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SUMMARY 
 
Herein, we present the design and development of a ‘Non-uniform Rational B-spline (NURBS)’ based iso-geometric 
approach for the analysis of a number of ‘Boundary Value Problems (BVPs)’ relevant in hydrodynamics. We propose a 
‘Potential Function’ based ‘Boundary Element Method (BEM)’ and show that it holds the advantage of being 
computationally efficient over the other known numerical methods for a wide range of external flow problems. The use 
of NURBS is consistent, as inspired by the ‘iso-geometric analysis’, from geometric formulation for the body surface to 
the potential function representation to interpolation. The control parameters of NURBS are utilised and they have been 
explored to arrive at some preferable values and parameters for parameterization and the knot vector selection. Also, the 
present paper investigates the variational strength panel method, and its computational performance is analyzed in 
comparison with the constant strength panel method. The two variations have been considered, e.g. linear and quadratic. 
Finally, to illustrate the effectiveness and efficiency of the proposed NURBS based iso-geometric approach for the 
analysis of boundary value problems, five different problems (i.e. flow over a sphere, effect of the knot vector selection 
on analysis, flow over a rectangular wing section of NACA 0012 aerofoil section, performance of DTMB 4119 propeller 
(un-skewed), performance of DTNSDRC 4382 propeller (skewed)) are considered. The results show that in the absence 
of predominant viscous effects, a ‘Potential Function’ based BEM with NURBS representation performs well with very 
good computational efficiency and with less complexity as compared to the results available from the existing 
approaches and commercial software programs, i.e. low maximum errors close to 31 10−u , faster convergence with even 
up to 75 % reduction in the number of panels and improvements in the computational efficiency up to 32.5 % even with 
low number of panels.   
 
 
NOMENCLATURE 
 
2D  Two dimensional, 
3D  Three dimensional, 
BEM  Boundary element method, 
CAD  Computer aided design, 
CAGD  Computer aided geometric design, 
CFD  Computational fluid dynamics, 
DTMB  David Taylor model basin, 
FEA Finite element analysis, 
FEM  Finite element method, 
FVM  Finite volume method, 
IGA  Iso-geometric approach, 
NACA National advisory committee for aeronautics, 
NURBS Non-uniform rational B-spline, 
V   Volume of the closed 3D domain, 
S  Boundary of the closed 3D domain, 
n   Unit normal vector, 

BS   Body surface, 

wS   Wake surface, 

HS   Hub surface, 

Sf   Outer control surface of an arbitrary domain 

I   Potential function, 
*   Circulation around the body, 
x   Field point in 3D, 

0x   Singular or pole point in 3D, 
G   Dirac’s delta function, 

( )0,G x x  Green’s function, 

r   Distance of the field point from the singular 
point, 

r  Radial vector, 
Uf   Inflow free stream velocity, 

( )h u   Curve data point, 

iH   Control points of the NURBS curve, 

( ),i pRc u  Rational basis functions, 

,i lR   NURBS surface control points after interpolating 
in the u  direction, 

NS   Patch number, 

NI   Number of data points in the u  parametric 
direction for potential function, 

MI   Number of data points in the v  parametric 
direction for potential function, 

( ),i pN u  B-spline basis-functions of the degree p  in u  
parametric direction, 

( ),j qN v  B-spline basis-functions of the degree q  in v  
parametric direction 

p   Degree of surface in the u  parametric direction, 
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q   Degree of surface in the v  parametric direction, 

,i jw   Weights associated with a control point of the 
NURBS surface, 

a   Coefficient of centripetal parameterization, 
K  Number of symmetry, 

( )s rT   Distribution of the skew angle, 
( )sx r   Distribution of the rake angle, 

( )c r   Distribution of the chord length, 
( )r)   Distribution of the pitch angle, 
( )f r   Distribution of the camber, 

( )t r   Distribution of the thickness, 

hR   Radius of the hub, 

uX   Computational axial distance in the upstream 
region of the propeller, 

dX   Axial distance from the trailing edge of the blade 
to the beginning of the fairwater, 

tX   Axial length of the fairwater, 
D  Diameter of the propeller, 
R  Radius of the propeller, 

bX   Axial distance between the leading and trailing 
edges, 

T
uX   Distance from the origin to the upstream end, 

T
dX   Distance from the origin to the downstream end, 

,
,v

i j
uM   Unknown potential function control vertices, 

AU   Mean advance velocity of the propeller, 

:   Rotational speed of the propeller 
dS   Differential surface element, 

cJ   Jacobian, 

gN   Order of Gauss-Legendre product rule, 

d   Representative length-wise scale of the surface, 
L   Distance of the centroid of surface from the field 

point, 
F   Sub-division criteria to be satisfied, 

pC   Pressure coefficient, 

Pf   Pressure at the free stream, 
P  Static pressure, 
U   Perturbation velocity, 

TU   Total perturbation velocity, 

inducedU  Induced velocity, 

it'   Time step, 

TK   Thrust coefficient, 

QK   Torque coefficient, 
Q  Torque, 
T   Thrust, 
J  Advance ratio, 
U   Density of the fluid, 

iA   Area of the i-th panel, 
n   Number of the propeller revolution per sec, 
T   Azimuth angle, 

surfU   Velocity at the surface of ellipsoid, 

maxU   Maximum velocity at the surface of ellipsoid, 
AX  Semi lengths of axis of ellipsoid in the x  

direction, 
BY   Semi lengths of axis of ellipsoid in the y  

direction, and 
CZ   Semi lengths of axis of ellipsoid in the z  

direction. 
 
 
1. INTRODUCTION 
 
Interestingly, the naval architecture community has been 
one of first users of the computers and computational 
methods for the design, analysis and production of ships. 
In modern integrated environment, it is possible to use 
computer aided design (CAD) to explore design options 
and subsequently employ computational methods with 
the CAD model for design and development. The CAD 
model needs a mathematical geometric definition for any 
object that needs to be analyzed, e.g. for structural 
analysis using the finite element analysis and for 
hydrodynamic analysis using the computational fluid 
dynamic analysis etc. At present for the geometric 
definition, most of the existing CAD systems rely upon 
‘Non Uniform Rational Basis Spline (NURBS)’ and 
NURBS is considered a ‘de-facto’ standard in modern 
CAD systems. Although, there are problems associated 
with the NURBS (e.g. restricted for use only to 
rectangular topology, and impossible representation of 
the intersection of two NURBS surfaces by a trimmed 
NURBS surface without introducing gaps in the model, 
etc.), still the NURBS offers great flexibility and 
precision for handling both analytic (surfaces defined by 
common mathematical formulas) and free form shapes, 
for more details see Piegl & Tiller (1996), Farin (1999). 
 
Recently, Hughes et al. (2005) and Cottrell et al. (2009) 
introduced an iso-geometric approach, wherein the 
definition or the approximation of the geometry and the 
field variable was done using the NURBS defined over 
the identical parametric space. The iso-geometric 
approach provides the consistent representation for the 
geometry and the solution approximation, thus results in 
a more accurate numerical solution. From the numerical 
analysis perspective, it is well known that the Boundary 
Element Methods (BEMs), are computationally efficient 
for the external flow problems where the volume to 
surface area ratio is low, and the reason being that in the 
case of the boundary element method the dimension of 
the discretization reduces by one as compared to the case 
of three-dimensional problems. This results into 
computational savings. This advantage of the BEM has 
motivated researchers to investigate panel methods for 
the external flow problems, for more details see Hess & 
Smith (1964), Lee (1988). 
 
Once the geometric definition is ready with a CAD 
model, it needs to be analyzed. It is obvious that a 
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consistent use of geometric definition from CAD to FEA 
to CFD to manufacturing simulation will help in 
reducing the design and analysis time, and will integrate 
the design and analysis process. This idea of integration 
of CAD with FEA, CFD and manufacturing simulation 
has motivated researchers to develop a computational 
approach that offers the possibility of integrating finite 
element analysis (FEA) into conventional NURBS-based 
CAD design tools. And, this approach is called ‘Iso-
geometric Analysis’, and was initiated by Cottrell et al. 
(2009) and Hughes et al. (2005). Before the initiation of 
the iso-geometric analysis, it was required to convert data 
between and across the CAD, FEA and CFD software 
packages to analyze new designs during development, 
and this conversion is difficult because the computational 
geometric approaches are different for CAD, CFD and 
FEA. This paper is inspired by the same ‘iso-geometric 
analysis’ approach of Cottrell et al. (2009). 
 
The basic aim of any numerical method is to achieve the 
higher accuracy with less computational cost, i.e. 
computational time, computational effort, and memory 
required. Accuracy in the numerical method can be 
increased by reducing the domain error, i.e. error arising 
due to the limitation of the meshing elements to exactly 
represent the body surface or volume) and the truncation 
error. The truncation error can be minimized using either 
more number of points in the power series expansion or 
by using higher order approximations for the field 
variables or by doing both. Most of the meshing tools in 
the industry are capable of generating mesh using 
(triangular, hexagonal, or quadrilateral etc.) various types 
of elements, and they all will have straight edges (C0 
continuity). Most of the complex engineering geometries 
are composed of either conic shapes or free form shapes 
and this demands the need for heavy mesh generation 
(i.e. more number of mesh elements) which results in 
high computational cost (computational time and 
memory required). Nevertheless, if one uses the mesh 
elements having curved edges (i.e. at least C1/ G1 
continuous) instead of straight edges, one can exactly 
represent the surface or the volume of the body with 
small number of mesh elements. Hence, the 
computational cost will reduce by a significant amount 
and lead to more accurate results due to reduced domain 
or discretization error. From the CAD background, it is 
known that the NURBS can represent conical shapes 
exactly without any discretization error, and they are 
better suited for the representation of the free form 
shapes, for detail see Piegl & Tiller (1996), Farin (1999). 
 
In the present paper we focus on a class of engineering 
hydrodynamic problems in which fluid flow past the 
bodies can be studied by Laplace’s equation, e.g. 
subsonic flow around wings, flow around spheres, 
ellipsoids, and flow past marine propellers. An exact 
solution for the flow past three-dimensional bodies exists 
only for some simple primitive geometric bodies. 
Therefore, numerical techniques are required to analyze 
the more general 3D curved free-form shaped bodies. 

Some of the generally used numerical techniques for the 
flow past the 3D curved free form bodies are: finite 
difference method, finite element method, finite volume 
method, and boundary element method (boundary 
integral equation). When it comes to computational cost 
in the case of external flow problems, the boundary 
element method holds the edge over the other numerical 
methods, because in case of the boundary element 
method, the dimension of discretization reduces by one 
as in case of three dimensional problems, and one has to 
discretize only the surface of body, for more detailed 
description see Becker (1992). 
 
The remaining of this paper is organized: Section 2 
briefly reviews the existing literature and mentions our 
basic motivation, Section 3 discusses the details about 
the mathematical background for the problem, Section 4 
presents the details about the mathematical background 
for the NURBS, Section 5 describes the numerical 
formulation of the problem, Section 6 presents various 
numerical examples and discussions, and Section 7 
presents the summary, conclusions the scope of future 
work. A more detailed treatment of the results of this 
paper can be found in a recent thesis by the first author 
(Goel (2016)). 
 
