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SUMMARY 
 
This study investigates and reviews prior research works on skew composite laminates. The equivalent single layer theories 
are explored and discussed. An exhaustive review on static and dynamic analysis of composite skew laminates is also 
presented. Subsequently, a nine node isoparametric plate bending element is used for free vibration analysis of laminated 
composite skew plate with central skew cut out. The effect of shear deformation is incorporated in the formulation 
considering first order shear deformation theory. Two types of mass lumping schemes are analysed to study the effect of 
rotary inertia. Certain numerical examples of plates having different skew angles, skew cut out sizes, boundary conditions, 
thickness ratios (h/a), aspect ratios (a/b), fiber orientations and number of layers are solved which will be useful for 
benchmarking of future studies.   
 
NOMENCLATURE 
 
[B] Strain-displacement matrix 
[D] Rigidity matrix 
[K] Global stiffness matrix 
[N] Shape function 
[N0] Null matrix 
[𝑀] Consistent mass matrix 
|𝐽|  Jacobian matrix 
[Nr] Interpolation function of the rth point 
[K0] Overall stiffness matrix 
[M0] Overall Mass matrix 
𝑢, 𝑣 In-plane displacement  
w Transverse displacement 
E Modulus of elasticity 
G Modulus of rigidity 
ν Poisson’s ratio 
h Thickness of plate 
a, b  Plate dimensions 
D Flexural rigidity 
ω Natural frequency 
𝜙𝑥  𝜙y Average shear rotation 
𝜃𝑥 𝜃𝑦 Total rotation in bending 
{𝜎} Stress vector 
{𝜀} Strain vector 
𝑀𝑥, 𝑀𝑦 Bending moments in x and y direction 
𝑀𝑥𝑦 Twisting moment 
Qx Qy Transverse shear forces 
𝜉, 𝜂 Natural coordinates 
𝜌 Density 
CLPT Classical laminate plate theory 
DSCM Discrete singular convolution method 
DSC-EM Discrete singular convolution-element method 
DQM Differential quadrature method  
EFGM Element-free Galerkin method 
ESLT Equivalent single layer theory 
FDM Finite difference method 
FEM Finite element method 
FSDT First-order shear deformation theory 
FSM Finite strip method 
HSDT Higher order shear deformation theory 
Iso Isogeometric method 

MFVM Meshless finite volume method 
MLS-RM Moving least square Ritz method 
MM Meshfree method 
MTEKM Multi-Term extended Kantorovich method 
QEM Quadrature element method 
RBF Radial basis function 
R-DQM Ritz-differential quadrature methodology 
RM Ritz method 
RRM Rayleigh-Ritz method 
 
 
 
1. INTRODUCTION 
 
Free vibration analysis of laminated composite plates is 
very important in the field of structural engineering. Many 
structures such as ships and containers require the 
complete enclosure of plates. With the advancement in 
fiber-reinforced laminated composite materials, the use of 
composite plates and shells has increased greatly due to 
their high strength to weight ratio. Fiber reinforced 
laminated composite plates are generally used in 
architectural structures, bridges, hydraulic structures, 
pavements, containers, airplanes, missiles, ships, 
instrument and automobile structures. Skew plates are 
often used in such modern structures. Swept wing of 
airplanes, for example, can be idealized by introducing 
substructures in the form of oblique plates. Similarly, 
complex alignment problems in bridge designs are often 
designed by using skew plates. Plates with cut-outs are 
also commonly encountered in engineering practice. Cut-
outs are introduced to provide access, reduce weight and 
alter the dynamic response of structures. 
 
In the present work, a brief literature review on equivalent 
single layer theories is presented. This is followed by an 
exhaustive review of the literature on skew plates. Both 
static and dynamic analysis involving skew plates are 
surveyed. A first-order shear deformation based finite 
element method is introduced and some benchmark results 
on skew plates are reported for certain test cases which are 
sparse in literature.  
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2. LITERATURE REVIEW ON 
EQUIVALENT SINGLE LAYER 
THEORIES 

 
The static and dynamic behavior of composite plates and 
shells can be simulated using either equivalent single layer 
theories or three-dimensional elasticity theories. Using 
suitable assumptions, equivalent single layer theories are 
derived from three-dimensional elasticity theories (Reddy, 
2004). In general, the equivalent single layer theories 
account for shear deformation using certain assumptions. 
Equivalent Single Layer theories (ESL) can be further 
classified Classical Laminate Plate Theory (CLPT), First-
Order Shear Deformation Theory (FSDT) and Higher 
Order Shear Deformation Theories (HSDT). In the context 
of his paper, three-dimensional theories are not discussed. 
Readers may look at the excellent works of Jin (Jin et al., 
2015a, 2015b, 2015c), (Jin et al., 2014a, 2014b) and Su 
(Su, et al., 2015a, 2015b) (Su, et al., 2014a, 2014b, 2014c, 
2014d) (Su, et al., 2016a, 2016b, 2016c) and (Ye et 
al.,2014), (Ye et al.,2015), (Ye and Jin, 2016), (Ye et 
al.,2016a, 2016b), (Ye et al.,2017) on three-dimensional 
vibrational analysis.  
 
2.1 CLASSICAL LAMINATE PLATE THEORY 

(CLPT) 
 
Classical laminate plate theory (CLPT) is the simplest of 
the equivalent single layer theories. CLPT which is based 
on Kirchhoff–Love hypothesis assumes that the straight 
lines remain straight and perpendicular to the midplane 
after deformation. Due to this shear and normal strains 
vanishes which in turn leads to neglecting the transverse 
shear and normal deformation effects (Kirchoff, 1850). 
Thus, the applicability of CLPT is limited to thin 
plates/shells which leads to erroneous solutions for thick 
and moderately thick plates and shells where the shear and 
normal deformation effects are considerable. Further, 
CLPT violates stress-free boundary conditions at top, 
bottom surfaces. It underpredicts the deflections in plates 
and shells and overpredicts Eigenfrequencies and 
buckling loads (Cosentino & Weaver, 2010). However, 
CLPT gives relatively good results for symmetric and 
balanced laminates under the effect of pure bending or 
pure tension (Khandan, et al., 2012). The displacement 
fields of CLPT may be expressed as, 
 

𝑢 = 𝑢𝑜(𝑥, 𝑦) − 𝑧
𝜕𝑤
𝜕𝑥  

𝑣 = 𝑣𝑜(𝑥, 𝑦) − 𝑧
𝜕𝑤
𝜕𝑦  

𝑤 = 𝑤(𝑥, 𝑦) 

(1) 

 
Where 𝑢, 𝑣, 𝑤 are displacements in 𝑥, 𝑦, 𝑧 directions 
respectively.𝑢𝑜, 𝑣𝑜, 𝑤 are unknown functions of 
position(𝑥, 𝑦). 
 
