect to the literature. 
3 represents % error of present work with rotary inertia with respect to the literature  
 

 
Figure. 1: Fundamental frequency of simply supported square plate with central cut-out having different cut-out size. 
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Example 3: Cut-out square plate having different 
boundary condition. 
 
A square plate with a central square cut-out (0.4ax0.4b) 
having a ratio of thickness h/a=0.01 is considered. Here 
the boundary condition is applied at the outer edges as well 
as at the cut-out edges of the plate. A plate may have a 
combination of clamped (C), simply supported(S), and 
free (F) boundary conditions at the edges. Boundary 
condition CCSS-CCCC means, first boundary condition 

CCSS for the outer edges of the plate and second one, 
CCCC for the cut-out edges. Boundary condition CCSS 
means plate is clamped at 𝑥 = 0 and 𝑥 = 𝑎, simply 
supported at 𝑦 = 𝑎 and 𝑦 = 0. Non- dimensional 
frequencies in different boundary conditions are presented 
in Table 2 and the percentage variation in results with 
Zhang et al. (Zhang, Wang, Pedroso, & Zhang, 2018) are 
also presented. There is good agreement between the 
present results with that of Zhang et al. (Zhang, Wang, 
Pedroso, & Zhang, 2018). 

 
 
 

Table 2: Non-dimensional frequency parameter λ = ωa2√ρh
D

 for square plate with central square cut-out (0.4a×0.4b) 

having different boundary conditions at outer and inner cut-out edges of the plate. (ℎ 𝑎⁄ = 0.01, 𝜈 = 0.3). 

Modes Present Zhang et 
al. (2018) 

% 
Variation Present Zhang et 

al. (2018) 
% 

Variation Present Zhang et 
al. (2018) 

% 
Variation 

Boundary  
Condition 

   
1 49.196 49.303 0.22 20.708 20.752 0.21 35.48 35.562 0.23 
2 65.459 65.954 0.75 40.719 41.039 0.78 46.079 46.467 0.84 
3 65.459 65.954 0.75 40.719 41.039 0.78 61.52 61.929 0.66 
4 98.965 99.419 0.46 71.166 71.355 0.26 86.101 86.419 0.37 
5 104.76 106.22 1.37 81.631 82.488 1.04 94.345 95.45 1.16 

Boundary  
Condition 

   
1 223.247 223.39 0.06 185.64 187.93 1.22 150.49 150.29 -0.13 
2 224.451 224.63 0.08 189.98 190.2 0.12 152.62 152.4 -0.14 
3 224.451 224.63 0.08 189.98 190.2 0.12 152.62 152.4 -0.14 
4 225.91 226.18 0.12 195.13 194.84 -0.15 155.58 155.38 -0.13 
5 260.69 260.71 0.01 211.49 208.64 -1.37 185.18 185.43 0.13 

Boundary  
Condition 

   
1 122.06 124.91 2.28 170.762 170.7 -0.04 131.25 132.73 1.12 
2 127.21 127.98 0.6 170.8 170.72 -0.05 132.1 132.74 0.48 
3 127.21 127.98 0.6 184.24 184.25 0.01 168.99 168.9 -0.05 
4 135.85 135.76 -0.07 184.3 184.27 -0.02 171.44 169.61 -1.08 
5 145.81 144.11 -1.18 223.024 223.45 0.19 186.62 187.8 0.63 
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Example 4: Cantilever plate carrying concentrated mass 
at the edge. 
 
A plate with side (a) and width (b) as shown in Figure 2 is 
considered. Boundary condition applied on the plate is 
CFFF, which means clamped at 𝑥 = 0 and other edges 
𝑥 = 𝑎, 𝑦 = 𝑎, 𝑦 = 0 are free. A point mass is applied at 
the point (a, 0.5b). Variation of the non-dimensional 
frequency with variation of aspect ratio is shown in Table 
3. Present results are compared with Yu (Yu, 2009) and 
percentage variations are also presented. Present results 
are very accurate and closed to Yu (Yu, 2009). 
 
 

 
Figure 2: Cantilever plate with point mass at the edge. 
 