 
2. REVIEW OF LITERATURE AND BASIC 

MOTIVATION 
 
In the available literature large numbers of different 
panel methods have been developed for a variety of 
applications, leading to different types of applications 
for the analysis of steady performance of the marine 
propellers. Most of the initial papers were based on the 
velocity function based formulations in which the 
boundary condition on the body surface is satisfied 
through the direct computation of the velocity. It is well 
known that the velocity function is singular by one 
order higher as compared to the potential function and 
this causes numerical un-stability. Based upon this, the 
proposed paper uses a potential function based panel 
method formulation that is more suitable for numerical 
computation. There exists a wide range of theories for 
the prediction of flow around the propellers. For 
predicting the flow field parameters around the 
propellers, the panel methods have been widely 
accepted as a useful tool for the aerodynamic and 
hydrodynamic design of propellers, e.g. Koyama et al. 
(1986), and Lee (1988). 
 
In one of the earliest works, Hess & Smith (1964) studied 
a constant strength panel method to calculate the 
incompressible potential flow around arbitrary, non-
lifting three-dimensional bodies. Later, Hess (1972) 
applied the same formulation as of Hess & Smith (1964) 
for the flow around lifting three-dimensional bodies. In 
both of these methods body surface was approximated by 
planar triangular or quadrilateral panels that are known to 
have only lower degree of continuity, e.g. C0 continuity. 
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In the case of non-lifting bodies, the surface of the body 
was approximated by unknown source singularity. In the 
case of lifting surface bodies, the surface of the body was 
approximated by source singularity (i.e. to consider 
thickness of the body) and unknown strength of doublet 
or vortices singularities to account for the lifting aspect 
of the flow. The basic advantage of the constant strength 
panel method is its simplicity and less complexity 
involved in the computation. Morino & Kuo (1974) 
introduced a panel method based on Green’s formula in 
which primary unknown is the potential function. Prior to 
Morino & Kuo (1974) all the methods were mainly based 
on velocity function based formulation Morino & Kuo 
(1974) introduced potential function based formulation 
which is more stable than the velocity function based 
numerical formulation. This potential function based 
formulation is more stable than the velocity function 
based numerical formulation. The other main 
contribution of Morino & Kuo (1974) formulation was 
the imposition of Kutta condition at the trailing edge of 
the lifting bodies. 
 
Hess & Velarezo (1985) applied the lower order surface 
panel method for the analysis of steady performance of 
the marine propeller. From Hess & Velarezo (1985) it 
can be concluded that surface panel method suffers when 
the thickness of the propeller blade becomes very small, 
e.g. towards the tip of the propeller. Koyama et al. 
(1986) applied the lower order panel method for the 
analysis of the marine propeller. It was found that the 
pressure distribution near the tip of the blade predicted 
by Koyama et al. (1986) also was not accurate. It was 
mainly because the Kutta condition applied by Koyama 
et al. (1986) was not able to account for the cross flow 
effects of the three-dimensional flow. Lee (1988) 
proposed a potential function based panel method for the 
analysis of marine propellers in steady flow. Prior to his 
work lifting surface theory was used for the design and 
analysis of marine propellers. Furthermore, before Lee 
(1988) the hub surface effect was not included in any of 
the lifting surface based formulations that compute a 
pressure distribution, which is not valid in the real world 
marine propellers. To rectify all of these difficulties 
associated with the lifting surface theories, Lee (1988) 
proposed a panel method for the hydrodynamics analysis 
of the propeller including the propeller hub to account for 
the three-dimensional cross flow effect at the trailing 
edge, a pressure Kutta condition is applied. The pressure 
Kutta condition requires that the pressure on the last 
panels at the trailing edge be equal. Due to the non-linear 
aspect of the pressure Kutta condition, an iterative 
procedure was employed. Lee (1988) observed that 
potential function based methods are more accurate for 
thin sections as compared to the velocity function based 
methods. The main drawback of the constant panel 
method is that it requires a large number of panels to 
obtain the accurate results. Other main drawback of the 
constant strength panel method is the lower order 
continuity of the solution. The basic advantage of the 
constant strength panel method is its simplicity and less 

complexity involved in the computation. In order to 
achieve the same level of accuracy as of constant 
strength panel method using only a small number of 
panels, higher order panel methods have been proposed 
in the past. Higher order panel methods provide the 
higher order accuracy to the field variables (potential 
function). Different higher order approaches have been 
proposed in the past for different types of the boundary 
value problems.  
 
Possibly, the first, Roberts & Rundle (1973) proposed a 
higher order panel method, and they used a paraboloid 
panel surface to model the body surface. In their method 
quadratic source and doublet strength had been used with 
no penetration boundary condition. This method was 
computationally very expensive as compared to the 
constant panel method. A different higher order approach 
was developed by Johnson & Rubbert (1975) and they 
proposed a higher order panel method wherein the body 
surface is approximated by the paraboloid panels. In their 
method a linearly varying source distribution and 
quadratically varying dipole distribution over each panel 
was proposed in the tangent plane variables. Hess (1979) 
also used the same approach as of Johnson & Rubbert 
(1975) and the author introduced a higher order panel 
method where he used cubic panel shape with quadratic 
density of the source. His approach leads to an extremely 
complicated algorithm. He concluded that the higher 
order panel method scheme is superior to the constant 
strength panel method for interior flows, e.g. flow 
through duct of varying cross section. Atkinson (1990) 
studied higher order approach, where the body surface 
was discretized by curvilinear triangular panels. Xu 
(1992) applied an approach identical to Atkinson (1990), 
and he used curvilinear rectangular panels instead of 
curvilinear triangular panels used by Atkinson (1990). 
The unknown potential over each panel was 
approximated using the same basis set as used for the 
description of panel. The approaches of Atkinson (1990) 
and Xu (1992) provide overall better accuracy when 
compared to the constant strength panel method. 
 
Higher order methods using the Lagrangian interpolation 
function suffer mainly due to the discontinuous spatial 
derivatives of the potential across the panel boundaries. 
Hsin et al. (1993) investigated the idea of using the B-
spline representation for the geometric and the potential 
function representation. Using the B-spline for geometry 
and the potential function representation provides several 
degree of continuity to both the potential function and its 
derivative. Their results showed that it was not only 
accurate, but also robust and efficient. Maniar (1995) 
proposed a B-spline based three-dimensional higher 
order panel method to study the motion of the bodies in 
an infinite field, and the motion of the bodies in the 
presence of the free surface. In his work, the potential 
function and the geometry of the body are allowed to 
have any degree of continuity. The author successfully 
applied the method for the zero-speed frequency-domain 
radiation and diffraction problems and found that higher 
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order panel method is computationally efficient and 
capable of obtaining accurate point wise values for the 
potential function. From his work, it can be concluded 
that B-spline based panel method not only provides good 
accuracy and efficiency in terms of computational cost 
but are also capable of solving a variety of problems, 
some of which can be difficult or impossible to solve 
with constant strength panel methods. 
 
Lee et al. (1998) and Danmeier (1999) presented a 
geometry independent higher order method in which the 
geometrical and hydrodynamic representations are 
decoupled. In their works, the potential function was 
represented by a set of B-spline basis functions, but the 
geometry can be modeled by any regular 
parameterization. Kim & Nam (1999) proposed a B-
spline panel method where surface was described by the 
NURBS which provides more accurate geometric 
representation for the conic surfaces and are better suited 
to model free form surfaces. Lee & Kerwin (2003) 
introduced a B-spline higher order panel method and 
applied it to the two dimensional lifting problems. They 
used the approach identical to Hsin et al. (1993) wherein 
the two dimensional body profile and the potential 
function both are represented using B-spline. Kim et al. 
(2007) used the approach identical to Hsin et al. (1993), 
and proposed a B-spline based higher order panel method 
for the analysis of steady flow around marine propellers. 
The authors applied a null pressure jump Kutta condition 
at the trailing edge, which was found to be effective in 
stabilizing the solution process and in predicting the 
correct solution. The authors concluded that the B-spline 
based high-order panel method is robust, can handle the 
thin trailing edge and the tip region flow. Smaller 
number of panels can be used for the practical purpose 
without sacrificing the accuracy. 
 
2.1.  RESEARCH CONTRIBUTION 
 
From the literature review, we observe the following 
critical points that have motivated our work: 
• Higher order panel method is an effective method of 

the potential flow analysis and there has been a 
considerable interest in developing a numerical 
solution schemes for a variety of the potential flow 
problems.  

 
Our motivations and research contributions are: 
• Because the higher order panel method is known to be 

efficient, we aim for the development of a higher order 
panel method. 

• Since, an ‘iso-geometric’ approach (IGA) provides the 
consistent representation for geometry and solution 
approximation and therefore we adopt the consistent 
use of NURBS for all the representations.  

• We build upon the previous works of Farin (1999) and 
Piegl and Tiller (1996) to use the basic mathematics of 
NURBS and Kim et al. (2007) to use the same 
hydrodynamic modeling of propeller. These works are 
foundational in nature and hence these are referred. Our 

model extends the previous works to include real 
NURBS with weights and formulation is capable of 
handling different applications related to fluid flow over 
complex geometries, e.g. fluid flow over a sphere; fluid 
flow over a rectangular wing section of a NACA 0012 
aerofoil; steady state performance of an un-skewed 
propeller (DTMB 4119 propeller); and a skewed 
propeller (DTNSRDC 4382 propeller). Additionally, we 
explore the use of NURBS in full generality, e.g. use of 
different schemes of knot vector selection. 

• Herein, we analyse the performance of IGA through 
detailed comparative studies with results from 
‘Constant Source Panel Method (CSPM)’, ‘Higher 
Order Panel Method (HOPM)’ and ‘Finite Volume 
Method (FVM)’. 

 
 
3. MATHEMATICAL BACKGROUND 
 
To formulate the problem, a closed three-dimensional 
domain V with the boundary ,S  the unit normal vector

n  and the orientation of n  to S as shown in Figure 1, is 
considered. Here boundary S is composed of the body 
surface ,BS the wake surface ,wS and the outer control 
surface Sf  surrounding the body and the wake surface. 
The body is subjected to the inflow velocity Uf . We 
make certain assumptions: Fluid is incompressible, fluid 
is inviscid and fluid flow is irrotational. The following 
boundary conditions are satisfied: 
 
• The kinematic boundary condition is satisfied on the 

solid body surface BS , i.e. 
 

. .U n
n
I

f
w

= −
w

                                    (1) 

 
• The wake surface is assumed to have a zero thickness. 

The normal velocity jump and the pressure jump 
across wS are zero, while a jump in the potential is 
allowed, i.e. 

 
( )  0,  andon SW

p p p+ −' = − =              (2) 

0.
o wn Sx n n

I I I+ −w w w§ · § · § ·' = − =¨ ¸ ¨ ¸ ¨ ¸w w w© ¹ © ¹ © ¹
     (3) 

 
For the steady lifting problem, the potential jump 
across the wake surface is the same as the circulation 
around the body, and is constant in the stream-wise 
direction on ,wS i.e. 
 

( )  .
won SI I I+ −' = − = *                          (4) 

 
• A Kutta condition is required at the trailing edge to 

uniquely specify the circulation in case of the lifting 
flow problems, like flow around the wing section of a 
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NACA 0012 aerofoil or a marine propeller. In most 
general form, Kutta condition states that the flow 
velocity at the trailing edge (T.E.) remains bounded, i.e. 