CLPT despite its shortcoming has been popular among 
researchers due to its simple form and computational 
inexpensive nature. Since 3D plate or shells are idealized as 

2D plate or shells there is a significant reduction in the total 
number of variables which in turn saves a lot of 
computational costs. CLPT was initially propounded by 
Kirchhoff (Kirchhoff, 1850) and was later extended by Love 
(Love, 2013), Timoshenko and Goodier (Timoshenko & 
Goodier, 1971) and Volokh (Volokh, 1994). Volokh 
(Volokh, 1994) tried to enhance the classical form of CLPT 
by assuming the shear forces as statically equivalent to 
“rotated” bending and twisting moments instead of defining 
it as an integral over the plate thickness of the transversal 
shear stresses. Timoshenko and Krieger (Timoshenko & 
Woinowsky-Krieger, 1959), Timoshenko and Gere 
(Timoshenko & Gere, 1961), Dym and Shames (Dym, et al., 
1973), Szilard (Szilard & Nash, 1974), Ugural (Ugural & 
Ugural, 1999), Ashton and Whitney (Ashton & Whitney, 
1970), Ambartsumyan (Ambartsumian, 1970), Lekhnitskii 
(Lekhnitskii, 1968), Arkhipov (Arkhipov, 1968) and 
Tamurov and Grud’eva (Tamurov & Grud'eva, 1974) also 
made significant contributions that helped in making the 
theory more popular.  
 
Reissner and Stavsky (Reissner & Stavsky, 1961) were the 
first researchers to apply the CLPT to heterogeneous 
aeolotropic elastic plates. Stavsky (Sky, 1961) use CLPT 
to study multilayer aeolotropic plate subject to in-plane 
forces and transverse loading. Dong et al. (Dong, 1962) 
formulated the CLPT for analysing electrostatic extension 
and flexure of laminated plates and shells having small 
thickness.  
 
By using CLPT and including Von Karman nonlinear 
terms Whitney and Leissa (Whitney & Leissa, 1969) 
formulated the governing equations of laminated plates. 
They also included the inertia effect and thermal stresses. 
Whitney (Whitney, 1969a) further used the CLPT to study 
bending of simply supported rectangular plates. He also 
successfully modelled the effect of transverse shear 
deformation to predict flexural vibration frequencies and 
buckling loads. He then extended the theory to study anti-
symmetric cross-ply and angle-ply laminates under 
transverse loading (Whitney, 1969b). Whitney (Whitney, 
1969c) also showed the effect of bending-extensional 
coupling in cylindrical bending of laminated plates.  
 
Konieczny and Wozniak (Konieczny & Wozniak, 1994) 
used CLPT to study composites plates of arbitrary 
inhomogeneous linear-elastic material. Wang et al. 
(Wang, et al., 1997) used CLPT to strip element method is 
presented to determine bending solutions of orthotropic 
plates. CLPT has been extensively reviewed by Vasil’ev 
(Vasil'Ev, 1992) for isotropic plates and by Vinson and 
Chou (Vinson & Chou, 1975) for anisotropic plates. The 
limitations of CLPT have been shown by a few 
researchers, notably Pagano (Pagano, 1969) (Pagano, 
1970a, 1970b).  
 
By comparing the CLPT results with the theory of 
elasticity solutions. Pagano (Pagano, 1969) highlighted 
that at low span-to-depth ratios CLPT leads to poor 
approximation but convergences towards an exact 
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solution as the span-to-depth ratio increases. He also 
showed the limitations of the theory for sandwich plate 
(Pagano, 1970a) and unidirectional and angle-ply 
composites (Pagano, 1970b).  
 
 
2.2 FIRST-ORDER SHEAR DEFORMATION 

THEORY (FSDT) 
 
Due to the inherent flaws of CLPT, the first-order shear 
deformation theory (FSDT) was propounded by Mindlin 
(Mindlin, 1951). By considering a linear variation of in-
plane displacements through the thickness, FSDT 
accounts for the shear deformation effect. The 
displacement fields of FSDT may be expressed as, 
 

𝑢 = 𝑢𝑜(𝑥, 𝑦) + 𝑧𝜃𝑥(𝑥, 𝑦) 
𝑣 = 𝑣𝑜(𝑥, 𝑦) + 𝑧𝜃𝑦(𝑥, 𝑦) 

𝑤 = 𝑤(𝑥, 𝑦) 
(2) 

 
Where 𝑢, 𝑣, 𝑤 are displacements in 𝑥, 𝑦, 𝑧 directions 
respectively; 𝑢𝑜, 𝑣𝑜, 𝑤 are unknown functions of 
position(𝑥, 𝑦); 𝜃𝑥 and 𝜃𝑦 are the rotations of a transverse 
normal about the 𝑦-axis and 𝑥-axis, respectively. 
 
However, FSDT requires a shear correction factor. Thus, 
the predictions of FSDT are largely dependent on the 
considered shear correction factor which accounts for the 
strain energy of shear deformation. The shear correction 
factor depends on geometry, loading and boundary 
conditions and thus may be difficult to determine. In fact, 
the accurate estimation of the shear correction factor for 
FSDT has been a research concern by itself.  
 
Bolle (Bolle, 1947), Hencky (Hencky, 1947), Uflyand 
(Uflyand, 1948), Yang et al. (Yang, et al., 1966), Whitney 
and Pagano (Whitney & Pagano, 1970), Qi and Knight (Qi 
& Knight Jr, 1996), Knight and Qi (Knight & Qi, 1997a, 
1997b), Wang and Chou (Wang & Chou, 1972), Sun and 
Whitney (Sun & Whitney, 1973), Chow (Chow, 1971) 
(Chow, 1975) initiated further investigations on FSDTs.  
 
Using energy principles Whitney (Whitney, 1973), 
Chatterjee and Kulkarni (Chatterjee & Kulkarni, 1979), 
Vlachoutsis (Vlachoutsis, 1992) presented a study on 
shear correction factors. They also established that multi-
layered composite plates and homogeneous plates require 
separate values of shear correction factors. Gruttmann and 
Wagner (Gruttmann & Wagner, 2017) also detailed shear 
correction factors for layered plates and shells. FSDT is 
suitable for thin and moderately thick plates/shells. For 
thick plates, it deviates slightly from the exact solution.  
 
