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SUMMARY 
 
The dynamic stress intensity factors (DSIFs) for cracked stiffened plates considering the actual boundary conditions in 
ship structures are analyzed by the extended finite element method (XFEM). The sensitivity of numerical results with 
respect to mesh size and time step is discussed. Some other influential parameters including stiffener height, crack location 
and crack length are also analyzed. The numerical results show that the convergence is affected by mesh size and time 
step. By using XFEM, singular elements are not needed at the crack front and moderately refined meshes can achieve 
good accuracy. The height of the stiffener and crack location significantly effect DSIFs, while the crack length slightly 
influences the DSIFs. 
 
 
NOMENCLATURE 
 
𝐻(𝒙) Heaviside step function (Moёs et al., 1999)  
𝐹𝑙(𝒙) Westergaard asymptotic function (Moёs et al., 

1999) 
𝜙  Nodal shape function 
𝒖ℎ Nodal displacement vector 
𝐾𝑠 Static stress intensity factors (MPa m1/2) 
𝐾𝐼(𝑡), 𝐾𝐼𝐼(𝑡)   Mode I, Mode II dynamic stress intensity 

factors (Moёs et al., 1999) 
c  Half crack length (mm) 
W  Half width of finite plate (mm) 
H  Half height of finite plate (mm) 
a  Length of plate (mm) 
b  Width of plate (mm) 
tp   Thickness of plate (mm) 
hw   Height of stiffener (mm) 
tw  Thickness of stiffener (mm) 
 
 
1. INTRODUCTION 
 
The environmental loadings on ships and offshore 
structures in rough sea or emergencies, such as impact and 
earthquake, should be considered as dynamic loads. When 
a cracked structure is subjected to dynamic loading, the 
load is propagated by stress waves. Thus, the interaction 
between the stress waves and cracks makes the dynamic 
fracture more complex than in quasi-static cases. As the 
basic components of ships and offshore structures, 
stiffened steel plates are widely used because of their 
light-weight, high structure efficiency and good crack 
arresting properties. In hull structures cracking damage is 
typically initiated in welded or stress concentration 
regions, such as the intersection line between plate and 
stiffener. These cracks may grow under dynamic loading 
conditions, resulting in cracks of various sizes, locations 
and orientations. Therefore, an important task is to 
accurately evaluate the dynamic stress intensity factors 
(DSIFs) for cracked stiffened plates. These can then be 

used to investigate crack initiation, propagation and arrest 
under dynamic loading. 
 
Chen (1975) examined a centrally cracked rectangular 
finite strip subjected to step loading using a Lagrangian 
finite difference method. DSIFs were obtained from the 
relation between DSIFs and stress fields in the vicinity of 
the crack tip. This problem has been considered as a 
benchmark and examined by many researchers. Lin and 
Ballmann (1993) reconsidered Chen’s problem using the 
same method. Their numerical results are almost identical 
with those obtained by Chen except for a few time periods 
when wave fluctuations occurs. Song and Paulino (2006) 
evaluated DSIFs for both homogeneous and non-
homogeneous materials by using the interaction integral 
method. Xie et al. (2007, 2009) calculated DSIFs for some 
dynamic stationary cracks based on the virtual crack 
closure technique (VCCT). By using the implicit time 
scheme, the results obtained are in good agreement with 
the benchmark (Chen, 1975) results. Nevertheless, among 
the existing research, the mesh dependence of the crack is 
one of the main drawbacks.  
 
The partition of unity method (PUM) for discontinuities 
and near-tip crack fields was firstly introduced by 
Belytschko and Black (1999). The name XFEM was given 
by Moёs et al. (1999) and Dolbow et al. (2000) after 
proposing two types of nodal enrichments to model the 
crack. The nodes of fully-cut elements are enriched by the 
Heaviside step function, while the Westergaard 
asymptotic function is used to enrich the nodes of the 
elements containing the crack tips. Sukumar et al. (2000) 
described three-dimensional crack modelling by XFEM 
and stress intensity factors (SIFs) for planar three-
dimensional cracks were presented. Because of modeling 
of the discontinuities without any dependence with the 
mesh size and orientation, XFEM has more advantages 
than classical finite element method (FEM) in dealing 
with fracture problems. In recent years, more and more 
researchers have adopted XFEM approaches to analyse 
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discontinuous phenomena occurring in structures under 
quasi-static (González-Albuixech et al., 2013; Qian et al., 
2016; Bergara et al., 2017; Kumar et al., 2017; Wang et 
al., 2017; Feng & Li, 2018) or dynamic loading (Nistor et 
al., 2008; Menouillard et al., 2010; Haboussa et al., 2011; 
Saribay & Nied, 2014; Agarwal et al., 2015; Wen & Tian, 
2016). However, the relevant investigations have been 
largely limited to specimens and benchmark problems. 
Because of this complexity, few researchers have 
considered dynamic fracture problems in actual 
engineering structures (Chen & Chen, 2013; Shimbo, 
2017). Literature on dynamic fracture research using 
XFEM does not seem to be available for the stiffened 
plates in ship hull structures. 
 