 

. . .T EI� �f                                              (5) 
 

• On the control surface S , the perturbation velocity due 
to the body should vanish in the limit where this 
surface is an infinite distance from the body. This 
results into: 

 
0, as .SI f� → →f                                 (6) 

 
Now, with the above mentioned assumptions there exists 
a perturbation potential function I , which satisfies the 
Laplace’s equation: 
 

 2 0.I� =                                             (7) 
 
Using the Green’s identities, Equation (7) is reduced to 
(for detail see Danmeier (1999)): 
 

 ( ). 0.f fI I� � − � =                           (8)  
 
The Green’s functions constitute a special class of 
harmonic functions that are singular at an arbitrary point

( )0 0 0 0, ,x x y z= . By definition, a Green’s function of 
Laplace’s equation in three dimensions satisfies the 
singularity forced Laplace’s equation: 
 

 ( ) ( )2
0 0, 0,G x x x xG� + − =                     (9) 

 

where x  is the field point in 3D, 0x  is the singular or 
pole point in 3D, and G  is the Dirac’s delta function in 
3D. In the present paper, we select free space Green’s 
function because it corresponds to an infinite solution 
domain in the absence of interior boundaries, and it is 
(for details see Cumming et al. (1972)): 
 

 ( )0
1, ,

4
G x x

rS
=                                       (10) 

 
where 0r x x= −  is the distance of field point from the 

singular point. Applying Green’s second identity 
Equation (8) for a non-singular function I  and a Green’s 

function ( )0,G x x  and using Equation (9), we obtain: 

 

 ( ) ( ) ( )
( )

0
0

0

, ( )
. .

( ) ,

G x x x
x x

x G x x
x

I
I G

I

ª º�
« »− = �
« »− �¬ ¼

         (11) 

 

Now, we apply Equation (11) to the control volume V  
that is the collection of closed surfaces denoted by the S , 

as shown in Figure 1. When the pole 0x  is placed inside 
,V  the left hand side of above equation is singular at the 

point 0x . Using the distinctive properties of the delta 
function in 3D to perform the integration, and using the 
divergence theorem we obtain: 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

, . 

. , .
S

S

x G x x n x dS x

x n G x x dS x

I I

I

ª º= − �¬ ¼

ª º+ �¬ ¼

³³

³³
      (12) 

 

 
  

Figure 1: Basic convention of the arbitrary domain 
 
As surface S is composed of the body surface BS
(propeller blade), HS (hub surface) and the wake surface

wS , following following Lee (1988) and Lee (1989), we 
re-write Equation (12): 

 

( ) ( )( ) ( )

( ) ( )

( )( ) ( )

0

0

0

,

2
,

,

S SB H

Sw

G x x
xx n dS
x

G x x
n

G x x
x dS

n

II

I

I

�

 ½w
° °−
° °w= ® ¾

w° °
+° °

w¯ ¿

w
+ −'

w

³³

³³

    (13) 

 

where ( )0
1,

4
G x x

rS
=  and here I  is the perturbation 

potential and n  is the unit vector normal to the body and 
wake surfaces. Here the surface integral on BS  is 
defined to exclude the immediate vicinity of the singular 
point. As ( )x nIw w   is known on the BS  from the 

kinematic boundary condition (Equation 1), therefore, 
Equation (13) is a Fredholm integral equation (Pozrikidis 
(2010)) of the second kind for the unknown dipole 



Trans RINA, Vol 162, Part A2, Intl J Maritime Eng, Apr-Jun 2020 

©2020: The Royal Institution of Naval Architects                   A-137 

strength I , which is also the potential function over the 
body surface .BS   
 
Potential jump across the wake surface is equal to the 
difference between the potential values of the upper and 
lower surface at the trailing edge, which is Kutta condition. 
Discretization of Equation (13) leads to the linear system of 
equation for the unknown dipole strengthI . The surface 
velocity and the pressure distribution on the body surface 

BS  and HS  can be computed by the numerical 
differentiation of the potential distribution over these 
surfaces. This method is known as Morino’s method as he 
was the first to introduce this method, for details see Morino 
& Kuo (1974). 
 
 
4. BASIC MATHEMATICS OF NURBS 
 
Following Cottrell et al. (2009), a NURBS entity in dR  
is obtained by the projective transformation of a B-spline 
entity in 1dR + . In particular, conic sections, such as 
circles and ellipse, can be exactly represented by the 
projective transformations of the piecewise quadratic 
curves. Now, following Piegl & Tiller (1996), a thp  
degree NURBS curve is defined: 
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where iH  are the control points (forming a control 
polygon), iw  are the weights associated with these 

control points and ( ),i pN u  are the thp  degree B-spline 
basis functions defined on the non-uniform knot vector, 
i.e., 

1 2 1
1 1
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In the present paper, it is assumed that 

0, 1, and 0ie f w= = ! . This assumption leads to unit 
interval parameterization and it is without any loss of 
generality. In Equation (14), B-spline basis functions are 
defined as: 
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Now, we define the rational basis functions: 
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Herein, we use the global surface interpolation method to 
calculate the control points of the surface from given data 
points. For more details about the NURBS and global 
surface interpolation see Piegl and Tiller (1996). 
 
 
4.1 EFFECT OF WEIGHTS ON THE NURBS 

REPRESENTATION 
 
The NURBS provides an additional control parameter 
that is the weight associated with control point of the 
control polygon. This extra control feature of the 
NURBS provides them an additional advantage over the 
B-spline and other polynomials. As we know if 1iw =

for all i  or all the weights are equal then, NURBS basis 
functions reduce to the B-spline basis functions. The 
effect of weights on NURBS representation of the curve 
is shown in Figure 2a. To show the effect of weights on 
NURBS curve, we consider the arbitrary data points in 
the space as shown in the Figure 2a. At first, we perform 
the global interpolation to compute unknown control 
points of the control polygon, i.e. through global 
interpolation Piegl & Tiller (1996). After computing the 
control points, we vary the weights associated with 
control points to study the effect of weights on the curve 
approximation. Figure 2a shows a problem of curve 
approximation by varying the weight of a control point 
from 0.0 to 1.0,  i.e. weight W6 in the present example. 
We observe from Figure 2a that the weights have the 
pulling effect on the curve approximation. As one keeps 
on increasing the weight associated with any of the 
control point, curve will have a tendency of getting 
pulled towards that control point. As one keeps on 
decreasing the weight associated with the control point, 
curve will have the tendency to move away from the 
control point. As shown in Figure 2a, when the value of 
weight associated with the sixth control point reduces to 
zero, it does not have any effect on the representation of 
the curve. In this way, weights associated with the 
control points play a vital role in the curve, surface or 
volume representation of the object as the basis curve 
representation is followed in surface and volume too. We 
note here that as the optimisation of the weights in the 
NURBS representation is fairly an open problem, no 
automatic computation of the weights is possible. The 
weights are easy to be assigned a specific value rather 
than computing them through optimisation. We assign 
different combinations of the weights specific to the 
problem and report them in our results. 
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(a) Effect of the weights on NURBS representation of the 
curve. 

(b) Effect of the knot vector selection on NURBS 
representation of the curve. 

 
Figure 2: Effect of the weights and knot vector selection on NURBS representation of the curve. 
 
 
4.2 EFFECT OF THE KNOT VECTOR 

SELECTION ON CURVE REPRESENTATION 
 
We assume that the parameter lies in the range of 

> @ > @0,1 , and 0,1u v� � . To study the effect of different 
types of knot vectors, we consider a set of arbitrary data 
points as shown in Figure 2b. In Figure 2b, the curves are 
approximated using different methods of knot vectors 
selection, i.e. uniform knot vector, chord length knot vector 
or centripetal knot vector for > @0,1u� . We observe from 
Figure 2b that the centripetal knot vector method provides a 
tighter fit to the curve for the given data points, and is very 
much suited for the representation of the most of the 
complex engineering shapes especially when the data points 
have sharp bends, e.g. propeller data or unequally spaced 
data points. As the centripetal knot vector method provides a 
tighter approximation for the curve or the body surface, we 
investigate this in our work. Also, the effect of the 
coefficient of centripetal parametrization - a - on the 
analysis and body representation is studied. 
 
 
5. NUMERICAL FORMULATION OF THE 

PROPOSED PROBLEM 
 
A discretized form of Equation (13) can be applied to any 
arbitrary general body in the potential flow. Herein, a 
panel is the mesh that composes of NURBS patches to 
represent the body and wake surfaces, and in both of 
them the degree can be varied to any desired degree. In 
constant strength panel method, the singularity strength 
distribution on the meshes is assumed to be piecewise 
constant over the meshes.  
 
In case of the higher order panel method, the singularity 
strength distribution can be varied from linear to 
quadratic to cubic over the panels of the body and wake 
surfaces. The collocation approach is adopted for the 
analysis. In case of the constant strength mesh method 

the discretized integral equation is satisfied at the 
centroid of each of the meshes and in the higher order 
formulation, discretized integral equation is satisfied at 
the four collocation points to generate enough number of 
equations for the unknown dipole strength.  
 
From the solution of the linear system of equations, any of 
the desired flow quantities of physical interest can be 
computed. 
 
5.1 ISO-GEOMETRIC FORMULATION (IGF) 
 
The important idea of IGF is that the geometric definition 
is consistent from geometry to analysis, i.e. body to 
analysis of the fluid flow. In our IGF of the present 
paper, we focus on: IGF 1 - Surface geometric 
formulation and IGF 2 - NURBS representation of the 
function for potential flow solution. 
 
5.1 (a) IGF 1 - Surface geometric formulation 
 
In the surface geometric formulation, we define: 1) 
Surface description, 2) blade geometry and 3) Hub 
geometry. The individual details are: 
 
- Surface description: The body and wake surfaces, over 
which the integral equation is to be solved, are described 
by the N  patches, i.e., 
 

 1 2 3 4 ... .NS S S S S S= + + + + +           (18) 
 
Following, Piegl & Tiller (1996), each of the patches (e.g.

iS  ) is described parametrically by a NURBS patch, i.e., 
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where NI and MI  are the number of data points in the 
u  and v  parametric directions respectively, ( ),i pN u  

and ( ),j qN v  are the B-spline basis-functions of the 
degree p  and q  in the parametric variables u  and v  

respectively and ( ),k lx u v  are the data points describing 

the body and wake surfaces. Here ,i jw  are the weights 
associated with the control points on the surfaces and 

,i jX  are the control points representing the body 
surface. These control points are computed using a global 
interpolation. Figure 3a shows an example of a smooth 
three-dimensional surface, composed of number of 
patches each of which is described by a NURBS patch in 
the form of Equation (19). The rectangular parametric 
space, which is mapped by Equation (19) onto the 
physical surface, is: 
 

 [ , )  [ , ),e e p f f pu u x v v+ +                     (20) 
 
where eu  and fv  are the the  and thf knots of the knot 
vectors u and v respectively. The vector space given in 
Equation (20) is referred as the usable parametric space. 
The geometric control points are computed using the 
global interpolation technique as explained before. 
Figures 3b, 3c and 3d show the technical details of 
NURBS representation of cubic surface patch. 
 