It is worth mentioning here that Reissner (Reissner, 1947) 
(Reissner, 1945) also developed a theory that considers the 
shear deformation effect. However, Thai and Kim (Thai & 
Kim, 2015) have pointed out in a recent review that the 
Reissner theory is not similar to the Mindlin one. Wang et 
al. (Wang, et al., 2001) derived the bending relations 
between Mindlin and Reissner quantities to establish the 

differences between the two theories. The displacement 
variation across the thickness may or may not be linear in 
case of Reissner theory since it considers a linear bending 
stress distribution and a parabolic shear stress distribution 
(Wang, et al., 2001). Thai and Kim (Thai & Kim, 2015) 
argue that it is erroneous to refer to the Reissner theory as 
the FSDT since FSDT essentially implies a linear 
variation of the displacements through the thickness. 
Moreover, the normal stress is not included in the Mindlin 
theory (Panc, 1975). 
 
Bhaskar and Varadan (Bhaskar & Varadan, 1993) used the 
combination of Navier’s approach and a Laplace transform 
technique to solve the equations of equilibrium. Onsy et al. 
(Roufaeil & Tran-Cong, 2002) presented a finite strip 
solution for laminated plates. Pryor and Barker (Barker & 
Pryor Jr, 1971) developed a finite element formulation based 
upon the FSDT for cross-ply symmetric and unsymmetric 
laminated plates. Ha (Ha, 1990) developed the finite element 
model for sandwich plates based on FSDT. Byun and 
Kapania (Byun & Kapania, 1992) used FSDT to predict 
interlaminar stresses in laminated plates. Dobyns (Dobyns, 
1981) employed FSDT for analysis of orthotropic plates. 
Turvey (Turvey, 1977) presented the analyses for laminated 
rectangular plates using FSDT. Kabir (Kabir, 1996) 
presented an analytical solution to shear flexible rectangular 
plates with arbitrary laminations based on FSDT. Some 
recent applications of FSDT may be found at (Alavi & 
Eipakchi, 2018) (Civalek, 2017) (Pandit, et al., 2007) (Yu, et 
al., 2015) (Yu, et al., 2016) (Zhang, et al., 2015a) (Kalita & 
Haldar, 2015, 2016, 2017, 2018) (Kalita, et al., 2018a, 2018b) 
(Kalita, et al., 2016a, 2016b, 2016c) (Kalita, et al., 2015). 
 
 
2.3 HIGHER ORDER SHEAR DEFORMATION 

THEORIES (HSDT) 
 
Since accurate estimation of the shear correction factor is 
essential for correct prediction by FSDT, higher-order 
shear deformation theories (HSDT) were introduced. In 
HSDT, the displacement components are expanded in a 
power series of the thickness coordinate. In general, by 
including more and more terms in the expansion series, the 
desired accuracy may be achieved. Higher-order 
variations of the in-plane displacements or both in-plane 
and transverse displacements through the thickness are 
considered in higher-order shear deformation theories. 
Thus, in HSDT the effects of shear deformation or both 
shear and normal deformations are accounted for. HSDT 
is realized by either considering polynomial shape 
functions or non-polynomial shape functions. 
 
2.3 (a) Third-order shear deformation theory (TSDT) 
 
It was Vlasov (Vlasov, 1957), who initially developed a 
third-order displacement field that could satisfy the stress-
free boundary conditions at the top and bottom surfaces of 
a plate. Jemielita (Jemielita, 1975), Krishna Murty 
(Krishna Murty, 1987) and Schmidt (Schmidt, 1977) were 
some of the first researchers to propose TSDT. However, 
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the TSDT developed by Reddy (Reddy, 1984) is the most 
commonly used one. The transverse shear deformation 
effect is considered in TSDT. It also satisfies the zero-
traction boundary conditions on the top and bottom 
surfaces of a plate. Thus, a shear correction factor is not 
needed. Though the equations of motion for Reddy’s 
TSDT and Levinson’s theory (Levinson, 1980) are 
different both these theories use the same displacement 
field. The displacement field of Reddy’s third-order shear 
deformation theory may be expressed as, 
 

𝑢 = 𝑢𝑜(𝑥, 𝑦) + 𝑧 [𝜃𝑥(𝑥, 𝑦) −
4
3

(𝑧
ℎ

)
2

(𝜃𝑥(𝑥, 𝑦) + 𝜕𝑤
𝜕𝑥

)]  

𝑣 = 𝑣𝑜(𝑥, 𝑦) + 𝑧 [𝜃𝑦(𝑥, 𝑦) −
4
3

(𝑧
ℎ

)
2

(𝜃𝑦(𝑥, 𝑦) + 𝜕𝑤
𝜕𝑦

)]  

𝑤 = 𝑤(𝑥, 𝑦) 

(3) 

 
Where 𝑢, 𝑣, 𝑤 are displacements in 𝑥, 𝑦, 𝑧 directions 
respectively; 𝑢𝑜, 𝑣𝑜, 𝑤 are unknown functions of 
position(𝑥, 𝑦); 𝜃𝑥 and 𝜃𝑦 are the rotations of a transverse 
normal about the 𝑦-axis and 𝑥-axis, respectively. 
 
Murthy (Murthy, 1981) developed a higher-order shear 
deformation theory and formulated it for unsymmetric 
laminates, symmetric laminates and classical orthotropy. 
In such similar attempts, a few TSDTs were formulated by 
Ambartsumian (Ambartsumian, 1960) (Ambartsumian, 
1969), Librescu (Librescu, 1967), Shirakawa (Shirakawa, 
1983) and Bhimaraddi & Stevens (Bhimaraddi & Stevens, 
1984) among others. In 1984, Reddy (Reddy, 1984) 
reviewed all TSDTs proposed until then and established 
an equivalence among them. Phan & Reddy (Phan & 
Reddy, 1985) proposed a higher-order shear deformation 
theory that accounted for parabolic distribution of the 
transverse shear stresses. Pandya & Kant (Pandya & Kant, 
1988) incorporated a linear variation of transverse normal 
strains and parabolic variation of transverse shear strains 
through plate thickness. A nine-node Lagrangian 
parabolic isoparametric plate bending element was used 
by them for the finite element analysis. Murty & 
Vellaichamy (Murty & Vellaichamy, 1988) developed a 
higher-order shear deformation theory with provision for 
cubic variation of in-plane displacements and parabolic 
variation of the normal displacement. Using the principle 
of virtual displacements Ren-Huai & Ling-Hui (Ren-Huai 
& Ling-Hui, 1991) developed a TSDT that accounted for 
parabolic variation of transverse shear strains through the 
thickness. Singh & Rao (Singh & Rao, 1996) developed a 
four node rectangular element with fourteen degrees of 
freedom and it used it in conjunction with a TSDT to study 
the effect of various parameters such as lay-up, side to 
thickness ratio, aspect ratio, type of loadings, boundary 
conditions on stability characteristics of laminated plates. 
Vuksanovic (Vuksanovic, 2000) developed a TSDT that 
could take a parabolic distribution of shear strains across 
the plate thickness and cubic variation for in-plane 
displacements. 