In the present paper, XFEM is adopted to calculate the DSIFs 
for stiffened plates with a central crack in the plate. Actual 
boundary conditions for cracked stiffened plates in ship 
structures are considered. In order to verify the reasonability, 
both 2D and 3D models are compared by means of FEM and 
XFEM in a benchmark problem. Then the DSIFs for cracked 
stiffened plates are evaluated by XFEM. The sensitivity of 
numerical results with respect to mesh size and time step is 
discussed. The influences of stiffener height, crack length and 
crack location are also considered in the analyses. Some 
meaningful conclusions on DSIFs for cracked stiffened plates 
are obtained from the study.  
 
 
2. DEVELOPMENT OF XFEM 
 
Based on the partition of unity method (PUM), XFEM 
incorporates a discontinuous function and the near-tip 
asymptotic fields to the standard displacement-based 
finite element approximation. For example, for the 
discretization shown in Figure 1 (in which squared nodes 
are enriched with the Heaviside function and have two 
additional degrees of freedom, while circled nodes are 
enriched with the crack tip functions and have eight 
additional degrees of freedom), the displacement 
approximation for two-dimensional crack modeling in 
XFEM takes the form due to Moёs et al. (1999): 
 

𝒖ℎ = ∑ 𝒖𝑖𝜙𝑖
𝑖∈𝐼

+ ∑ 𝒃𝑗𝜙𝑗𝐻(𝒙)
𝑗∈𝐽

+ ∑ 𝜙𝑘(∑ 𝒄𝑘
𝑙 𝐹𝑙(𝒙)

4

𝑙=1

)
𝑘∈𝐾

 

(1) 
 
where I is the set of all nodes in the mesh, 𝜙𝑖 is the nodal 
shape function, and 𝒖𝑖 is the standard degrees of freedom 
(DOFs) of node i ( 𝒖𝑖  represents the physical nodal 
displacement for non-enriched nodes only). The subsets J 
and K contain the nodes enriched with the generalized 
Heaviside function 𝐻(𝒙)  or crack tip functions 𝐹𝑙(𝒙) , 
respectively, and 𝒃𝑗, 𝒄𝑘

𝑙  are the corresponding DOFs.  
 
The stress intensity factors (SIFs) are extracted by the 
interaction integral method in XFEM. The coordinates are 
taken to be the local crack tip co-ordinates with the x1-axis 
parallel to the crack faces, as shown in Figure 2. Under 

general mixed mode situations, the SIFs can be related to 
the J-integral using the following expression (Moёs et al., 
1999): 
 

𝐽 = 𝐾𝐼
2

𝐸∗ + 𝐾𝐼𝐼
2

𝐸∗                                           (2) 
 
where 𝐸∗  is defined in terms of material parameters 𝐸 
(Young’s modulus) and 𝜈 (Poisson’s ratio) as: 
 

𝐸∗ = {
   𝐸       plane stress

𝐸
1−𝜈2     plane strain                           (3) 

 
To compute the stress intensity factors 𝐾𝐼  and 𝐾𝐼𝐼 , 
auxiliary fields have to be introduced. Then the interaction 
integral is derived from the application of the J-integral to 
a problem where two stress fields are involved, resulting 
in the following decomposition: 
 

𝐽(1+2) = 𝐽(1) + 𝐽(2) + 𝐼(1,2)                        (4) 
 

 
Figure 1 Enriched nodes for two-dimensional crack 
modeling in the XFEM 
 

 
Figure 2 Schematic of the interaction integrals (Domain 
A is enclosed by Γ, C+, C-, C0. Unit normal mj=nj on C+, 
C-, C0, mj=-nj on Γ.) 
 