• Blade geometry: The propeller blade consists of K  

identical blades and an axi-symmetric hub. For the 
steady flow problem, both the geometry and the 
singularity distribution are repeated identically on each 
blade and on each of the inter blade segments of the 
hub. In order to take the advantage of the rotational 

symmetry of the propeller system, only ( )1 thK  
portion of the propeller, i.e., only one blade and the 

( )1 thK  portion of the hub is discretized. Effect of the 
remaining portions of the propeller is included in the 
computation of the influence functions. We report 
analysis for two propellers: Un-skewed propeller 
(DTMB 4119 propeller), and skewed propeller 
(DTNSRDC 4382). The geometric properties of 
propellers are listed in Table 1 (DTMB 4119 propeller) 
and Table 8 (DTNSRDC 4382). 

 
• Hub geometry: The geometry of the hub is defined by 

any of the profile curves, which can be anything from 
a constant diameter cylinder to a complete 
axisymmetric body on which the propeller in mounted. 
A realistic geometry is a semi-infinite ellipsoid on the 
upstream with a given fairwater geometry downstream 
of the blades.  

 

The standard propeller coordinate system and notations 
adapted from Lee (1988) are shown in Figure 4a. The 
geometry of the hub that is used in the analysis is shown 
in Figure 5a. The geometry of hub can be determined by 
the following input parameters: Maximum hub radius 

hR , Computational axial distance in the upstream region 
of the propeller uX , Axial distance from the trailing edge 
of the blade to the beginning of the fairwater dX  and 
axial length of the fairwater tX . The axial distance 
between the leading and the trailing edges, bX  in Figure 
5a is determined from the geometry of the blade at the 
root section of the propeller blade. The  and T TX Xu d  in 
Figure 5a, are the distances from the origin to the 
upstream to the downstream ends of hub. The 
arrangement of hub meshes is selected to minimize the 
possible discretization errors due to miss-match of the 
hub meshes and the blade or wake meshes. Over the axial 
location between leading and trailing edges, the hub 
meshes are arranged to match the blade meshes at 
intersection. The meshes on the hub are arranged to 
provide a finer spacing near the propeller blade section 
and coarser spacing upstream to reduce the 
computational cost. The axial coordinates of intermediate 
meshes between the blades needs to be adjusted in order 
to avoid the badly shaped meshes in this region, as this 
region is extremely important from the analysis point of 
view. If the axial coordinates of upstream meshes are 
required to be the same in circumferential direction, the 
meshes near leading edge will turn inside-out. A special 
care is to be taken to avoid this condition. The geometry 
definition and mesh distribution for the DTMB 4119 
propeller in both the front and side-views are shown in 
Figures 4b and 5b. 
 
 
5.1 (b) IGF 2 - NURBS representation of the function 

for potential flow solution 
 
The potential function on each of the rectangular 
parametric patches is approximated as the NURBS 
function, i.e. 
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where ( ), ,and ( )i p j qN u M v  are the B-spline basis 

functions of the degree of  and p q respectively, ,
,v

i j
uM  are 

the unknown potential control vertices, and N  and M  
are the numbers of potential control vertices in andu v
directions respectively.  
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(a) Smooth representation of sphere surface. 

(c) Definition and description about the control 
mesh and points for the NURBS surface 

representation in physical and parametric spaces. 

(d) Definition and description about the index spaces 
for the NURBS surface representation in parametric 

space. 

(b) Parametric space definition for the NURBS 
surface representation. 

 
Figure 3: Smooth representation of the sphere surface and the technical details of NURBS representation of surface 
patch. 
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(a) Standard propeller coordinate system and the 
notations adapted from Lee (1988). 

(b) Geometry definition and panel distribution for 
the DTMB 4119 propeller (front-view). 

 
Figure 4: Standard propeller coordinate system and the notations adapted from Lee (1988), and the geometry definition 
and mesh distribution for the DTMB 4119 propeller (front-view). 

 
 

 

(a) Standard geometry notations of the propeller hub 
adapted from Lee [6]. 

(b) Geometry definition and panel distribution for 
the DTMB 4119 propeller (side-view). 

 
Figure 5: Standard geometry notations of the propeller hub adapted from Lee (1988) and the geometry definition and 
mesh distribution for the DTMB 4119 propeller (side-view). 
 
 
The NURBS used for representing geometry and 
potential function need not to be necessarily the same, 
i.e. not necessarily iso-parametric. Possibly, they can 
differ in both the parameters, e.g. the degree of 
approximation and the knot vector they are based on. In 
the IGA a reasonable restriction on the NURBS 
representation of the both the geometry and potential 
function is that the usable parametric space for both the 
geometry and potential function should be identical. 
Herein, the same basis functions have been used to 
represent both the geometry and the potential functions. 
A patch is seen as a macro-element, regrouping several 

elements and representing an entire physical domain or a 
part of it. Many simple domains can be represented by 
only one patch. Instead of using sub-domains of the 
physical domain, patches play the role of sub-domains in 
IGA. Parametric space is local to patches and within each 
patch material models are assumed to be uniform. Knot 
vectors in the parametric space are then used to define 
the elements. This ‘parametric space that is local to 
patches’ is the usable parametric space. Hence, in the 
present paper, in case of the higher order mesh method, 
an ‘iso-parametric’ and ‘iso-geometric’ representation of 
the potential and the geometry is used. 



Trans RINA, Vol 162, Part A2, Intl J Maritime Eng, Apr-Jun 2020 

A-142                      ©2020: The Royal Institution of Naval Architects 

5.1 (c) Discretization of integral equation using the 
NURBS representation of potential function 

 
As discussed previously the integral equation for the 
analysis around the lifting body is: 
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where ( )xI  is the perturbation potential, n  is the unit 

normal vector to the body and wake surface and 

( )0,G x x  is the Green’s function and it is defined: 

 

 ( )0
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4
G x x
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=                (23) 

 
with the kinematic boundary condition: 

 . ,U n
n
I

f
w

= −
w

                                            (24) 

 
where AU Uf =  in case of wing body and 

AU U rf = −:u  in case of the propeller, and Uf  is the 
velocity circumferential mean on-coming stream past a 
fixed blade at radius r , and it is defined by 
circumferential mean advance velocity AU  and the 

rotational speed of the propeller : . The blade surface 
patch is discretized in to ( , )N p M qI I− −  meshes using 
the usable parametric space (as defined previously in the 
beginning of Section 5.1 (b)) of the knot vectors as 
described previously in Equation (19).  
 
The wake surface patch, which sheds downstream from the 
trailing edge, can be represented by a set of M qI −  
stream-wise strips with the constant normal dipole on each 
of the span-wise location. The discretization into a set of 
( , )N p M qI I− −  meshes on the blade and M qI −  strips 
in the wake, yields to discretized form of Equation (11): 
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From the definition of the NURBS basis functions, it is 
known that there are only ( 1, 1)p q+ +  non-zero basis 
functions at each of the knot span defined by the space 
between the adjacent knots, and now the potential 
function from Equation (21) is rewritten as a ( 1, 1)p q+ +  
term summation: 
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where ands e p t f qD E= + − = + − . Here the 
parameters ( , )s t  are the span indices satisfying the 
relation: 
 ( ) > >( )1 1, , ) , ) .s s t tu v u u v v+ +� u               (27) 

 
Now substituting Equation (26) into Equation (25), leads 
to the computation of the control point on the ( , ) ,thi j  
mesh and the discretized form of the integral Equation 
for the lifting bodies is: 
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where i is e pD = + − ,  j jt f qE = + − , vs e pD = + − , 

and t f qPE = + − . It can be noticed that the ( , )c d  
summation for the dipole over the meshes on the blade or 
the body surface in Equation (28) includes the case of 

andi c j d= = . In the constant strength doublet mesh 
method this term does not come into consideration as its 
effect is already been taken into account by the 
subtended angle of the hemi-sphere surrounding the point 
where the potential is evaluated. However, in the higher 
order mesh method, there are additional effects from the 
curvature of the geometry and the higher order variation 
of the potential in addition to the subtended angle effect. 
 
5.1 (d) Important IGA characteristics 
 
In the NURBS based IGA, there are two meshes: the 
control mesh and the physical mesh. Control mesh 
interpolates the control points and it consists of multi-
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linear elements (in 2D they are bilinear quadrilateral 
elements). Control mesh does not conform to the actual 
geometry but controls it like a scaffold. Control variables 
are: Degrees of freedom and they are located at the 
control points. These are the generalized coordinates. 
Control elements can be degenerated to more primitive 
shapes (i.e. triangle and tetrahedral, etc.). Also, control 
mesh can be severely distorted and even inverted to an 
extent, while at the same time, for sufficiently smooth 
NURBS, the physical geometry can be valid, which is 
not the case with finite elements. Important properties of 
the NURBS for IGA are the following: 
 
• Mesh of a NURBS patch is defined as the tensor 

product of knot vectors.  
• Knot intervals span the domain of the iso-geometric 

elements and the support for each basis function 
consists of a small number of elements. 

• Control points associated with the basis functions 
define the geometry and the iso-parametric concept is 
invoked. Associated coefficients with the basis 
functions are the degrees of freedom or control 
variables. 

• Three refinement strategies are available and the 
matrices and vectors associated with the elements built 
from iso-parametric NURBS are assembled in matrices 
and global vectors as in Hughes (2012). 

• Specific boundary conditions are applied only to the 
control points and the homogeneous conditions are 
satisfied point-wise. In the case of inhomogeneous 
conditions, the boundary conditions are approximated 
by functions included in the NURBS function space. 
The condition is then satisfied in a strong but 
approximate way.  

 
5.2 DE-SINGULARIZATION OF THE 

INDUCTION INTEGRALS 
 
To address the singularity of induction integrals, 
originally an idea was proposed in Cao et al. (1991) and 
later it was extended by Maniar (1995). A review can be 
found in Cao and Beck (2015). Herein, we follow the 
original ideas of Cao et al. (1991), Maniar (1995) and 
Cao and Beck (2015) and extend their work to include 
the de-singularization of the induction integrals to cover 
all the hydrodynamic problems of interest in the present 
paper. And, for the sake of completeness we present 
these in-details.  
 
We consider the induction integrals due to unit strength 
source and the doublet singularity and they are: 
 

3
1 1 1 . , and .

4 4
s d n rI dS I dS

r rS S
− −

= =∬ ∬       (29) 

where and dS n  are the differential element and unit 
normal on the surface of the integration and r is the 
distance between the collocation point and some field 
point on the surface of the body. When the collocation 
point falls within the mesh boundary, distance r  

becomes zero at some point on the mesh and hence the 
integral become singular, however, it is integrable. 
 
To remove this singularity, we implement the following 
idea: 
• The rectangular parametric space is partitioned in to 

four triangles as shown in Figure 6. The apex of each 
of the triangles is located at the collocation point and 
their base at the side of the edge of patch.  

 
Then, the quadratic transformation is applied to transfer 
these triangles into rectangles where the apex represents 
the whole edge connecting ((-1, 1) and (-1, -1)). This is 
shown in Figure 6. 
 
With respect to Figure 6, for the partitioned triangles

( )1 2 3 4, ,  and ' ' ' ' , the quadratic transformation 

equations are written: 
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( )( ) ( )( )

( )

( ) ( )

11 1 1 1
4 4

1
,and

2
1 1

;
2 2

i i

i

u u
U

u

v v
V

[ K [ K

[

[ [

++ − + +
= +

−
+

+ −
= +

 

 
(b)  for the  2'  these are: 
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(c)  for the  3'  these are: 
 

( )( ) ( )( )

( )

( ) ( )

1

1

1 1 1 1
4 4

1
, and

2
1 1

 ;
2 2

i i

i

u u
U

u

v v
V

[ K [ K

[

[ [

+

+

+ − + +
= +

−
+

+ −
= +

 

 
(c)  for the  4'  these are: 
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(a) Triangulation of the parametric space for de-
singularization. 