Idlbi et al. (Idlbi, et al., 1997) in 1997 made a comparative 
study of CLPT, FSDT, TSDT and TSDPT (sine type), 
through which they concluded TSDPT to better than the 
others especially when interlayer continuity requirements 
are included. Much later Carrera (Carrera, 2007) 
compared three different TSDT models – one having five 
displacement variables, and the other two having three 
displacement variables. While the second TSDT was 
reduced from five displacement variables to three by 
enforcing homogeneous transverse stress conditions, the 
third was done so by considering non-homogeneous 
transverse stress conditions. He concluded that the use of 
non-homogeneous transverse stress conditions led to 
superiority of the third model over the second one. 
However, in general, the original model (first one) still had 
better estimations the other two. 
 
 
2.3 (b) Trigonometric shear deformation theory 

(TgSDT) 
 
As the name suggests, trigonometric functions are used to 
describe the shear deformation plate theories called 
trigonometric shear deformation theory (TgSDT). TgSDT 
is richer than polynomial functions, simple, more accurate 
and the stress-free surface boundary conditions can be 
guaranteed a priori (Mantari, et al., 2012). TgSDT was 
realized by Levy (Levy, 1877) using sinusoidal functions 
in the displacement field. The displacement field of the 
Levy’s TgSDT are as follows, 
 

𝑢 = ∑ 𝑧2𝑛+1𝑁
𝑛=0 𝑢𝑛(𝑥, 𝑦) +

∑ 𝑠𝑖𝑛 (2𝑛+1)𝜋𝑧
ℎ

𝜃𝑥(𝑥, 𝑦)𝑁
𝑛=0   

𝑣 = ∑ 𝑧2𝑛+1𝑁
𝑛=0 𝑣𝑛(𝑥, 𝑦) +

∑ 𝑠𝑖𝑛 (2𝑛+1)𝜋𝑧
ℎ

𝜃𝑦(𝑥, 𝑦)𝑁
𝑛=0   

𝑤 = ∑ 𝑧2𝑛𝑁
𝑛=0 𝑤𝑛(𝑥, 𝑦)  

(4) 

 
where 𝑢, 𝑣, 𝑤 are displacements in 𝑥, 𝑦, 𝑧 directions 
respectively; 𝑢𝑛, 𝑣𝑛, 𝑤𝑛  are unknown functions of 
position(𝑥, 𝑦) ;𝜃𝑥 and 𝜃𝑦 are the rotations of a transverse 
normal about the 𝑦-axis and 𝑥-axis, respectively. 
 
Other such TgSDTs have been developed for plate and 
shells using sine, hyperbolic sine and cosine functions. 
The trigonometric functions describe the warping through 
the thickness of the plate during rotation due to transverse 
shear. Kil’chevskiy (Kil'chevskiy, 1965) in his book 
discussed TgSDTs in detail. He solved several static and 
dynamic problems on shells which were used as 
benchmark problems till much later. However, he 
neglected the dissipative forces in the analysis. Stein and 
Jegley (Stein & Jegley, 1987) used a TgSDT and described 
the displacement fields using algebraic and trigonometric 
terms. To find the displacements and stresses they used 
both potential and complementary energy methods. Jegley 
(Jegley, 1988) in a technical report for NASA, USA 
studied the effects of transverse shear deformation and 
anisotropy on natural vibration frequencies of laminated 
cylinders by using a TgSDT. He also reported that the 



Trans RINA, Vol 161, Part A4, Intl J Maritime Eng, Oct-Dec 2019 

©2019: The Royal Institution of Naval Architects                  A-361 

TgSDT predicted buckling loads to be about 65% of those 
predicted by FSDT for certain thick-walled cylinders. 
Stein and Bains (Stein, et al., 1990) studied buckling of 
plates due to compressive load using sinusoidal terms for 
displacement fields. Touratier (Touratier, 1991) 
(Touratier, 1992) presented TgSDTs that accounted for 
cosine shear stress distribution and free boundary 
conditions for shear stress upon the top and bottom 
surfaces of the plate. His theory was based on the 
kinematical approach, where the shear was represented by 
a sinusoidal function. He further extended it for shells 
(Touratier & Faye, 1995). Bhimaraddi and Stevens 
(Bhimaraddi & Stevens, 1986), Stein (Stein, 1986), 
Becker (Becker, 1994) (Becker, 1993) and Lu and Liu (Lu 
& Liu, 1992) have also made some valuable contributions 
towards development of TgSDTs. 
 
Using Hamilton's principle and Lagrange multipliers, 
Soldatos (Soldatos, 1992) developed a TgSDT for 
homogenous monoclinic plates. Beakou and Touratier 
(Beakou & Touratier, 1993) developed a 32 degree of 
freedom finite element that was used in conjunction with 
a TgSDT in which the transverse shear deformation was 
represented by cosine functions. They carried out static, 
buckling and dynamic analysis of composite shells. 
Muller and Touratier (Muller & Touratier, 1995) made a 
comparative study on the theory of Kirchhoff-love, 
Schmidt-Levinson theory, Reissner-Mindlin theory, 
Reddy theory and Touratier theory. Shimpi and Ghugal (P. 
Shimpi, 2000) used a sinusoidal function to represent the 
shear deformation.  However, it contained only three 
variables, even less than FSDT. Kassapoglou and Lagace 
(Kassapoglou & Lagace, 1986) used a TgSDT to calculate 
the interlaminate stress field at straight free edges in 
symmetric composite plates under uniaxial load. They 
also extended the theory for angle-ply and cross-ply plates 
(Kassapoglou & Lagace, 1987). Later the method was 
further extended by Kassapoglou (Kassapoglou, 1990) to 
study the effect of combined loads on the free edges 
interlaminate stress. Similarly, Webber and Morton 
(Webber & Morton, 1993) used TgSDT to study free edge 
stress fields in laminated plates due to thermal effects.  
 