 
The term 𝐼(1,2) corresponds to the interaction integral and 
includes the interaction between the two intervening 
fields, which may be written as 
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𝐼(1,2) = ∫ [𝑊(1,2)𝛿1𝑗 − 𝜎𝑖𝑗
(1) 𝜕(𝑢𝑖

(2))
𝜕𝑥1

− 𝜎𝑖𝑗
(2) 𝜕(𝑢𝑖

(1))
𝜕𝑥1

]Γ 𝑛𝑗 𝑑Γ  

(5) 
 
where (𝜎𝑖𝑗

(1), 𝜀𝑖𝑗
(1), 𝑢𝑖

(1)) corresponds to the actual state and 
(𝜎𝑖𝑗

(2), 𝜀𝑖𝑗
(2), 𝑢𝑖

(2)) , is an auxiliary state, which has to be 
chosen as the asymptotic fields for Mode I or II. 𝑊(1,2) is 
the interaction strain energy, and may be written as: 
 

𝑊(1,2) = 𝜎𝑖𝑗
(1)𝜀𝑖𝑗

(2) = 𝜎𝑖𝑗
(2)𝜀𝑖𝑗

(1)                         (6) 
 
As contour Γ approaches the crack tip, the relationship 
between the interaction integral and the SIFs of the actual 
and auxiliary fields is: 
 

𝐼(1,2) = 2
𝐸∗ (𝐾𝐼

(1)𝐾𝐼
(2) + 𝐾𝐼𝐼

(1)𝐾𝐼𝐼
(2))                     (7) 

 
Substituting 𝐾𝐼

(2) = 1 , 𝐾𝐼𝐼
(2) = 0  and 𝐾𝐼

(2) = 0 , 𝐾𝐼𝐼
(2) = 1 

into Eq. (7), respectively, Mode I and Mode II SIFs of 
actual fields can be decoupled and determined as: 
 

𝐾𝐼 = 𝐸∗

2
𝐼(1), 𝐾𝐼𝐼 = 𝐸∗

2
𝐼(2)                           (8) 

 
 
3. METHOD VERIFICATION 
 
In this section, a center cracked tension (CCT) specimen 
is analyzed to verify the XFEM implementation for 
comparison, which is a pure mode-I problem and was first 
studied by Chen (1975). Figure 3(a) shows a rectangular 
finite plate of width 2W=20 mm and height 2H=40 mm, 
with a central crack of length 2c=4.8 mm. The material is 
homogeneous, isotropic and linear elastic. Young’s 
modulus, Poisson’s ratio and mass density are 199.992 
GPa, 0.3 and 5000 kg/m3, respectively. The tension impact 
loading p(t) is applied instantaneously to both top and 
bottom edges with a step function. The load amplitude 
p(0) is equal to 0.4 GPa, and the time duration is 14 μs. 
The computed DSIFs are normalized with respect to: 
 

𝐾𝑠 = 𝜎0√𝜋𝑐                                       (9) 
 
where 𝜎0 is the magnitude of applied stress, c is half of 
the total crack length. Here, 𝜎0 is equal to the load 
amplitude p(0). 
 
Then, Chen’s problem is computed using the FE code 
ABAQUS (2014), in which both the finite element 
method (FEM) and XFEM are adopted. The simulations 
are performed with a time step of △t=0.05 μs. Both 2D 
(dimensions) and 3D models are compared. Plane strain 
is assumed in the 2D model. The stress singularity must 
be considered using contour integral methods for both 
2D and 3D FE models. By moving the mid-point nodes 
to the one-quarter point and keeping the nodes on the 
cracked face, the singularity effect at the crack front 
will be included, hence avoiding the use of singular 
elements in FEM. However, XFEM allows the 

modeling of the crack geometry independent of the 
mesh, because it enriches the FE approximation space 
with special functions that introduce the displacement 
discontinuity across the crack faces and the singular 
behaviour associated with the crack front. 
 