 

Table 3: Non-dimensional frequency λ = ωa2√ρh
D

 for 

rectangular cantilever plate carrying concentrated mass at 
the edge. (𝑀𝑐 𝑀𝑝⁄ = 0.5, ℎ 𝑏⁄ = 0.01, 𝜈 = 0.3). 
𝑏
/𝑎 Source Modes 

1 2 3 4 5 

2.0 

Present 1.881 7.163 17.17 23.89 33.64 
Yu (Yu, 
2009) 1.886 7.218 17.36 24.09 33.83 

% 
Variation 0.27 0.76 1.09 0.83 0.56 

1.0 

Present 1.960 13.66 25.66 40.68 59.77 
Yu (Yu, 
2009) 1.962 13.72 25.71 41.03 59.92 

% 
Variation 0.10 0.44 0.19 0.85 0.25 

0.5 

Present 1.962 16.04 45.78 78.59 105.2 
Yu (Yu, 
2009) 1.964 16.08 45.96 78.83 105.5 

% 
Variation 0.10 0.25 0.39 0.30 0.28 

 
 
3.2 NUMERICAL RESULTS 
 
3.2 (a) Rectangular plate with central cut-out having 

different thickness ratio and mass lumping 
schemes 

A square plate with a central cut-out (0.4ax0.4b) is 
considered. The analysis is performed using both the mass 
lumping schemes. The variation of non-dimensional 
frequency with variation of thickness ratio, for different 
mass lumping schemes is shown in Table 4. From Table 4 
we can find that non-dimensional frequencies decrease as 
the ratio of thickness increases from 0.01 to 0.2 and non-
dimensional frequencies decrease when lumping schemes 
with rotary inertia is in consideration. Effect of rotary 
inertia is negligible when the thickness ratio is small (0.01) 
but with an increase of thickness ratio, frequency changes 
due to rotary inertia. 
 
3.2 (b) Rectangular plate with central cut-out having 

different side ratio 
 
A rectangular plate with a central cut-out (0.4ax0.4b) 
having thickness ratio ℎ 𝑏⁄ = 0.01 is considered. Non-
dimensional frequencies with variation of aspect ratio in 
different boundary conditions are presented in Table 5. As 
aspect ratio increases, both stiffness and mass of the plate 
increase. But here stiffness is more predominant compared 
to the effect of the mass of the plate. Therefore, non-
dimensional frequencies are increased as the aspect ratio 
of the plate is increased. 
 
3.2 (c) Rectangular plate with cut-out 
 
The square plate as shown in Figure 3 with a cut-out (c x 
d) is considered. Effect on non-dimensional frequencies 
due to change in cut-out size and thickness ratio in 
different conditions of boundary is presented in Table 6. It 
is clear from Table 6 that non-dimensional frequencies 
decreased as the thickness ratio of the plate is increased 
which is expected because of increase of mass. On the 
other hand, non-dimensional frequency increases when 
the length of the cut-out (c) is increased due to the 
decrease of mass of the plate. 
 
 

 
Figure. 3: Rectangular plate with cut-out 
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Table 4: Non-dimensional frequency𝜆 = 𝜔𝑎2√𝜌ℎ
𝐷

for square plate with central square cut-out of (0.4a×0.4b) having 

different thickness ratio and boundary condition. (𝑎 𝑏⁄ = 1, 𝜈 = 0.3). 

Boundary  
Condition ℎ 𝑏⁄  

Modes 
% difference 

LSWRI LSWORI 

1 2 3 1 2 3 1 2 3 

 

0.01 223.247 224.451 224.451 223.369 224.578 224.578 0.055 0.057 0.057 

0.1 139.269 139.786 139.786 140.763 141.553 141.553 1.061 1.248 1.248 

0.2 84.253 85.016 85.017 84.791 85.932 85.933 0.635 1.066 1.066 

 

0.01 185.642 189.978 189.978 185.742 190.086 190.086 0.054 0.057 0.057 

0.1 122.529 125.375 125.375 124.515 127.536 127.536 1.595 1.694 1.694 

0.2 78.325 80.118 80.118 79.718 81.719 81.719 1.747 1.959 1.959 

 

0.01 150.492 152.617 152.617 150.565 152.694 152.694 0.048 0.050 0.050 

0.1 108.334 109.973 109.973 110.546 112.365 112.365 2.001 2.129 2.129 

0.2 70.844 71.417 73.296 70.844 73.788 74.865 0.000 3.213 2.096 

 
 
 
 

Table 5: Non-dimensional frequency 𝜆 = 𝜔𝑎2√𝜌ℎ
𝐷

 for square plate with central square cut-out of (0.4a×0.4b) having 

different aspect ratio and different boundary condition. (ℎ 𝑏⁄ = 0.01, 𝜈 = 0.3). 