 
3. LITERATURE REVIEW ON ANALYSIS OF 

SKEW PLATES 
 
In this section, a brief literature survey on static and 
dynamic analysis of composite skew plates is presented. 
Some papers on isotropic plates/shells are also reviewed 
to maintain continuity. However, works on functionally 
graded structures are excluded. The structural behavior of 
isotropic skew plates has been studied previously by many 
investigators like Kennedy and Huggins (Kennedy, 1964), 
Kennedy and Tamberg (Kennedy & Tamberg, 1969), 
Mizusawa et al. (Mizusawa, et al., 1979) among others. 
 
York and Williams (York & Williams, 1995) relied on 
CLPT to study buckling of skew plates. Reddy and 
Palaninathan (Reddy & Palaninathan, 1995) used the 

finite element method for buckling analysis of laminated 
skew plates. They used a high precision triangular plate 
bending element with three nodes located at vertices 
having 12 degrees of freedom per node. Auricchio and 
Taylor (Auricchio & Taylor, 1995) developed a new 
formulation for a triangular element. Using FSDT they 
calculated the cylindrical bending of simply supported 
skew plates. Ganapathi and Prakash (Ganapathi & 
Prakash, 2006) too used FSDT to estimate buckling of 
skew panels. 
 
Bardell (Bardell, 1992) determined the natural frequencies 
for isotropic plates. McGee and Butalia (McGee & 
Butalia, 1994) used FSDT and HSDT in conjunction with 
a nine node Lagrangian isoparametric quadrilateral 
element based finite element analysis for estimating the 
natural frequencies of a cantilever skew plate. Using the 
same high precision triangular plate bending element that 
they developed in 1995, Reddy and Palaninathan (Reddy 
& Palaninathan, 1999) conducted an FE analysis to 
accurately predict the Eigenfrequencies of a skew plate. 
Singha and Ganapathi (Singha & Ganapathi, 2004) 
estimated the large amplitude free flexural vibrations 
using HSDT. Sundararajan et al. (Sundararajan, et al., 
2005) conducted a finite element analysis using the 8-node 
quadrilateral element to calculate the nonlinear free 
flexural vibrations. Dey and Singha (Dey & Singha, 2006) 
carried out a dynamic stability analysis of composite skew 
plates subjected to periodic in-plane load. Singha and 
Daripa (Singha & Daripa, 2007) used a 4-node shear 
flexible quadrilateral high precision plate bending element 
to study nonlinear vibrations in a symmetric laminated 
skew panel. Nguyen-Van et al. (Nguyen-Van, et al., 2008) 
too relied on FSDT to estimate the Eigenfrequencies of 
skew plates. Park et al. (Park, et al., 2009) modelled 
delamination in composite skew plates using finite 
element method and studied their effect on natural 
frequencies. They considered HSDT for considering the 
shear deformation across the thickness of the plate.  
 
Eftekhari and Jafari (Eftekhari & Jafari, 2012) developed 
a higher order FEM formulation to accurately model skew 
plates. Chalak et al. (Chalak, et al., 2014) carried out both 
static and dynamic analysis of skew rectangular laminated 
sandwich plates considering a higher order zigzag theory 
(HOZT). Experimental and numerical simulation in a 
commercial FE package was carried out by Srinivasa et al. 
(Srinivasa, et al., 2014) to study the natural frequencies of 
skew laminates. Yadav et al. (Yadav, et al., 2015) 
comprehensively studied the effect of skewness in 
stiffened plates using a commercial finite element 
package. Garcia-Macaisa et al. (Garcı́a-Macı́as, et al., 
2016) used a four-node skew element while considering 
FSDT to account for shear deformation. Zhang et al. 
(Zhang, et al., 2015b) also used a FSDT and moving least 
square-Ritz method. Zghal et al. (Zghal, et al., 2018) used 
a HSDT to carry out free vibration analysis of 
nanocomposite shells reinforced with carbon nanotubes. 
Lee (Lee, 2018) also used a HSDT and finite element 
analysis to assess the dynamic stability of multiscale 
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composites. Delamination was also considered in his 
analysis.  Using finite strip method Ashour (Ashour, 2009) 
studied vibration of skew plate. Rango et al. (Rango, et al., 
2015) relied on trigonometric shear deformation theory to 
calculate the natural frequencies. Upadhyay and Shukla 
(Upadhyay & Shukla, 2013) and Shojaee et al. (Shojaee, 
et al., 2017) made use of Hamilton’s principle to do so.  
 
However, HSDT was used in (Upadhyay & Shukla, 2013) 
whereas (Shojaee, et al., 2017) used FSDT. 
 
Ardestani et al. (Ardestani, et al., 2017) and Zhang et al. 
(Zhang, et al., 2017) used HSDT and TSDT respectively 
while modelling thick skew laminates. In both the works 
isogeometric method was adopted. Similarly, meshless 
methods were adopted by Fallah and Delzendeh (Fallah & 
Delzendeh, 2018) and Liew et al. (Liew, et al., 2004). The 
moving least square Ritz (MLS-Ritz) method was used by 
Zhou and Zheng (Zhou & Zheng, 2008) and Zhang (Zhang, 
2017). Fallah et al. (Fallah, et al., 2011) considered the use 
of multi-term extended Kantorovich method most 
appropriate for skew plate analysis. The Rayleigh-Ritz 
approach was used by quite a few researchers Like 
Mizusawa et al. (Mizusawa, et al., 1979) (Mizusawa, et al., 
1980), Liew and Lam (Liew & Lam, 1990), Liew et al. 
(Liew, et al., 1993), Singh and Chakraverty (Singh & 
Chakraverty, 1994), Zeng and Bert (Zeng & Bert, 2001), 
Kumar et al. (Kumar, et al., 2015) (Kumar, et al., 2017), He 
et al. (He, et al., 2017). Wang (Wang, 1997) used B-spline 
Rayleigh-Ritz method based first order shear deformation 
theory for free vibration analysis of laminated composite 
skew plates. For analysis of free vibration of laminated 
composite skew plates, Anlas and Gooker (Anlas & Göker, 
2001) used orthogonal polynomials with Ritz method. 
Makhecha et al. (Makhecha, et al., 2001) investigated 
dynamic responses of thick skew sandwich plates using 
C0QUAD-8 finite element based on a realistic higher-order 
theory. Effect of skew angle and thickness ratio on the 
dynamic characteristics of sandwich laminates subjected to 