Figures 3(b)-(d) show the whole mesh configuration for 
2D, 3D FE and 3D XFEM model, respectively. A 6-node 
quadratic plane strain triangle element (in ABAQUS it is 
called the CPE6 element) is used to simulate the 
singularity effect near the crack tip in the 2D model, and 
8-node biquadratic plane strain quadrilateral elements 
(CPE8) are adopted for the other regions of the model. For 
the 3D model with contour integral method, to simulate 
the stress singularity, a wedge element (C3D6) is utilized 
in the region around the crack front, and an 8-node linear 
brick element (C3D8R) is adopted for the rest of the 
model. As above, if using the XFEM, the whole 3D model 
can be discretized with C3D8R elements, and the mesh is 
regular without singular or highly refined elements at the 
crack front. For simplicity, the plate thickness of 3D 
models is divided into 2 elements. The calculations of 2D 
FE, 3D FE and 3D XFEM model were done in 1’5’’, 
3’34’’ and 4’35’’, respectively. 
 
 
 

 
(a) Geometric dimensions and boundary conditions 

 

 
(b) Mesh for 2D FE model 
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(c) Mesh for 3D FE model 

 

 
(d) Mesh for 3D XFEM model 

Figure 3 CCT specimen 
 
 

 
Figure 4 Comparison between the present results and the 
reference solution by Chen (1975) 
 
 
The normalized DSIFs by the present methods are 
compared with those of the reference solution by Chen 
(1975), as illustrated in Figure 4. It has been noticed 
that the extractions of 𝐾𝐼(𝑡) from the 3D models are 
made in the middle layer through the plate thickness. 
The results of the 2D contour integral method are in 
good agreement with the reference solution (Chen, 

1975) as seen in Figure 4. However, for the 3D 
models, the numerical results are in general 
agreement, that is to say, the trend of the DSIFs curves 
is similar to that of Chen (1975). The main differences 
are the amplitudes of DSIFs at several points in time.  
The reason for this is that some differences exist 
between the 2D and 3D model. For the 3D model, the 
condition varies from a higher constraint at the middle 
of the plate to a lower constraint near the free surfaces. 
Thus, through the 3D model thickness, constraint loss 
occurs and a plane strain condition will not hold along 
the crack front. Even so, it is evident that the present 
numerical results from the 3D models, by means of 
FEM and XFEM, agree well with each other. The first 
peak values of them are both higher than Chen’s 
(1975), but the second peak values are quite close. 
Therefore it can be considered that the XFEM is 
acceptable for calculating the DSIFs, and that good 
accuracy can be achieved. 
 
 
4. FE MODEL FOR CRACKED STIFFENED 

PLATE  
 
The cracked stiffened plate with a symmetric cross section 
in Cui et al. (2017) has been analysed in the work reported 
in this paper, as shown in Figure 5. The detailed 
dimensions of plate and flat-bar stiffener are as follows: 
plate length a=3400 mm, plate width b=850 mm, plate 
thickness tp=22 mm, stiffener height hw=250 mm and 
stiffener thickness tw=25 mm. The stiffener has the same 
material property as the plate, which is homogeneous, 
isotropic and linear elastic. The detailed material 
parameters are as follows: Young’s modulus E=205800 
MPa, Poisson’s ratio ν=0.3 and mass density ρ=7800 
kg/m3. The cracked stiffened plate is subjected to tension 
step load p(t) on the transverse edge, with duration td=2.5 
ms and load peak p(0)=50 MPa. The crack with a length 
2c=250 mm is located in the middle of the plate and is 
symmetric with respect to the stiffener.  
 
 
 

 
(a) Boundary and loading conditions for 3D XFEM 

model 
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(b) Mesh for 3D FE model 

Figure 5 Cracked stiffened plate 
 
 
As the model in the present study is a combination of one 
stiffener with attached plate, which is extracted out of a 
continuous plated structure, such as the deck of a ship hull 
girder, proper boundary and loading conditions have to be 
imposed in order to simulate real behaviour of a ship’s 
stiffened plate. Figure 5(a) depicts the boundary/loading 
conditions of the cracked stiffened plate model. 
Longitudinal edges of the cracked stiffened plate are 
assumed to have symmetrical conditions. Moreover, the 
tension impact loading is applied on the simply-supported 
straight loaded edge, while its opposite simply-supported 
unloaded edge is restrained against in-plane movement. 
 