𝑎 𝑏⁄  Boundary 
Condition 

Modes Boundary 
Condition 

Modes 

1 2 3 1 2 3 

1.0 

 

223.247 224.451 224.451 

 

185.642 189.978 189.978 

1.5 262.486 262.542 310.445 212.108 212.811 293.348 

2.0 285.509 285.525 402.633 240.841 241.093 389.552 

3.0 361.598 361.624 684.194 329.756 330.180 677.054 

1.0 

 

150.492 152.617 152.617 

 

122.060 127.209 127.209 

1.5 180.862 180.923 221.734 145.261 146.349 209.709 

2.0 197.763 197.798 291.262 165.253 165.897 281.501 

3.0 241.545 241.576 483.656 215.544 215.968 477.028 
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Table 6: Non-dimensional frequency λ = ωa2√ρh
D

  for a square plate with rectangular cut-outs (c × d) having different 

thickness ratio and different boundary condition. (𝑎 𝑏⁄ = 1, 𝜈 = 0.3) 

Boundary  
Condition 

   
Cut-out size  

(c × d) ℎ 𝑏⁄  
Modes 

1 2 3 1 2 3 1 2 3 

0.4a×0.6b 
0.01 31.780 71.560 79.488 17.867 45.253 56.194 23.223 49.793 72.960 
0.1 28.228 60.544 66.172 16.716 41.483 50.265 20.944 44.506 55.101 
0.2 23.158 45.491 48.883 14.945 25.133 28.178 17.752 27.551 36.207 

0.6a×0.6b 
0.01 42.554 81.206 111.883 21.165 42.612 57.224 32.138 49.432 67.628 
0.1 36.930 67.590 87.968 19.742 38.168 45.592 28.918 42.698 54.533 
0.2 29.611 50.233 62.932 17.526 22.796 27.290 23.942 31.683 33.284 

0.8a×0.6b 
0.01 96.925 100.930 109.298 29.906 37.655 52.119 45.242 45.512 91.169 
0.1 79.331 81.472 85.947 27.361 32.964 33.121 37.882 37.941 56.381 
0.2 58.031 59.302 61.844 16.560 21.421 23.313 28.191 28.364 28.480 

 
 
 
 
 
 

Table 7: Non-dimensional frequency 𝜆 = 𝜔𝑎2√𝜌ℎ
𝐷

  for a rectangular plate with cut-out (c × d) having different aspect ratio 

and different boundary condition. (ℎ 𝑏⁄ = 0.01, 𝜈 = 0.3) 
 

Boundary  
Condition 

   
Cut-out size  

(c × d) a/b 
Modes 

1 2 3 1 2 3 1 2 3 

0.6a×0.6b 

1.0 42.554 81.206 111.883 21.165 42.612 57.224 32.138 49.432 67.628 
1.5 71.335 160.009 177.887 34.651 71.544 82.103 43.540 78.004 94.355 
2.0 111.413 215.714 269.262 51.720 99.786 106.057 59.081 107.155 119.065 
3.0 224.737 324.782 541.554 97.363 153.835 156.612 102.413 161.999 169.762 

0.9a×0.6b 

1.0 100.212 100.212 136.246 33.205 35.269 68.604 42.862 42.862 94.791 
1.5 208.538 208.557 241.620 48.944 52.064 95.935 58.573 58.583 123.524 
2.0 360.608 361.330 386.147 65.110 69.237 124.880 74.863 74.971 154.335 
3.0 522.758 796.599 800.211 98.259 104.143 186.315 107.855 108.803 217.695 
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Table 8: Non-dimensional frequency λ = ωa2√ρh
D

  for rectangular plates with two cut-outs having different boundary 

condition. (𝑎 𝑏⁄ = 2, ℎ 𝑏⁄ = 0.01, 𝜈 = 0.3) 

Table 9: Non-dimensional frequency λ = ωa2√ρh
D

  for a square cantilever plate with cut-out having same cut-out area. 