thermal and mechanical loads have been studied. A high 
precision thick plate element has been developed by Sheikh 
and Haldar (Sheikh, et al., 2004) for free vibration analysis 
of composite plates in different situations. Numerical 
examples of plates having different shapes, boundary 
conditions, thickness ratio and fiber orientations have been 
analysed. Examples of plates having an internal cut-out and 
concentrated mass have also been studied. A simple C0 
isoparametric finite element model based on a higher order 
shear deformation theory has been presented by Garg et al. 
(Garg, et al., 2006) for free vibration of isotropic, 
orthotropic and layered composite and sandwich skew 
laminates. Numerical results have been presented for 
natural frequencies of cross-ply and angle-ply with different 
lamination parameters, skew angles and boundary 
conditions. A nine node isoparametric plate bending 
element formulation has been developed by Pandit et al. 
(Pandit, et al., 2007) for free vibration analysis of isotropic 
and laminated composite plates. Numerical examples of 
isotropic and composite plates having different fiber 
orientations, aspect ratios, and thickness ratios have been 
solved and compared. Examples of plates having an internal 
cut-out and uniformly distributed mass on the plate have 
also been studied. Bending response of functionally graded 
skew sandwich plates has been analysed by Taj et al. (Taj, 
et al., 2014). A comprehensive list of works on skew 
isotropic and composite plates is presented in Table 1. From 
this review, the followings insights into the analysis of skew 
composite laminates are gained: 
• FSDT is by far the most popularly used theory for 

analysis of skew laminates. 
• FEM, DQM and Rayleigh-Ritz are the most 

commonly applied numerical methods for this 
problem.  

• Works involving static and dynamic analysis of skew 
shells are very limited. 

• Works involving static and dynamic analysis of skew 
shells with cutouts are negligible. 

 

 
Table 1. Research works on skew plates. 
Source Theory Method Structure Problem Type 
Eftekhari and Jafari (Eftekhari & Jafari, 2013) FSDT R-DQM Plate Vibration 
Wang (Wang, 1997a) FSDT RRM Plate Vibration 
Wang (Wang, 1997b) FSDT RRM Plate Buckling 
Kiani et al. (Kiani, et al., 2018) FSDT RM Shell Vibration 
Malekzadeh (Malekzadeh, 2008) FSDT DQM Plate Vibration 
Bert and Malik (Bert & Malik, 1996) FSDT DQM Plate Vibration 
Malekzadeh and Karami (Malekzadeh & Karami, 2005) FSDT DQM Plate Vibration 
Malekzadeh (Malekzadeh, 2007) FSDT DQM Plate Vibration 
Malekzadeh and Zarei (Malekzadeh & Zarei, 2014) FSDT DQM Plate Vibration 
Wang and Wu (Wang & Wu, 2013)  DQM Plate Vibration 
Wang and Yuan (Wang & Yuan, 2018)  DQM Plate Buckling 
Wang et al. (Wang, et al., 2014)  DQM Plate Vibration 
Zamani et al. (Zamani, et al., 2012) FSDT DQM Plate Vibration 
Malekzadeh and Fiouz (Malekzadeh & Fiouz, 2007) FSDT DQM Plate Bending 
Adineh and Kadkhodayan (Adineh & Kadkhodayan, 
2017) 

3D elasticity DQM Plate Vibration 

Malekzadeh and Karami (Malekzadeh & Karami, 2006) FSDT DQM Plate Vibration 
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Krisiinan and Deshpande (Krishnan & Deshpande, 1992) CLPT FEM Plate Vibration 

Gurses et al. (Gürses, et al., 2009) FSDT DSCM Plate Vibration 

Lai et al. (Lai, et al., 2011) FSDT DSC-EM Plate Vibration 
Jaberzadeh et al. (Jaberzadeh, et al., 2013)  EFGM Plate Buckling 
Watts et al. (Watts, et al., 2018) FSDT EFGM Plate Vibration 
Naghsh and Azhari (Naghsh & Azhari, 2015) CLPT EFGM Plate Vibration 
Zhao et al. (Zhao, et al., 2009) FSDT RM Plate Vibration 
Kim and Hwang (Kim & Hwang, 2012) FSDT FDM Plate Vibration 
Sundararajan et al. (Sundararajan, et al., 2005) Lagrange’s 

equations 
FEM Plate Vibration 

Reddy and Palaninathan (Reddy & Palaninathan, 1999) FSDT FEM Plate Vibration 
Chalak et al. (Chalak, et al., 2014) HOZT FEM Plate Vibration/ Bending 
Lee (Lee, 2018) HSDT FEM Plate Buckling 
Park et al. (Park, et al., 2009) HSDT FEM Plate Vibration 
Singha and Ganapathi (Singha & Ganapathi, 2004) HSDT FEM Plate Vibration 
Singha and Daripa (Singha & Daripa, 2007) FSDT FEM Plate Vibration 
Zghal et al. (Zghal, et al., 2018) HSDT FEM Plate Vibration 
Auricchio and Taylor (Auricchio & Taylor, 1995) FSDT FEM Plate Bending 
Reddy and Palaninathan (Reddy & Palaninathan, 1995)  FEM Plate Buckling 
Ganapathi and Prakash (Ganapathi & Prakash, 2006) FSDT FEM Plate Buckling 

Dey and Singha (Dey & Singha, 2006) FSDT FEM Plate Buckling 

Vimal et al. (Vimal, et al., 2014) FSDT FEM Plate Vibration 

Yadav et al. (Yadav, et al., 2015) FSDT FEM Plate Vibration 

McGee and Butalia (McGee & Butalia, 1994) FSDT, HSDT FEM Plate Vibration 

Nguyen-Van et al. (Nguyen-Van, et al., 2008) FSDT FEM Plate Vibration 

Robinson (Robinson, 1985) CLPT FEM Plate Bending 

Srinivasa et al. (Srinivasa, et al., 2014) FSDT FEM Plate Vibration 

Ashour (Ashour, 2009) FSDT FSM Plate Vibration 

Upadhyay and Shukla (Upadhyay & Shukla, 2013) HSDT RM Plate Vibration/ Bending 

Shojaee et al. (Shojaee, et al., 2017) FSDT DQM Plate Vibration 

Bardell (Bardell, 1992) FSDT FEM Plate Vibration 

Rango et al. (Rango, et al., 2015) TgSDT FEM Plate Vibration 

Eftekhari and Jafari (Eftekhari & Jafari, 2012) FSDT FEM Plate Vibration 

Garcia-Macaisa et al. (Garcı́a-Macı́as, et al., 2016) FSDT MLS-RM Plate Vibration 