For the XFEM model, the FE code ABAQUS cannot 
properly define the crack if the symmetry plane lies on 
the crack plane. Thus, the z-plane (crack plane) 
symmetry is not used. The 8-node C3D8R element has 
been selected to discretize the whole stiffened plate 
model. Then the XFEM mesh, as shown in Figure 5(a), 
is built with a regular linear hexahedrons 3D grid. In the 
XFEM simulations, a time step △t=0.02 ms and an 
average mesh size 25 mm are employed, except that the 
number of elements along the plate and web thickness 
direction is specified to be 2. The XFEM calculation was 
done in 3’34’’. 
 
In order to further verify the reliability of DSIFs by using 
XFEM, the 3D contour integral method has been adopted 
to calculate the model again. Then, to simulate the stress 
singularity, a wedge C3D6 element was used in the region 
around the crack front, and C3D8R element adopted for 
the rest of the model. The whole mesh configuration for 
the 3D FE model is shown in Figure 5(b). Keeping 
boundary/loading conditions and other calculating 
parameters the same as XFEM model, the FE calculation 
was done in 2’17’’. Figure 6 presents a comparison 
between the numerical results by XFEM and 3D contour 
integral method. As mentioned in Section 3, the middle 
layer node at the crack front was chosen to extract 𝐾𝐼(𝑡) 
for the present stiffened plate model. The abscissa 
indicates time. The ordinate indicates the mode I DSIFs 
normalized with respect to 𝐾𝑠 given by Eq. (9). It is seen 
that 𝐾𝐼(𝑡)  from two different methods are almost 

identical, except that the result of XFEM is slightly higher 
than that of 3D contour integral method. The advantage of 
XFEM is shown that discontinuities can be modeled 
within elements through the enrichment of discontinuous 
shape functions, and the discontinuous fields can be 
illustrated in regular meshes without the use of singular 
elements at the crack front. Therefore, it can be concluded 
that both accuracy and performance of XFEM are 
excellent, and there is less than 2% variation between the 
results of FEM and XFEM. 
 

 
Figure 6 Normalized 𝐾𝐼(𝑡) by two different methods 
 
 
4.1 MESH SENSITIVITY ANALYSIS 
 
To simulate the stress singularity at the crack tip, meshes 
have to be refined locally using classical finite element 
method (FEM). However, because of the introduction of 
the displacement field approximation, good results can be 
obtained with coarser meshes using XFEM. In order to 
determine the best size of elements based on a 
compromise between computational cost and accuracy, 
three types of mesh generations have been considered for 
the cracked stiffened plate model shown in Figure 5(a). 
The detailed mesh sizes and total number of elements are 
described in Table 1. Figure 7 illustrates the comparison 
of the normalized 𝐾𝐼(𝑡) at the middle layer node of the 
crack front. It can be seen that with the refinement of 
mesh, the magnitude of 𝐾𝐼(𝑡) decreases and appears to 
converge. As a result, for the present model, a 
convergence solution can be achieved with moderate 
refinement, i.e., average mesh size 25 mm.  
 
 
Table 1 Mesh sizes and number of elements 

Case 

Element 
size along 

longitudinal 
edges 
 (mm) 

Element 
size along 
transverse 

edges 
(mm) 

Element 
size of 

stiffener 
web 

(mm) 

Total 
number 

of 
elements 

Coarse 
mesh 

Moderate 
mesh 
Fine 
mesh 

50 
 

25 
 

25 

25 
 

25 
 

12.5 

25 
 

25 
 

25 

6256 
 

12512 
 

21216 
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Figure 7 Normalized 𝑲𝑰(𝒕) for different mesh sizes 
 
 
 
4.2 TIME STEP SENSITIVITY ANALYSIS 
 
For step loading, transient DSIFs are highly influenced by 
the choice of time step increment, because the waves 
induced by this loading have a significant influence on 
crack tip fields (Song & Paulino, 2006). Here, three 
different time steps, 0.01 ms, 0.02 ms and 0.05 ms, were 
chosen to investigate the influence of time step on the 
DSIFs. As expected, numerical results were highly 
influenced by the time step, which can be seen in Figure 
8. As the time step decreases, the numerical results appear 
to converge. For the larger time step, such as △t=0.05 ms, 
the magnitude of 𝐾𝐼(𝑡) is influenced, and the maximum 
relative error is close to 13%. Besides, the variation of 
normalized DSIFs versus time is obviously different near 
the peaks. For the present model, a convergence solution 
can be obtained with a time step △t=0.02 ms. 
 