(b) De-singularized triangle. 

De-singularized triangle 

(c) Quadratic transformation of the parametric space for de-singularization. 
 

 
Figure 6: Triangulation and quadratic transformation of the parametric space for de-singularization. 
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Now, with partitioning the integrals (Equation 29), and 
with the procedure mentioned above, the Equation (29) is 
re-written: 
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where cJ  is the Jacobian of the surface element ds  and it 
is evaluated: 
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and the unit normal vector to surface of the element is: 
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The more computational details about de-singularization 
can be found in Goel (2016). 
 
 
5.3 SELF-INDUCED POTENTIAL FUNCTION 

OF THE DIPOLES AND THE SOURCE OF 
HIGHER ORDER 

 
When the collocation point falls on mesh surface, the 
induction integral due to the normal dipole of the higher 
order requires a special treatment as described in Section 
5.2. The contribution of higher order is, however, less 
singular than that due to the constant term in the dipole 
strength. Hence, the dipole induced potential of higher 
order is computed: 
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Now, substituting the NURBS representation for 
potential function from Equation (26) in Equation (34), 
we obtain: 
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For Equation (35), the Gauss quadrature is used for the 
numerically integration as the singularity has been 
eliminated using the transformation discussed in Section 
5.2. Now, the self-induced potential of higher order 
source is numerically computed: 
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In both the integrations, the Jacobian and normal vectors 
are computed using the transform Equations (32) and 
(33) respectively. 
 
 
5.4 NEAR FIELD INFLUENCE COEFFICIENT 

COMPUTATIONS VIA THE ADAPTIVE 
SUB-DIVISION TECHNIQUE FOR NURBS 

 
Following Maniar (1995), we consider the problem of 
evaluating source and dipole integrals and their 
moments: 
 

( ),  ,cf u v J du dv∬                           (37) 

 
when the field point lies in near field range of a curved 
surface. In Equation (37), the ( , ) m nf u v u v R=  is for 

the source integrals, the ( )( ) 1, .m nf u v u v n R=  is for 
dipole integrals and the cJ  is Jacobian of the 
transformation. If, the / 1,d L t  then the field point is in 
the near field range of the surface, where d  is some 
representative length scale of the surface and L  is the 
distance of the centroid of surface from the field point, 
Figure 7a. When the 1d L �� , than the numerical 
experimentation indicates that a ( )g gN Nu  Gauss-
Legendre product rule, where 3 5gNd d , performs well 

with an absolute error 51 10−d u , i.e. 
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Primarily, the choice of order gN  is dependent on the ratio 
of d L  and the largest degree of the influence coefficients 
required. For the low curvature surfaces, the choice of the 
order is only weakly dependent on the geometry of the 
surface. Implicit in the requirement, 1d L ��  is the fact 
that the smaller it is, the smoother the functional variation of 
the Rankine singularity1/ R , over the surface of integration 
will be. The above observation suggests that, when the field 
point is in the near field (i.e. 1d L t ) domain, we can 
subdivide the surface sufficiently such that for each of the 
sub-divided surfaces 1d L ��  (Figures 6 and 7a), and a 
( )g gN Nu  Gauss-Legendre product rule can be applied to 
each of the subdivided surfaces for the numerical 
integration. For computational efficiency, the reduction in 
the ratio d L  is important and it has been done effectively 
and selectively in the sub-division used in this paper, i.e. the 
scheme is adaptive. 
 
The procedure is outlined with reference to Figure 7a and 
it is: 
• Choose a constant where 0 1F� � ,  and given a 

field point and a surface, evaluate ( d L ) and if: 

• ( / )d L F!  then subdivide the surface, and 
• ( / )d L Fd  then no subdivision is required. 

 
 
If no subdivision is required, the integral is integrated 
using a  ( )g gN Nu  Gauss-Legendre product rule. For 
each of the subdivided surface the ratio ( d L ) is 
evaluated and the above criteria is checked. If the criteria 
are not satisfied, the surface is further sub-divided. It is 
obvious that the procedure is inherently recursive and 
will continue until no further subdivision is required. In 
computational practice, L  is evaluated as shown in 
Figure 7a. Here, the several combinations of gN and 

( )d L  are numerically experimented. And, based upon 
the experimentation the ( )4 an 0 4,d / .gN d L d=  is 
found to be an optimal choice ensuring an absolute error 
close to 61 10−u . Table 2 shows the relative error in 
computation with varying values of α. It can be noted 
from Table 2 that when 0.4F d  the absolute error is 

approximately close to 61 10−u . 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) Definition of the length-wise scale and sub-
division of the surface patch. 

(b) Definition of the geometry and the panel 
distribution for surface of the sphere. 

 
Figure 7: Definition of the length-wise scale and sub-division of the surface patch and definition of the geometry and the 
mesh distribution for surface of the sphere. 
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5.5 IMPOSITION OF KUTTA CONDITION 
 
For any lifting flow problem, the Kutta condition needs 
to be satisfied at the trailing edge of lifting surface. The 
Kutta condition can be satisfied either by linear method 
as suggested by Morino & Kuo (1974) or by satisfying 
the non-linear zero pressure jump condition. According 
to Morino & Kuo (1974), the strength of wake sheet 
dipole at any potential control vortex is equivalent to 
potential jump at the trailing edge on the same radial 
control vortex, i.e. 
 

   0,1,
 =  -  =  - v

v v v v v
j j j jN j

I I I I I+ −
−

' ' ' ' '
      (39 

 
 
where the superscripts + and – denote the suction and 
pressure sides of the trailing edge. Another form of the 
Kutta condition is satisfied by equating the magnitude of 
velocities of the flow at trailing edge of the surface, i.e. 
 

 ( ) ( )2 2
 = r rU UI I+ −+� +�                 (40) 

 
where ( ), ,rU U V W=  and ( ), ,x y zI I I I� = w w w w w w . 
Expanding the above equation and re-arranging we get: 
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Equation (41) is a non-linear equation in perturbation 
velocity and therefore iterative procedure is required to 
solve the equation. At any step, we can write term of 
Equation (41): 
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After re-arranging, we can write Equation (41): 
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(43) 
From Equation (43), we note that the non-linear Kutta 
condition is expressed by linear combinations of the 
potential vertices. 
 
5.6 SOLUTION OF THE LINEAR SYSTEM OF 

EQUATIONS 
 
Herein, we use the collocation method to construct linear 
system of equations. In case of the ‘Constant Strength 
Mesh Method (CSPM)’, only a single collocation point is 
selected at the centroid of each of the meshes. Therefore 
the numbers of unknown are ( ) ( )N p M q− u − , where 

 and N M  are the number of data points in the  and u v  
parametric directions respectively, and  and  p q  are the 
degree of the surface in  and u v  parametric directions 
respectively. The simple Gauss elimination method is 
used to solve this linear system of algebraic equations. 
However, in case of the ‘Higher Order Mesh Method 
(HOPM)’, the number of unknowns N Mu  are greater 

than the number of meshes ( ) ( )N p M qI I− u − . Thus, 

to produce the enough number of equations, more 
number of collocation points is placed at each of the 
meshes, and where the no penetration kinematic 
boundary condition on the body surface is satisfied.  
 
In the present paper, four collocation points are selected 
per mesh at the intersections of 0.5 and 0.5[ = −  and 

0.5 and 0.5,K = −  when the mesh boundaries are limited 
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by the normalized local parameters ( )1 and 1[ = − and

( )1 and 1K = − . Thus, the total number of equations is 

( ) ( )4 N p M qI I−u u − . Equation (28) is solved for the 

unknown velocity potentials by Lagrange multipliers 
using Equation (43) as constraint, for more details see 
Goel (2016) and Lee & Kerwin (2003). 
 
 
5.7 COMPUTATION OF VELOCITIES, 

PRESSURE, FORCES AND MOMENTS 
 
Once the potential function values are determined by 
solving the linear system of equations, the surface 
velocities can be computed by the numerical 
differentiation of potential function or by direct 
computation of the source and the doublet mesh 
influence functions. The method of computing the 
velocities by direct computation of the source and the 
doublet mesh influence functions is generally not 
adopted, as the influence functions for the velocities 
computations are more singular and therefore more 
sensitive to the position of the field point within each 
mesh. In the case of CSPM, any numerical differentiation 
technique can be used to compute the velocities. In the 
present paper, for the CSPM, second order differential 
method is used to compute the tangent perturbation 
velocity in the orthogonal directions. In addition, the total 
tangential velocity is obtained by a vector sum of the 
perturbation velocity and the undisturbed inflow velocity. 
In the case of HOPM to obtain the perturbation velocity, 
the derivative of the perturbation potential function is 
taken with respect to the physical coordinates. As in the 
present formulation physical coordinates x  and the 
perturbation potential function I  both are functions of 
parametric directions ( , )u v , the chain rule is used to get: 
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where 0 1 2( , , ) and  ( , , ).x x y z n n n n= =  The derivatives 
of x  with respect to the parameters ( , )u v  can be 
computed easily. The derivatives of I  with respect to the 
parameters ( , )u v  can be computed similarly as the 
derivatives of the physical coordinates are computed. The 
normal component of the perturbation ( )nIw w  is known 
from the kinematic condition. Now, using the Kramer's 
rule, Equation (44) is solved for the perturbation velocity 
components: 
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where the determinant D  is defined: 
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As the flow is assumed to be the potential flow, the 
Bernoulli’s equation is used to compute the non-
dimensional pressure coefficient: 

 2 ,
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p
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UU
f
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−
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u u
                                (47) 

 

where P Pf−  is replaced with 2 21 ( )
2

P P U Uf f− = − . 

Therefore, Equation (47) is reduced to: 
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Total forces and moments are obtained by the summation 
of individual mesh force vectors. At last, the integrated 
thrust and the torque coefficients are computed: 
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(50) 
 
where , ,i i ix y z  are the physical coordinates; 

( ) ( ) ( ), ,x y z ii i
n n n are the components of unit normal 

vector to surface of the body or the mesh under 
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consideration; iA  is the area of the thi  mesh; and K is 
the number of symmetries. For the efficient computation, 
these summations are performed individually over the 
blade and hub surfaces. 
 
 
6. RESULTS AND DISCUSSIONS 
 
We develop two separate software programs for the 
following problems: 
• Wing section of a NACA 0012 aerofoil and the non-

lifting problems, and 
• Un-skewed propeller (DTMB 4119) and skewed 

propeller (DTNSRDC 4382). 
 
All the formulations are based upon iso-geometric analysis 
as in it an integration of the hydrodynamic analysis model 
is achieved with the conventional NURBS-based computer 
aided geometric design model of propeller. Herein, in all 
the examples we either use quadratic or cubic degrees and 
multiple patches. Patches are joined with C1 (derivational 
tangent plane continuity) using standard techniques as 
defined in Farin (1999), Piegl and Tiller (1996), and Roger 
and Adams (2017). We use the centripetal parametrization 
from Lee (1989) and knot vectors are generated through 
the laws of average (de Boor 2001) with clamped and/or 
closed end conditions. 
 