Zhang et al. (Zhang, et al., 2015) FSDT MLS-RM Plate Vibration 

Ardestani et al. (Ardestani, et al., 2017) HSDT Iso Plate Vibration 

Zhang et al. (Zhang, et al., 2017) TSDT Iso Plate Buckling 

York and Williams (York & Williams, 1995) CLPT RRM Plate Buckling 

Fallah and Delzendeh (Fallah & Delzendeh, 2018) FSDT MFVM Plate Vibration 

Liew et al. (Liew, et al., 2004) FSDT MM Plate Vibration/ Buckling 

Zhou and Zheng (Zhou & Zheng, 2008) CLPT MLS-RM Plate Vibration 

Zhang (Zhang, 2017) FSDT MLS-RM Plate Vibration 

Fallah et al. (Fallah, et al., 2011) FSDT MTEKM Plate Vibration 

KitipornchaI et al. (Kitipornchai, et al., 1993) FSDT pb-2 
RRM 

Plate Buckling 

Xue et al. (Xue, et al., 2018) RPT Iso Plate Vibration 

Wang et al. (Wang, et al., 2000) FSDT p-RM Plate Vibration 

Woo et al. (Woo, et al., 2003) FSDT p-FEM Plate Vibration 

Jin and Wang (Jin & Wang, 2015)  QEM Plate Vibration 

Ferreira et al. (Ferreira, et al., 2005) FSDT RBF Plate Vibration 



Trans RINA, Vol 161, Part A4, Intl J Maritime Eng, Oct-Dec 2019 

A-364                     ©2019: The Royal Institution of Naval Architects 

Asemi et al. (Asemi, et al., 2014) 3D elasticity RRM Plate Vibration/ Bending 

Zeng and Bert (Zeng & Bert, 2001) FSDT RRM Plate Vibration 

Mizusawa et al. (Mizusawa, et al., 1979) CPT RRM Plate Vibration 

Mizusawa et al. (Mizusawa, et al., 1980) CPT RRM Plate Vibration/ Bending/ 
Buckling 

Kumar et al. (Kumar, et al., 2017) TSDT RRM Plate Buckling 

Kumar et al. (Kumar, et al., 2015) HSDT RRM Plate Vibration 

Singh and Chakraverty (Singh & Chakraverty, 1994) FSDT RRM Plate Vibration 

He et al. (He, et al., 2017) FSDT RRM Plate Bending 

Liew and Lam (Liew & Lam, 1990) FSDT RRM Plate Vibration 

Liew et al. (Liew, et al., 1993) FSDT RRM Plate Vibration 

Kiani (Kiani, 2016) FSDT RM Plate Vibration 

Zhou et al. (Zhou, et al., 2006)  RM Plate Vibration 

Anlas and Goker (Anlas & Göker, 2001)  RM Plate Vibration 

Mizusawa and Kajita (Mizusawa & Kajita, 1987) FSDT RRM Plate Vibration 

Cheung et al. (Cheung, et al., 1988) FSDT FSM Plate Vibration/ Bending 

Liew et al. (Liew, et al., 1995) 3D elasticity pb-2 RM Plate Vibration 

Malekzadeh et al. (Malekzadeh, et al., 2014) Layerwise theory DQM Plate Vibration 

Kiani et al. (Kiani & Mirzaei, 2018) FSDT RM Shell Vibration 

(Table 1. continued) 
 
 
 
4. FINITE ELEMENT FORMULATION 
 
In the current work, first-order shear deformation theory 
(FSDT) is used. Independent field variables u, v and w are 
defined as per equation (2). The shear deformation effect 
is included by taking the bending rotations as independent 
variables in the field (Pandit, et al., 2007), which are as 
follows 
 

{
𝜃𝑥
𝜃𝑦
} =

{
 

 
𝜕𝑤
𝜕𝑥 + 𝜙𝑥
𝜕𝑤
𝜕𝑦 + 𝜙𝑦}

 

 
 (5) 

 
here 𝜙𝑥and 𝜙𝑦are the average shear rotation over the 
entire plate thickness and 𝜃𝑥 and 𝜃𝑦 are the total rotations 
in bending. 
 
A nine-node isoparametric plate bending element is used 
in the current finite element formulation. One of the main 
advantages of the element is that any form of plate can be 
well managed with a simple mapping technique that can 
be defined as 
 

𝑥 =∑𝑁𝑟𝑥𝑟 and 𝑦 =∑𝑁𝑟𝑦𝑟
9

𝑟=1

9

𝑟=1

 (6) 

 
where (𝑥, 𝑦) are the coordinates of any point within the 
element are, (𝑥𝑟, 𝑦𝑟) are the coordinates of 𝑟th nodal point 
and 𝑁𝑟 is the corresponding interpolation function or 

shape function of the element. In this element, Lagrangian 
interpolation function is used for 𝑁𝑟. 
 
The nodal displacements at any node ‘𝑟’ of the plate 
element can be expressed as 
 

{𝛿𝑟} =

{
 
 

 
 
𝑢𝑟
𝑣𝑟
𝑤𝑟
𝜃𝑥𝑟
𝜃𝑦𝑟}

 
 

 
 

 (7) 

Where 
 

𝑢 =∑𝑁𝑟𝑢𝑟
9

𝑟=1

; 𝑣 =∑𝑁𝑟𝑣𝑟
9

𝑟=1

; 𝑤 =∑𝑁𝑟𝑤𝑟
9

𝑟=1

; 

𝜃𝑥 =∑𝑁𝑟𝜃𝑥𝑟

9

𝑟=1

; 𝜃𝑦 =∑𝑁𝑟𝜃𝑦𝑟

9

𝑟=1

 

(8) 

 
For a laminate, the generalized stress-strain relationship 
with respect to its reference plane may be expressed as 
 

{𝜎} = [𝐷]{𝜀} (9) 
 
where {σ} is the vector of stress resultants which can be 
expressed as 
 
{𝜎}𝑇
= [𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦 𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦 𝑄𝑥 𝑄𝑦] 

(10) 
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where, 𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦 are in-plane force resultants; 𝑀𝑥,𝑀𝑦 
are the bending moments in 𝑥 and 𝑦 directions; 𝑀𝑥𝑦 is the 
twisting moment resultant; and 𝑄𝑥, 𝑄𝑦are the transverse 
shear force resultants. 
 