(𝑎 𝑏⁄ = 1, ℎ 𝑏⁄ = 0.01, 𝜈 = 0.3) 
Boundary  
Condition 

Mode Number 
1 2 3 4 5 

 

4.252 

 

6.350 

 

20.520 

 

22.967 

 

25.940 

 

 

4.216 

 

12.881 

 

20.306 

 

33.455 

 

39.990 

 

 

4.075 

 

12.307 

 

19.981 

 

27.115 

 

45.915 

 

Boundary  
Condition 

Modes 
1 2 3 4 5 

 

578.825 

 

602.657 

 

602.787 

 

612.821 

 

657.913 

 

 

398.264 

 

398.408 

 

454.184 

 

454.438 

 

491.610 

 

 

379.388 

 

475.503 

 

475.940 

 

566.657 

 

620.727 

 

 

491.616 

 

494.402 

 

552.370 

 

552.536 

 

564.502 

 

 

315.570 

 

316.368 

 

369.273 

 

425.578 

 

428.177 

 

 

369.340 

 

458.306 

 

462.201 

 

464.201 

 

490.549 
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3.257 

 

7.839 

 

21.325 

 

25.670 

 

31.168 

 

 

3.175 

 

7.508 

 

20.051 

 

26.468 

 

29.404 

 
 
 

Table 10: Non-dimensional frequency λ = ωa2√ρh
D

  for a rectangular plate with cut-out having concentrated mass. 

(𝑎 𝑏⁄ = 1, ℎ 𝑏⁄ = 0.01, 𝜈 = 0.3) 

Modes Boundary  
Condition 

𝑀𝑐 𝑀𝑝⁄  Boundary  
Condition 

𝑀𝑐 𝑀𝑝⁄  

1 0.75 0.5 1 0.75 0.5 
1 

 

4.075 4.079 4.095 

 

1.443 1.616 1.871 
2 10.911 12.307 12.307 7.839 7.839 7.839 
3 12.307 12.599 15.43 13.372 13.653 14.168 
4 19.981 19.981 19.981 23.509 23.524 23.555 
5 27.115 27.115 27.115 31.168 31.168 31.168 
1 

 

1.619 1.827 2.143 

 
Concentrated mass  

is equally distributed  
at both points 

1.647 1.857 2.176 
2 12.881 12.881 12.881 2.288 2.59 3.054 
3 14.294 14.47 14.795 14.945 15.116 15.43 
4 33.455 33.455 33.455 17.427 17.574 17.848 
5 37.635 37.756 37.973 25.349 25.358 25.376 
1 

 

1.404 1.572 1.82 

 
2 7.508 7.508 7.508 
3 12.735 12.986 13.446 
4 25.686 25.701 25.729 
5 29.404 29.404 29.404 

 
 

Table 11: Non-dimensional frequency λ = ωa2√ρh
D

  for a square plate carrying distributed mass (𝑀𝑑) throughout the 

plate. (𝑎 𝑏⁄ = 1, ℎ 𝑏⁄ = 0.01, 𝜈 = 0.3) 
Boundary 
Condition 𝑀𝑑 𝑀𝑝⁄  Modes 

1 2 3 4 5 6 

CCCC 
1.0 25.728 52.429 52.429 77.238 93.884 94.34 

0.75 27.456 55.949 55.950 82.424 100.19 100.67 
0.5 29.586 60.290 60.290 88.818 107.96 108.48 

SSSS 
1.0 14.124 35.294 35.294 56.442 70.532 70.533 

0.75 15.073 37.664 37.664 60.232 75.268 75.268 
0.5 16.242 40.586 40.586 64.904 81.106 81.106 

CCSS 
1.0 20.704 39.137 49.534 67.552 73.029 92.129 

0.75 22.094 41.765 52.860 72.088 77.932 98.314 
0.5 23.809 45.005 56.961 77.679 83.964 105.94 
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Table 12: Non-dimensional frequency λ = ωa2√ρh
D

  for a square cut-out plate(0.4a×0.4b) carrying distributed mass (𝑀𝑑) 

throughout the plate. (𝑎 𝑏⁄ = 1, ℎ 𝑏⁄ = 0.01, 𝜈 = 0.3) 
Boundary 
Condition 𝑀𝑑 𝑀𝑝⁄  Modes 

1 2 3 4 5 6 

CCCC 
1.0 35.538 47.422 47.422 72.443 76.050 108.328 

0.75 37.875 50.518 50.518 77.054 80.994 115.182 
0.5 40.742 54.313 54.313 82.673 87.045 123.524 