6.1 PROBLEM 1: FLUID FLOW OVER A SPHERE 
 
Potential fluid flow past over a sphere is chosen as the first 
example because the analytical results for this simple flow 
problem are available from the literature, for details see 
Anderson (2007). The coordinate system and the mesh 
arrangement for the sphere geometry are shown in 

Figure 7b. In the mesh geometry, the cosine spacing is 
chosen in both the directions to account for the rapid 
changes in the geometry and the singularity near the 
edges of the geometry. The analytical expressions for the 
perturbation potential function and the total surface 
velocity at the center plane of sphere are: 
 

( )0.5 cos( ), 1.5 sin ,r U UI T Tf= u u = u u       (51) 
 
where T  is the azimuth angle and Uf  is the undisturbed 
free stream velocity. Figures 8a, 8b, 9a, and 9b show the 
comparison of chord-wise potential function, velocity 
distribution and pressure coefficient distribution 
respectively between the analytical solution, CSPM and 
QHOPM. From the presented results, we observe that the 
computed potential function and surface velocities are in 
good agreement with the analytical results, with the 
maximum error being close to 31 10−u  only. As the 
maximum error is extremely low, the curves are merging 
in Figures 8a, 8b, 9a, and 9b, e.g. they are over lapping 
for the analytical, CSPM and QHOPM. 
 
Since the velocity in CSPM is computed by a 
difference formula from the potential function, a small 
error in the potential function distribution can be 
magnified in the velocity function distribution, but the 
effect of these errors is localized. In the case of 
HOPM, the surface velocities are computed using 
chain rule and hence they are more accurate and easy 
to compute as compared to the CSPM. In Figures 9b 
and 10a, the comparison has been made between 
CSPM and QHOPM for the maximum error in 
perturbation potential function and surface velocity 
computations. And, we see that the QHOPM 
converges faster as compared to the CSPM. 
 

 
 

 

(a) Computed perturbation potential function at the 
center plane of sphere using the CSPM and QHOPM. 

(b) Computed surface velocity at the center plane of 
sphere using the CSPM and QHOPM. 

 
Figure 8: Computed perturbation potential function and surface velocity at the center plane of sphere using the CSPM 
and QHOPM. 
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(a) Computed pressure coefficient distribution at the 
center plane of sphere using CSPM and QHOPM. 

(b) Comparative study of the CSPM and QHOPM with 
respect to the maximum error in estimation of the 

potential function.  
Figure 9: Computed pressure coefficient distribution at the center plane of sphere using CSPM and QHOPM and 
comparative study of the CSPM and QHOPM with respect to the maximum error in estimation of the potential function. 
 

 
 

 

(a) Comparative study between the CSPM and QHOPM 
with respect to the maximum error in estimation of the 

velocity. 

(b) Computational comparison between the BEM of 
present paper and the FVM (Ansys-Fluent**TM). 

 
Figure 10: Comparative study between the CSPM and HOPM with respect to the maximum error in estimation of the 
velocity and computational comparison between the BEM of present paper and the FVM (Ansys-Fluent**TM). 

 
 
 

 

(a) Definition of the geometry and panel distribution for 
ellipsoid. 

(b) Comparative study on the effect of selection of knot 
vector on computational analysis. 

 
Figure 11: Definition of the geometry and mesh distribution for ellipsoid and comparative study on the effect of 
selection of knot vector on computational analysis. 
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Furthermore, Table 3 and Figure 10b show the 
comparison of mesh methods with ‘Finite Volume 
Method (FVM) – in Fluent**TM). From the results we 
notice that for the potential flow problems, the 
‘Boundary Element Method (BEM)’ converges faster as 
compared to the FVM and the computational costs 
involved in the BEM is very less as compared to the 
FVM for the same level of desired accuracy.  
 
6.2 PROBLEM 2: EFFECT OF THE KNOT 

VECTOR SELECTION ON ANALYSIS  
 
We consider the QHOPM and potential fluid flow past an 
ellipsoid with semi-lengths of its axes are given as 
AX=1.0, BY=0.2, and CZ=0.2. Figure 11a shows the 
mesh arrangement and geometry of ellipsoid. The 
maximum error in the surface velocity distribution over 
the center plane of ellipsoid for the different knot vectors 
is plotted in Figure 11b. Following Schlichting (1955), 
the analytical expression for velocity at the centre plane 
of ellipsoid is: 
 

 
2

2 2
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−
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−
                                 (52) 

 
with 𝑦 = √1 − 𝑟2 and 𝑥 is the distance from the 
midpoint in units so that the length is 2, and 𝑟 is the 
radius and the maximum surface velocity is: 
 

 max 2 ,
2

U
U Bf

=
−

                                   (53) 

 

where 
2

1
3

2(1 ) (tanh ).yB y y
y

−−
= −  From results of  

Figure 11b, we conclude that the centripetal method 
with a small value of centripetal parameter coefficient 
‘𝑎’ provides a tighter and efficient representation of 
the surface and results into higher accuracy in the 
potential function computations. 
 
6.3 PROBLEM 3: FLUID FLOW OVER A 

RECTANGULAR WING SECTION OF A 
NACA 0012 AEROFOIL 

 
We consider fluid flow over a rectangular wing (i.e. of 
NACA 0012 section). The numerical simulation is 
performed for the 5 degrees angle of attack with an 
aspect ratio of 5. The results are compared with results 
obtained from the FVM (Fluent**TM). The coordinate 
system and mesh arrangement for the problem are shown 
in Figure 12. Here, the QHOPM code is used and the 
analysis is performed for the same problem with different 
number of meshes both in the chord-wise and span-wise 
directions. Here, we find that the span-wise convergence 
is relatively slow compared to chord-wise convergence 
because of the low aspect ratio of wing section. The 
results show that our QHOPM - BEM is converging with 
20 chord-wise meshes and 25 span-wise meshes. 

Because this is a lifting problem, the ‘Kutta’ condition 
is applied at the trailing edge. In case of the lifting 
problem there is a vortex formation at the trailing edge 
of the wing or any lifting surface, and that can result 
in the formation of strong trailing edge vortices 
shedding from the tip of the wing. Due to the 
formation of these vortices, there is a downwash 
component of the velocity, and that can affect the 
pressure distribution over the wing and hence the lift 
and drag forces. The shape of these vortices changes 
with the angle of attack, and therefore the geometry of 
wake is also of primary concern for the correct 
imposition of the Kutta condition and for accurate 
prediction of the propeller dynamics or the lifting flow 
characteristics. Herein, the wake surface is being 
aligned numerically by imposing a zero force 
condition on the wake surface. To compute the shape 
of the wake surface numerically, it is important, first 
to compute the perturbation velocity at the wake grid 
points and then to move the meshes of the wake sheet 
using the Lagrangian scheme. 
 
Following, Morino & Kuo (1974), in order to compute 
the aligned wake surface, we use a relaxation algorithm. 
To accelerate the iteration process, an over-relaxation 
scheme is used for the first iteration and implemented 
after the first iteration is done. The algorithm consists of 
following steps: 
• Solve the boundary value problem using an arbitrary 

wake shape. 
• Compute the induced velocities at the collocation 

points of the first row and then move it to the second 
row using Euler scheme as keeping free stream 
coordinate as constant. This is written: 

 
( )
( )

, , 1 , ,

, , 1 , ,

m i m i m i i

m i m i m i i

y y V t

z z V t

I

I

− f

− f

= + � + u'

= + � + u'
                        (54) 

 
where ( ) ,it x U' = '  and for the planner wing 

( )inducedU U Uf= +  and for the propeller case 

( )T inducedU U U rf= + +:u . 

 
• Adjust the downstream wake shape so that it has the 

same shape as of the previous row, i.e. impose 
, ,m k m iy y= and , ,m k m iz z= , where 1 ... wk i N= + . 

• Repeat Steps 2 and 3 until the last row of the wake 
surface. 

• Now for the second iteration onwards all the meshes 
are moved at the same time and iterations are done 
until the convergence is achieved. 

 
Figures 12b, 12c, 12d, and 12e show the wake structure 
at the 7th, 11th, 15th and 20th iterations respectively. The 
computed velocity distribution over wing sectional 
surface of NACA 0012 aerofoil and its comparison with 
Fluent**TM are shown in Figure 12f.  
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(f) Computed velocity distribution over the wing 
geometry of NACA 00215 aerofoil section. 

 

 

(a) Definition of the wing geometry of NACA 00215 
aerofoil section with wake structure and panel 

distribution. 

(b) Computed wake structure at the end of 7th iteration 
of the wing NACA 00215 aerofoil section. 

(c) Computed wake structure at the end of 11th iteration 
of the wing NACA 00215 aerofoil section. 

(d) Computed wake structure at the end of 15th iteration 
of the wing NACA 00215 aerofoil section. 

(e) Computed wake structure at the end of 20th iteration 
of the wing NACA 00215 aerofoil section. 

 
 
Figure 12: Definition of the wing geometry of NACA 00215 aerofoil section with wake structure and mesh distribution, 
computed wake structure at the end of 7th, 11th, 15th and 20th iterations, and computed velocity distribution. 
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(a) Convergence of the computed velocity 
distribution over wing geometry of NACA 00215 

aerofoil section. 

(b) Convergence of the trailing edge vortex sheet 
behind wing geometry of NACA 00215 aerofoil 

section. 

 
Figure 13: Convergence of the computed velocity distribution over and trailing edge vortex sheet behind the wing 
geometry of NACA 00215 aerofoil section. 
 
 
 
From Figure 12f, we observe that the results are in good 
agreement with the FVM results (Fluent**TM) with a 
little discrepancy near the trailing edge. This discrepancy 
at the trailing edge is due to the viscous effects which 
cannot be exactly considered by the present QHOPM-
BEM as it is based on the potential flow assumptions. 
Figures 13a and 13b show the convergence of velocity 
distribution and the trailing edge vortex sheet with 
increasing number of meshes. The alignment algorithm 
shows the good convergence properties with respect to 
parameters governing the wake and wing discretization. 
From the results it can be noted that with an increase in 
longitudinal and transversal number of mesh, tip roll-up 
is better. 
 
 
6.4 PROBLEM 4: STEADY STATE 

PERFORMANCE OF AN UN-SKEWED 
PROPELLER (DTMB 4119 PROPELLER) 

 
Herein, we consider the steady state flow around an un-
skewed marine propeller on axi-symmetric hub. We use 
the ‘David Taylor Model Basin (DTMB) 4119’ propeller 
because for this propeller the experimental results are 
available from Jessup (1989). The particulars of the 
propeller are listed in Table 1. The DTMB 4119 propeller 
is a three bladed propeller. The propeller blades are un-
skewed with a zero degree rake angle and the section 
shape of the blade is a NACA 66 modified thickness 
form, superimposed on a mean camber line. The 
geometry of hub is elliptical. Since, the geometry and 
loading is repeated identically on each of the blades and 
on each of the hub segments, only one third of the 
geometry needs to be discretized. Only the twelve span-
wise meshes are arranged to be denser towards the tip, 
and each strip contains 23 upper and lower surface 

meshes. The mesh arrangement and the body of the 
propeller are shown in Figure 14a.  
 