 
 
Figure 8 Normalized 𝐾𝐼(𝑡) for different time steps 
 
 
 
5. DISCUSSIONS OF INFLUENTIAL 

PARAMETERS 
 
In this section, a series of numerical analyses are reported 
in investigating DSIFs for stiffened plates with a mode I 

crack shown in Figure 5(a). The influence of different 
parameters on the variation of DSIFs is discussed, such as 
stiffener height, the longitudinal location and length of 
cracks. Unless specifically indicated, only a single 
parameter is varied in each case. 
 
 
5.1 INFLUENCE OF STIFFENER HEIGHT 
 
In a stiffened plate where the stiffeners are attached to the 
plate by means of welding, once a crack reaches a 
stiffener, the crack may propagate into and completely 
sever the stiffener from the plate. Since DSIFs are 
important fracture characterizing parameters, it is 
necessary to check the effect of stiffener height on the 
DSIFs of such cracked stiffened plates. Three kinds of 
stiffener height (hw=200 mm, 250 mm, 300 mm) were 
selected, while the crack longitudinal location fixed at the 
middle span. In addition, the crack length was kept 
constant at 250 mm. Figure 9 shows the normalized 𝐾𝐼(𝑡) 
at the middle layer node of the crack front with different 
stiffener heights. It can be seen that the peak of 𝐾𝐼(𝑡) 
decreases as the stiffener height increases, and the time to 
reach peak value delays gradually. The first peak value for 
the case when hw=300 mm was found to be 18.1% less 
than the case when hw=200 mm, and the second peak value 
was reduced by 10.4%. This result indicates that the 
stiffener can effectively reduce the near crack-tip stress 
field, which is very beneficial in studying the terminating 
of crack propagation. 
 
 

 
 
Figure 9 Normalized 𝐾𝐼(𝑡) for different stiffener heights 
 
 
 
Figure 10 illustrates the von-Mises stress distributions at 
different times for cracked models with varying stiffener 
heights. As can be seen, the highly stressed region of the 
stiffener increased gradually with the increase of stiffener 
height, and the crack opening width decreased 
accordingly. This result is consistent with that from 𝐾𝐼(𝑡). 
Therefore, the proper application of stiffeners is seen to be 
a future research topic. 
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(a) Time=0.48 ms, hw=200 mm 

 

 
(b) Time=0.48 ms, hw=250 mm 

 

 
(c) Time=0.48 ms, hw=300 mm 

 

 
(d) Time=1.26 ms, hw=200 mm 

 

 
(e) Time=1.26 ms, hw=250 mm 

 
(f) Time=1.26 ms, hw=300 mm 

Figure 10 Von-Mises stress distributions at different times 
for cracked models with varying stiffener heights 
 
 
 
5.2 INFLUENCE OF CRACK LOCATION 
 
In order to examine the influence of crack location on the 
DSIFs, the ratio of crack longitudinal location to plate 
length (s/a) was altered in the range of 2/8-4/8, while the 
crack transverse location kept unchanged. When s/a=4/8, 
the crack was located in the middle span of stiffened plate. 
With the crack length fixed at 250 mm, Figure 11 shows 
the normalized 𝐾𝐼(𝑡)  for different crack longitudinal 
locations. When the crack moved towards the unloaded 
edge of stiffened plate, the distance between the impact 
load and the crack tip became longer, and the time of stress 
wave reaching the crack tip delayed accordingly. Thus the 
numerical initiation time and the first peak time were also 
delayed, as indicated in Figure 11. The magnitude of first 
peak was slightly influenced by the crack longitudinal 
location, with the maximum difference less than 4.4%, and 
the oscillation in 𝐾𝐼(𝑡) was weakened. The second peak 
value of 𝐾𝐼(𝑡) and the corresponding time of reaching it 
decreased, while the oscillation was enhanced. This was 
mainly due to the interaction between the stress wave and 
reflected wave, which was generated when the stress wave 
reached the crack surfaces or geometric boundaries. When 
the crack moved to the middle span, a reduction in the 
second peak value of 5.6% was estimated in comparison 
to the case when s/a=2/8. 
 
 

 
Figure 11 Normalized 𝐾𝐼(𝑡) for different crack locations  
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Figure 12 shows the von-Mises stress distributions at 
different times for cracked models with varying crack 
locations. It can be seen that the stress distributions of 
cracked stiffened plates were affected by the crack 
location obviously. When moving the crack in the 
longitudinal direction, the highly stressed region of 
stiffened plate was moved accordingly, and the crack 
opening or closure was different. 
 