SSSS 
1.0 15.098 29.781 29.781 52.481 59.857 86.404 

0.75 16.068 31.680 31.680 55.757 63.650 91.794 
0.5 17.253 33.995 33.995 59.735 68.269 98.337 

CCSS 
1.0 25.783 33.636 44.677 63.280 68.727 93.859 

0.75 27.454 35.791 47.578 67.266 73.155 99.762 
0.5 29.498 38.422 51.127 72.114 78.565 106.938 

 
 
3.2 (d) Cut out rectangular plate  
 
A rectangular plate as shown in Figure. 3 with a cut-out 
having thickness ℎ 𝑏⁄ = 0.01 is considered. The effect in 
non-dimensional frequencies due to change in cut-out size 
and side ratio in different boundary conditions are studied 
and presented in Table 7. Non-dimensional frequency 
increase as the side ratio of the plate is increased due to 
the increase of stiffness of the plate. 
 
3.2 (e) Rectangular plate with two central cut-outs 
 
A rectangular plate with two cut-outs having side ratio 
a/b=2.0 and ratio of thickness ℎ 𝑏⁄ = 0.01 as shown in 
Figure. 4 is considered. Variation in non-dimensional 
frequencies due to cut-out (0.2a×0.4b) and different 
boundary conditions are presented in Table 8 with the 
corresponding mode shapes. Boundary conditions are 
applied at the outer edges as well as along the edges of cut-
outs.  
 

 
Figure 4: Rectangular plate with two internal cut-outs 
 

3.2 (f) Cantilever plates with cut-out 
 
A square cantilever plate having different position of the 
cut-outs is considered. The area of the cut-out is same for 
all the plates. It means that mass remains same for all the 

plates. Variations of non-dimensional frequencies due to the 
variation of the position of cut-out are presented in Table 9. 
Corresponding mode shapes are also presented in the table. 
It is seen that cantilever plate having cut out at the centre 
has minimum frequencies as it has minimum stiffness. 
 
3.2 (g) Cantilever plates with cut-out having 

concentrated mass at free edge. 
 
A square plate with one edge fixed and other edges free 
having different position of the cut-out is considered. The 
area of the cut-out for every plate is the same. A point 
mass is applied at the free edge of the plate as shown in 
the figures in Table 10. Variations of non-dimensional 
frequencies due to different mass ratio, different position 
of applied mass are presented in Table 10. From Table 10, 
it is clear that non-dimensional frequencies increased 
when the mass ratio is decreased. 
 
3.2 (h) Plates carrying distributed mass 
 
A square plate subjected to uniform distributed mass is 
considered. Non-dimensional frequencies in different 
boundary conditions and for different mass distributions  
(𝑀𝑑 𝑀𝑝⁄ ) are presented in Table 11. Non-dimensional 
frequencies increase when the intensity of distributed 
mass is decreased. 
 
3.2 (i) Cut-out plates carrying distributed mass. 
 
A square plate having central cut-out (0.4a×0.4b) subjected 
to uniformly distributed mass is considered. Non-
dimensional frequencies for different boundary conditions 
and different mass distributions (𝑀𝑑 𝑀𝑝⁄ ) are presented in 
Table 12. Non-dimensional frequencies increase when the 
intensity of distributed mass is decreased. 
 
 
4. CONCLUSION 
 
In this paper, a finite element formulation based on the 9-
node isoparametric element is used for calculating the 
dynamic responses of plates with rectangular-shaped cut-
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outs. Mindlin’s theory is incorporated in the formulation 
to account for shear deformation. Further, the formulation 
is enhanced by using two different mass lumping schemes 
that allow the effect of rotary inertia to be included or 
excluded. Thus, the contribution and effect of rotary 
inertia can be accurately evaluated. It is seen that the 
average difference between fundamental frequencies 
calculated with and without rotary inertia is less than 1%. 
For higher frequencies, the difference is seen to be less 
than 2%. Based on the results it is seen that mass lumping 
with rotary inertia is suitable for both thin and thick plates 
whereas mass lumping without rotary inertia is only 
suitable for  thin plates. The comparison of the calculated 
solutions with existing literature shows excellent 
conformity in results. After thorough validation and 
testing of the present finite element formulation, several 
interesting examples having rectangular shaped cut-outs at 
different positions, cut-out plates carrying concentrated 
mass and uniformly distributed mass are presented which 
will serve as benchmark solutions for upcoming works. 
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