We compute the performance of propeller for five 
different advance ratios and the pressure distribution over 
the blade surface at three different radial locations. The 
results are compared with the experimental results of 
Jessup (1989) and the measured (Jessup (1989)) and 
computed open water characteristics are shown in 
Figures 14b, 15a, 15b, 15c, 15d, 15e and 15f.  
 
Agreement between the experimental and computational 
results is found to be satisfactory, except near the trailing 
edge. Tables 4, 5, and 6 list the computed pressure coefficient 
on the pressure and suction sides at different values of r / R, 
and compare the computed values with experimental values 
(Jessup (1989)) in terms of absolute error. From Figure 14b, it 
can be noted that there is a difference between the present 
BEM and experimental results and that is due to the high 
viscous effects around the hub of the propeller (i.e. viscous 
effects are strong near the hub). As the BEM is based on 
potential flow theory, it is difficult to compute very accurate 
results near the hub sections.  
 
From Figures 15a and 15b, it can be observed that the 
agreement in pressure distribution is good between the 
experiment and present BEM. The main significant 
difference between the results arises near the leading 
edge where the pressure varies drastically from the 
stagnation pressure to some finite pressure. In the Figure 
15b, the pressure distribution on the lower surface of the 
blade near the trailing edge is flat in the experiment 
whereas it is having convex shape in the numerical 
computation. This error may be due to the error in 
measurement or in data processing. The open water 
characteristics are compared, and shown in Figure 15c.  
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(a) Definition of the geometry and surface panel 
distribution for DTMB 4119 propeller. 

(b) Computed pressure coefficient distribution for 
DTMB 4119 propeller at r/R =0.3 and J=0.833 and 

its comparison with Jessup (1989). 

 
Figure 14: Definition of the geometry, surface mesh distribution, computed pressure coefficient distribution for DTMB 
4119 propeller at r/R =0.3 and J=0.833 and its comparison with experimental results of Jessup (1989). 
 
 
Performance of the propeller is studied at different 
advance ratios and the absolute errors are presented in 
Tables 4, 5, and 6. It can be seen from Figure 15c that 
results are in good agreement with experimental results 
except at the J=0.5. At the J=0.5, this discrepancy is due 
to the increase in the drag due to flow separation at low 
advance ratio’s and since primarily this is a viscous 
phenomenon it cannot be captured easily with the BEM. 
 
Figures 15d, 15e, 15f and 16 show the convergence of 
pressure distribution on different radial locations and 
open water characteristics with increasing number of 
meshes. From the results, we note that they show good 
convergence with 23 chord-wise and 12 span-wise mesh 
distribution except at near radii (r/R=0.3). 
 
6.5  PROBLEM 5: STEADY STATE 

PERFORMANCE OF A SKEWED 
PROPELLER (DTNSRDC 4382 PROPELLER) 

 
To further test the present BEM for more complex 
problem related to propeller, the steady state flow around 
a skewed propeller (DTNSRDC 4382 propeller) on an 
axi-symmetric hub is considered. The particulars of 
propeller are listed in Table 8.  
 
The DTNSRDC 4382 propeller is a five bladed 
propeller. The propeller blades are having skew of 36 
degrees and the section shape of the blade is a NACA 
66 modified thickness form, superimposed on a mean 
camber line. The geometry of the hub is elliptical. The 
more details can be found in Cumming et al. (1972). 

Since, the geometry and loading is repeated identically 
on each of the blades and on each of the hub segments, 
only one fifth of the geometry needs to be discretized. 
Only the sixteen span-wise meshes are arranged to be 
denser towards the tip, and each strip contains 28 upper 
and lower surface meshes. The mesh arrangement and 
the body of the propeller are shown in Figure 17a, 17b 
and 17c.  
 
The wake alignment scheme discussed before is used. Herein, 
the performance of propeller is computed for 5 different 
advance ratios. The results are compared with the 
experimental results of Cumming et al. (1972). The measured 
(Cumming et al. (1972)) and computed open water 
characteristics are shown in Figure 17d and listed in Table 9. 
The agreement between the experimental and computational 
results is found to be satisfactory. The pressure distribution 
for this propeller is also calculated, but due to unavailability 
of results for comparison these are not presented here. Figure 
18c presents the convergence of open water characteristics 
with respect to number of mesh and we observe that the 
convergence is achieved with 28 chord-wise and 16 span-
wise meshes. Figures 18a and 18b show the convergence of 
open water characteristics with different wake vortex sheets 
and for the convergence study two initial wakes with different 
P/D (0.6 and 1.2) are selected.  
 
Results show that the aligned vortex sheet converges to 
same sheet irrespective to initial wake sheet. Further, it 
can be noted that with the aligned wake sheet behind the 
propeller open water characteristics are well converged, 
Figure 18d.  
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 (a) Computed pressure coefficient distribution for 
DTMB 4119 propeller at r/R =0.7 and J=0.833 and 

its comparison with Jessup (1989). 

(b) Computed pressure coefficient distribution for 
DTMB 4119 propeller at r/R =0.9 and J=0.833 and 

its comparison with Jessup (1989). 

(c) Comparison of the computed open water 
characteristic of DTMB 4119 propeller by the 

present BEM based with Jessup (1989). 

(d) Convergence characteristics of the pressure 
distribution with different number of panels at 

r/R=0.3. 

(e) Convergence characteristics of the pressure 
distribution with different number of panels at 

r/R=0.7. 

(f) Convergence characteristics of the pressure 
distribution with different number of panels at 

r/R=0.9.  
 
Figure 15: Computed pressure coefficient distribution at r/R =0.7 and 0.9 and J=0.833, computed open water 
characteristic, and convergence characteristics of the pressure distribution with different number of meshes at r/R=0.3, 
0.7, and 0.9 and their comparison with Jessup (1989). 
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Figure 16: Convergence characteristics of open water characteristics with different number of meshes for the present 
BEM. 

 
 

 

(a) Definition of the geometry and surface panel 
distribution for DTNSRDC 4382 propeller. 

(b) Front view and the surface panel distribution for 
DTNSRDC 4382 propeller. 

(c) Isometric view and the surface panel distribution 
for DTNSRDC 4382 propeller. 

(d) Comparison of the computed open water 
characteristic of DTNSRDC 4382 propeller by the 

present BEM with Cumming et al. (1972).  
 
Figure 17: Definition of the geometry, surface mesh distribution, front and isometric views and comparison of the 
computed open water characteristic of DTNSRDC 4382 propeller by the present BEM with Cumming et al. (1972). 
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(a) Comparison between the aligned wake starting from initial wake with P/D = 0.6. 

 

 
(b) Comparison between the aligned wake starting from initial wake with P/D = 1.2. 

 

(c) Computational convergence of the open water 
characteristics with different number of panels of 
DTNSRDC 4382 propeller by the present BEM. 

 

(d) Convergence of the computed open water 
characteristics with different wake vortex sheets 

of DTNSRDC 4382 propeller by the present BEM 
with Cumming et al. (1972). 

 
Figure 18: Comparison between the aligned wake starting from initial wake with P/D = 0.6 and 1.2, computational 
convergence and comparison of the open water characteristics with different number of meshes and with different wake 
vortex sheets of DTNSRDC 4382 propeller by the present BEM with Cumming et al. (1972). 
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7.  CONCLUSIONS AND THE FUTURE 
SCOPE OF WORK 

 
The present paper has implemented NURBS based iso-
geometric approach with the HOPM for the fluid flow 
analysis on a class of engineering hydrodynamic 
problems in which fluid flow past the bodies can be 
studied by Laplace’s equation, e.g. subsonic flow around 
wings, flow around spheres, ellipsoids, and flow past 
marine propellers. We also studied the CSPM and have 
shown the superiority of the HOPM over LOPM with an 
example of the fluid flow around sphere. We studied the 
FVM in terms of the computational cost involved and 
compared it with the present BEM for a specific problem 
and found that the present BEM is superior to the FVM 
for the problems studied here. This observation is 
expected to be valid for all types of the ‘Boundary Value 
Problems (BVPs)’. Our presented results studied the 
effect of the knot vector selection on the body surface 
representation and the numerical analysis and we have 
reported ideal choices in terms of knot vector selection. 
Also, we studied the steady state performance of both the 
skewed and un-skewed propellers, i.e. DTMB 4119 
propeller and DTNSRDC 4382 propeller. Our results 
have shown that computed pressure distributions on the 
blade of the marine propeller are in good agreement with 
the experimental results. Also the open water 
characteristics of the propeller are in good agreement 
with the experimental results for the sufficiently high 
range of the advance coefficients. 
 
Finally, the following main conclusions can be drawn 
from the present work: 
• When viscous effects are not predominant the BEM 

based present method has a good convergence rate 
as compared to the FVM (Fluent**TM). For example, 
in case of the flow around sphere, FVM (Fluent**TM) 
takes approximately 2.4 times more computational 
time as compared to the present method (BEM) and 
also number of elements required by FVM 
(Fluent**TM) is 5 times more as compared to BEM 
for same desired accuracy. 

• The HOPM converges fast as compared to LOPM, 
e.g. for the fluid flow over sphere, number of meshes 
required by LOPM is approximately 10 times more 
than the number of the meshes required by HOPM 
for the same desired accuracy. 

• The knot vector selection shows a significant effect 
on both geometry approximation and solution 
obtained. The centripetal parameter coefficient ‘𝑎’ 
around 0.2 gives good accuracy and it seems to be an 
optional choice. 

 
However, this can only be confirmed with detailed 
investigation. 
 
• Present method does not show good enough results 

when viscous effects become predominant. Hence, a 
viscous correction needs to be implemented and this 
is to be explored in the future. 

Furthermore, we plan to study a NURBS based IGA with 
implementation of viscous corrections to overcome the 
shortcomings of potential flow based assumption used in 
present paper. In addition, limitations of the NURBS can 
be addressed using the T-splines (Sederberg et al. 
(2003)). Additionally, the weights in the NURBS 
representation can be optimized which is fairly an open 
problem as no real solution has been proposed till now. 
Our future work shall go in these directions and some of 
them are under investigation. 
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APPENDIX - TABLES 
 

Table 1: Propeller offset data of the DTMB 4119 propeller adapted from Jessup (1989). 
 

Offset data parameters: Number of blades: K = 3, Hub diameter ratio: 0.2, Section 
mean line: NACA a = 0.8, and Thickness distribution: NACA 66 (modified) 

/r R  /c D  sx D  ( )s rT  /P D  /t c  /f c  c  

0.20 0.3200 0 0 1.1050 0.2055 0.0143 0.097536 
0.30 0.3635 0 0 1.0220 0.1553 0.0232 0.110795 
0.40 0.4048 0 0 1.0983 0.1180 0.0230 0.123383 
0.50 0.4392 0 0 1.0932 0.0902 0.0218 0.133868 
0.60 0.4610 0 0 1.0879 0.0696 0.0207 0.140513 
0.70 0.4622 0 0 1.0839 0.0542 0.0200 0.140879 
0.80 0.4347 0 0 1.0811 0.0421 0.0197 0.132497 
0.90 0.3613 0 0 1.0785 0.0332 0.0182 0.110124 
0.95 0.2775 0 0 1.0770 0.0323 0.0163 0.084582 
0.98 0.2045 0 0 1.0761 0.0321 0.0145 0.062332 
1.00 0.0800 0 0 1.0750 0.0361 0.0188 0.024384 

  
 
 

Table 2: Relative error in the adaptive integration. 
 