 

 
(a) Time=0.48 ms, s/a=2/8 

 
(b) Time=0.48 ms, s/a=3/8 

 
(c) Time=0.48 ms, s/a=4/8 

 
(d) Time=1.26 ms, s/a=2/8 

 
(e) Time=1.26 ms, s/a=3/8 

 
(f) Time=1.26 ms, s/a=4/8 

Figure 12 Von-Mises stress distributions at different times 
for cracked models with varying crack locations 
 
 
5.3 INFLUENCE OF CRACK LENGTH 
 
In order to investigate the effect of crack length on the 
mode I DSIFs of stiffened plates, the case with stiffener 
height hw=250 mm having crack location s/a= 4/8 was 
considered, while the crack length in the plate was varied. 
Figure 13 presents the normalized 𝐾𝐼(𝑡)  at the middle 
layer node of the crack front with three different crack 
lengths (2c=150 mm, 250 mm, 350 mm). Compared to the 
stiffener height and crack location, the variation of crack 
length slightly affected the mode I DSIFs with the 
difference less than 3%, as illustrated in Figure 13. Even 
so, the magnitude of 𝐾𝐼(𝑡) increased as the length of crack 
increased, and the time of reaching peak value delayed 
gradually. This indicated that the near crack-tip stress field 
was enhanced when the crack length became longer. But, 
due to the restraint of stiffener, the mode I DSIFs were not 
very sensitive to the variation of crack length for stiffened 
plate models with central crack located only in the plate. 

Figure 13 Normalized 𝐾𝐼(𝑡) for different crack lengths 
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Figure 14 shows the von-Mises stress distributions at 
different times for cracked models with varying crack 
lengths. It can be seen that the stress distributions of the 
three cracked models are obviously different. As the crack 
length became longer, the stress was concentrated in the 
vicinity of cracking damage, and the crack opening width 
increased gradually. 
 

 
(a) Time=0.48 ms, 2c=150 mm 

 

 
(b) Time=0.48 ms, 2c=250 mm 

 

 
(c) Time=0.48 ms, 2c=350 mm 

 

 
(d) Time=1.26 ms, 2c=150 mm 

 
(e) Time=1.26 ms, 2c=250 mm 

 

 
(f) Time=1.26 ms, 2c=350 mm 

Figure 14 Von-Mises stress distributions at different times 
for cracked models with varying crack lengths 
 
 
6. CONCLUSIONS 
 
Dynamic fracture behaviour for stiffened plates subjected 
to tension impact loading is numerically studied in this 
paper. A series of FE simulations were performed by 
means of XFEM using ABAQUS. The actual boundary 
conditions of cracked stiffened plates in ship structures 
have been considered. The influences of crack length and 
longitudinal location, as well as stiffener height, on the 
DSIFs have been investigated. Based on these results in 
the present study, the major conclusions can be 
summarised as follows:  
1) The crack can be modeled within elements by XFEM, 

and XFEM makes its analysis, to some extent, 
independent of the mesh. The results by XFEM are 
reasonable, with the error less than 2% in contrast to 
those by FEM.  

2) As the stiffener height increases, the peak of mode I 
DSIFs decreases due to the restraint of stiffener, and 
the time to reach peak value is gradually delayed. The 
maximum reduction in peak values is estimated to be 
18.1%. 

3) The longitudinal location of crack has a significant 
influence on the DSIFs. As the crack moves towards 
the middle span, the first peak value is slightly 
influenced, with the maximum difference less than 
4.4%, and the oscillation in 𝐾𝐼(𝑡) is weakened. The 
second peak value is reduced by 5.6%, while the 
oscillation is enhanced. 

4) The mode I DSIFs are not very sensitive to the 
variation of crack length for stiffened plates if the 
crack is centrally located in the plate. 
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5) It is evident that the mesh size and time step affect the 
numerical results. To obtain the convergence 
solutions, moderate meshes and time steps should be 
chosen reasonably, such as an average mesh 25 mm 
and a time step 0.02 ms for the present model. 

 
Due to complexity involved in the dynamic analysis, the 
derived results are limited to cases studied in this paper, 
which may not be directly extended to other cases with 
different material properties, load types or boundary 
conditions. 
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