Number of division 1 4 10 16 ( 0.4F d ) 
Relative error 4.51E-2 7.061E-4 1.2989E-4 1.105E-6 

  
 
 

Table 3: Configuration of the computing machine and comparison of the computational cost of the present BEM and 
Fluent**TM software. 

 
Configuration of the computing machine 

Processor Intel® Core™ i5-2500 CPU @ 3.30 GHz 
Installed memory 

(RAM) 
16.0 GB 

System type 64-bit Operating system 
Physical memory 

(Hard disk) 
500 GB 

Comparison of the computational cost of the present BEM and Fluent**TM software 

Number of the 
panels 

Computational 
time for the 

present BEM 

Computational 
time for the 

Fluent**TM software 

Maximum velocity 
achieved by the 

present BEM (cm/s) 

Maximum velocity 
achieved the Fluent**TM 

software (cm/s) 
250 1 min 24 Sec 2 min 04 Sec 1.499102 1.44518 

1000 17 min 36 Sec 14 min 23 Sec 1.499772 1.47326 
3000 30 min 30 Sec 21 min 36 Sec 1.499982 1.48222 

5402 

N/A as the 
sufficient 

convergence has 
been achieved 

already. 

49 min 28 sec 
N/A as the sufficient 
convergence has been 

achieved already. 
1.499236 
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Table 4: Comparison of the computed pressure coefficient on pressure and suction sides for the blade of DTMB 4119 
propeller at r/R=0.3 by the present method with the experimental results of Jessup (1989). 

 
(a) Pressure side 

X/c Experimental value of the pressure 
coefficient from Jessup (1989) 

Numerical solution from 
the present BEM 

Absolute error of the present 
method w.r.t. the Jessup 

(1989) 
0.000 0.00000 -0.8000 0.80000 
0.021 -0.22000 -0.2100 0.01000 
0.080 0.08000 0.0700 0.01000 
0.100 0.02300 0.0710 0.04800 
0.150 0.00861 0.0500 0.04139 
0.170 0.08000 0.0700 0.01000 
0.210 0.08000 0.0820 0.00200 
0.305 0.07000 0.0720 0.00200 
0.360 0.07000 0.0770 0.00700 
0.405 0.06000 0.0732 0.01320 
0.460 0.05000 0.0400 0.01000 
0.570 -0.01000 0.0200 0.03000 
0.690 -0.02000 0.0320 0.05200 
0.770 -0.09800 -0.0600 0.03800 
0.830 -0.10000 -0.0920 0.00800 
0.900 -0.19000 -0.2000 0.01000 
0.950 -0.20000 -0.2800 0.08000 
1.000 -0.26000 -0.3400 0.08000 

(a) Suction side 
0.021 -0.22 0.1181 0.3381 
0.050 0.34 0.3100 0.0300 
0.100 0.43 0.4100 0.0200 
0.200 0.50 0.5100 0.0100 
0.300 0.48 0.5000 0.0200 
0.400 0.44 0.4800 0.0400 
0.450 0.40 0.4400 0.0400 
0.500 0.38 0.3900 0.0100 
0.550 0.39 0.3600 0.0300 
0.600 0.37 0.3300 0.0400 
0.710 0.21 0.2300 0.0200 
0.760 0.16 0.1900 0.0300 
0.820 0.04 0.0650 0.0250 
0.860 -0.01 -0.0500 0.0400 
0.950 -0.20 -0.2500 0.0500 
1.000 -0.26 -0.3200 0.0600 
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Table 5: Comparison of the computed pressure coefficient on pressure and suction sides for the blade of DTMB 4119 
propeller at r/R=0.7 by the present method with the experimental results of Jessup (1989). 
 

 
(a) Pressure side 

X/c Experimental value of the pressure 
coefficient from Jessup (1989) 

Numerical solution from 
the present BEM 

Absolute error of the present 
method w.r.t. the Jessup 

(1989) 
0.050 -0.10000 -0.08500 0.01500 
0.090 -0.05000 -0.04600 0.00400 
0.130 -0.03000 -0.02800 0.00200 
0.180 -0.02700 -0.02600 0.00100 
0.200 -0.02600 -0.02500 0.00100 
0.230 -0.02400 -0.02400 0.00000 
0.290 -0.01800 -0.01760 0.00040 
0.340 -0.00816 -0.00800 0.00016 
0.390 0.00000 0.00000 0.00000 
0.440 0.01000 0.00980 0.00020 
0.470 0.00530 0.00400 0.00130 
0.525 -0.00900 -0.00700 0.00200 
0.580 -0.01000 -0.00963 0.00037 
0.626 -0.01200 -0.01000 0.00200 
0.680 -0.02450 -0.02600 0.00150 
0.728 -0.05000 -0.04670 0.00330 
0.775 -0.04900 -0.04480 0.00420 
0.825 -0.05000 -0.04500 0.00500 
0.885 -0.05100 -0.04600 0.00500 
0.925 -0.02500 -0.02000 0.00500 
0.957 -0.03000 -0.02600 0.00400 
1.000 -0.07000 -0.07300 0.00300 

(a) Suction side 
0.000 -0.098 -0.4200 0.3220 
0.040 0.020 0.0400 0.0200 
0.070 0.095 0.1000 0.0050 
0.098 0.112 0.1200 0.0080 
0.125 0.125 0.1400 0.0150 
0.160 0.150 0.1650 0.0150 
0.210 0.18 0.1930 0.0130 
0.275 0.200 0.2000 0.0000 
0.327 0.180 0.1850 0.0050 
0.375 0.175 0.1820 0.0070 
0.425 0.170 0.1740 0.0040 
0.475 0.165 0.1720 0.0070 
0.525 0.160 0.1700 0.0100 
0.575 0.165 0.1730 0.0080 
0.625 0.152 0.1650 0.0130 
0.680 0.148 0.1520 0.0040 
0.725 0.120 0.1360 0.0160 
0.775 0.100 0.1125 0.0125 
0.830 0.060 0.0800 0.0200 
0.870 0.020 0.0400 0.0200 
0.950 -0.020 -0.0100 0.0100 
1.000 -0.070 -0.0550 0.0150 
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Table 6: Comparison of the computed pressure coefficient on pressure and suction sides for the blade of DTMB 4119 
propeller at r/R=0.9 by the present method with the experimental results of Jessup (1989). 

 
(a) Pressure side 

X/c Experimental value of the pressure 
coefficient from Jessup (1989) 

Numerical solution from 
the present BEM 

Absolute error of the present 
method w.r.t. the Jessup 

(1989) 
0.000 -0.0800 -0.22520 0.1452 
0.048 -0.0450 -0.04400 0.0010 
0.075 -0.0380 -0.03600 0.0020 
0.120 -0.0300 -0.02850 0.0015 
0.160 -0.0250 -0.02460 0.0004 
0.200 -0.0210 -0.01980 0.0012 
0.250 -0.0200 -0.02000 0.0000 
0.290 -0.0220 -0.02100 0.0010 
0.340 -0.0200 -0.01980 0.0002 
0.380 -0.0170 -0.01620 0.0008 
0.440 -0.0100 -0.00900 0.0010 
0.500 -0.0050 -0.00496 4E-05 
0.550 -0.0020 -0.00198 2E-05 
0.600 -0.0010 -0.00010 0.0009 
0.650 -0.0008 -0.00100 0.0002 
0.710 -0.0200 -0.01910 0.0009 
0.775 0.0000 -0.02200 0.0220 
0.825 0.0010 -0.01500 0.0160 
0.875 0.0010 -0.01800 0.0190 
0.950 0.0010 -0.01500 0.0160 

(a) Suction side 
0.025 0.065 0.0640 0.0010 
0.060 0.080 0.0820 0.0020 
0.125 0.100 0.1100 0.0100 
0.175 0.110 0.1210 0.0110 
0.225 0.121 0.1252 0.0042 
0.275 0.123 0.1250 0.0020 
0.340 0.119 0.1210 0.0020 
0.380 0.116 0.1200 0.0040 
0.420 0.112 0.1220 0.0100 
0.500 0.114 0.1250 0.0110 
0.530 0.110 0.1200 0.0100 
0.580 0.121 0.1200 0.0010 
0.650 0.112 0.1202 0.0082 
0.700 0.098 0.1000 0.0020 
0.750 0.070 0.0800 0.0100 
0.800 0.060 0.0650 0.0050 
0.850 0.050 0.0530 0.0030 
0.900 0.030 0.0340 0.0040 
0.950 0.020 0.0200 0.0000 
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Table 7: Comparison of the computed open water characteristics (KQ and KT) of DTMB 4119 propeller by the present 
BEM with the experimental results of Jessup (1989). 

 

Torque coefficient (KQ) 
Advance ratio (J) Experimental values of 

KQ  from Jessup (1989) 
Numerical solution 
by the present BEM 

Absolute error of the present 
BEM w.r.t. the Jessup (1989) 

0.50 0.455 0.4400 0.0150 
0.70 0.360 0.3510 0.0090 
0.82 0.280 0.2730 0.0070 
0.90 0.230 0.2261 0.0039 
1.10 0.120 0.1150 0.0050 

Thrust coefficient (KT) 
0.50 0.28 0.27169 0.00831 
0.70 0.20 0.19180 0.00820 
0.82 0.15 0.14400 0.00600 
0.90 0.12 0.11400 0.00600 
1.10 0.03 0.02700 0.00300 

  
 
 
 

Table 8: Propeller offset data of the DTNSRDC 4382 propeller adapted from the Cumming et al. (1972). 

Offset data parameter: Number of blades - K =5, Expanded area ratio 0.725, Hub diameter 
ratio: 0.2, Section mean line: NACA a=0.8, and Thickness distribution: NACA 66 (modified). 

/r R  ( )s rT  /c D  /t c  /P D  /f c  

0.3 4.6550 0.229 0.1562 1.4332 0.037 
0.4 9.3630 0.275 0.1068 1.4117 0.0344 
0.5 13.948 0.312 0.0768 1.3613 0.0305 
0.6 18.378 0.337 0.0566 1.2854 0.0247 
0.7 22.747 0.347 0.0421 1.1999 0.0199 
0.8 27.145 0.334 0.0314 1.1117 0.0161 
0.9 31.575 0.280 0.0239 1.0270 0.0134 
1.0 36.000 0.000 - 0.9420 - 

  
 
 
 

Table 9: Comparison of the computed open water characteristics (KQ and KT) of DTNSRDC 4382 propeller by the 
present BEM with the experimental results of Cumming et al. (1972). 

 

Torque co-efficient (KQ) 
Advance ratio (J) Experimental values of the KQ 

from Cumming et al. (1972) 
Numerical solution 
by the present BEM 

Absolute error of the present BEM 
w.r.t. the Cumming et al. (1972) 

0.2 1.00 0.940 0.060 
0.4 0.81 0.780 0.030 
0.6 0.65 0.630 0.020 
0.8 0.50 0.485 0.015 
1.0 0.36 0.350 0.010 

Thrust co-efficient (KT) 
0.2 0.55 0.500 0.050 
0.4 0.45 0.405 0.045 
0.6 0.34 0.320 0.020 
0.8 0.24 0.230 0.010 
1.0 0.16 0.155 0.005 

 

 