The generalized strain in terms of displacement is written 
as 
 
{𝜀}𝑇

= [
𝜕𝑢
𝜕𝑥

𝑑𝑣
𝑑𝑦 (

𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥)

−𝜕𝜃𝑥
𝜕𝑥

−𝜕𝜃𝑦
𝜕𝑦 (

−𝜕𝜃𝑥
𝜕𝑦 −

𝜕𝜃𝑦
𝜕𝑥 ) (

𝜕𝑤
𝜕𝑥 − 𝜃𝑥) (

𝜕𝑤
𝜕𝑦 − 𝜃𝑦)] 

 
and [𝐷] is the rigidity matrix of the laminate 
which is written as 
 

(11) 
 

[𝐷] =

[
 
 
 
 
 
 
 
𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16 0 0
𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26 0 0
𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66 0 0
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16 0 0
𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26 0 0
𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66 0 0
0 0 0 0 0 0 𝑘𝑐. 𝐴55 𝑘𝑐. 𝐴54
0 0 0 0 0 0 𝑘𝑐. 𝐴45 𝑘𝑐. 𝐴44]

 
 
 
 
 
 
 

  (12) 

 
where, 
 
𝐴𝑖𝑗 = ∑ (𝑄𝑖𝑗)𝑘(𝑍𝑘+1 − 𝑍𝑘)

𝑛
𝑘=1   

𝐵𝑖𝑗 =
1
2
∑ (𝑄𝑖𝑗)𝑘(𝑍𝑘+1

2 − 𝑍𝑘2)𝑛
𝑘=1   

𝐷𝑖𝑗 =
1
3
∑ (𝑄𝑖𝑗)𝑘(𝑍𝑘+1

3 − 𝑍𝑘3)𝑛
𝑘=1   

(13) 

 
𝐴𝑖𝑗, 𝐵𝑖𝑗, 𝐷𝑖𝑗 are the extensional, extensional-bending and 
bending stiffness coefficients, which are defined in terms 
of the lamina stiffness coefficients. Here 𝑛 denotes the 
number of the laminas. 
 
(𝑄𝑖𝑗)𝑘 are the material coefficients. For any orthotropic 
material, they are known in terms of the engineering 
constants of the kth layer and given as (Jones, 1975), 
 
𝑄11𝑘 = 𝐸1

1−𝜇12𝜇21
; 𝑄22𝑘 = 𝐸2

1−𝜇12𝜇21
; 𝑄12𝑘 = 𝑄21𝑘 =

𝜇12𝐸2
1−𝜇12𝜇21

 𝑄44𝑘 = 𝐺23; 𝑄55𝑘 = 𝐺13; 𝑄66𝑘 = 𝐺12 
(14) 

 
where 𝐸1 is the longitudinal modulus and 𝐸2 is the 
transverse modulus, 𝜇12 is the major Poisson’s ratios, 
𝐺12, 𝐺13, 𝐺23 are the shear moduli. 𝜇21 is determined by 
using the relation 𝜇21𝐸1 = 𝜇12𝐸2. 
 
In FSDT, a shear correction factor (𝑘𝑐) is required to 
adjust the transverse shear stiffness for studying the static 
or dynamic problems of plates. The accuracy of solutions 
of the FSDT is strongly dependent on predicting better 
estimates for the shear correction factor. In this case the 
shear correction factor is assumed to be 5/6 (Kalita, et al., 
2016b). 
 
With the help of equation (8) and equation (11), the strain 
vector may be written as 

{𝜀} = ∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑁𝑟
𝜕𝑥

0 0 0 0

0 𝜕𝑁𝑟
𝜕𝑦

0 0 0
𝜕𝑁𝑟
𝜕𝑦

𝜕𝑁𝑟
𝜕𝑥

0 0 0

0 0 0 −𝜕𝑁𝑟
𝜕𝑥

0

0 0 0 0 −𝜕𝑁𝑟
𝜕𝑦

0 0 0 −𝜕𝑁𝑟
𝜕𝑦

−𝜕𝑁𝑟
𝜕𝑥

0 0 𝜕𝑁𝑟
𝜕𝑥

−𝑁𝑟 0

0 0 𝜕𝑁𝑟
𝜕𝑦

0 −𝑁𝑟]
 
 
 
 
 
 
 
 
 
 
 
 
 

9
𝑟=1

{
 
 

 
 
𝑢𝑟
𝑣𝑟
𝑤𝑟
𝜃𝑥𝑟
𝜃𝑦𝑟}
 
 

 
 

   (15) 

 
or, {𝜀} = ∑ [𝐵]𝑟{𝛿𝑟}𝑒9

𝑟=1  
 
or, {𝜀} = [𝐵]{𝛿} 
 
Where [B] is the strain matrix containing interpolation 
functions and their derivatives and {δ} is the nodal 
displacement vector having order 45 × 1 
 
Once the matrices [B] and [D] are obtained, the stiffness 
matrix of the plate element [𝐾]𝑒can be easily derived by 
the virtual work method and it may be expressed as 
 
[𝐾]𝑒 = ∫ ∫ [𝐵]𝑇[𝐷][𝐵]|𝐽|𝑑𝜉𝑑𝜂+1

−1
+1
−1   (16) 

 
In equation (16), the Jacobean |𝐽| is derived from equation 
(6) by taking the derivatives of the co-ordinates in 
equation (15). The integration is carried out numerically 
following Gauss quadrature technique. 
 
Applying the concept of consistent mass matrix, a lumped 
mass matrix has been derived and it may be expressed as 
 

[𝑀] = 𝜌ℎ ∫ ∫ [[𝑁𝑢]𝑇[𝑁𝑢] + [𝑁𝑣]𝑇[𝑁𝑣] +
+1
−1

+1
−1

[𝑁𝑤]𝑇[𝑁𝑤] +
ℎ2

12
[𝑁𝜃𝑥]

𝑇[𝑁𝜃𝑥] +
ℎ2

12
[𝑁𝜃𝑦]

𝑇
[𝑁𝜃𝑦]] |𝐽|𝑑𝜉𝑑𝜂  

 
(17) 

 
where, 
 

[𝑁𝑢] = [[𝑁𝑟][𝑁0][𝑁0][𝑁0][𝑁0]] 
[𝑁𝑣] = [[𝑁0][𝑁𝑟][𝑁0][𝑁0][𝑁0]] 
[𝑁𝑤] = [[𝑁0][𝑁0][𝑁𝑟][𝑁0][𝑁0]] 
[𝑁𝜃𝑥] = [[𝑁0][𝑁0][𝑁0][𝑁𝑟][𝑁0]] 
[𝑁𝜃𝑦] = [[𝑁0][𝑁0][𝑁0][𝑁0][𝑁𝑟]] 

 
where, [N0] = null matrix of the order 1 × 9, 𝜌 is the 
density of the material and ℎ is the thickness of the 
laminate.  
 
In equation (17) the first two terms of the mass matrix are 
associated with in-plane movements of mass and the third 
term indicates transverse movement of mass (which is 
usually found to contribute the major inertia) whereas the 
last two terms are associated with rotary inertia and their 
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contribution becomes significant only in a plate having 
higher thickness. 
 
The element stiffness matrix and mass matrix having an 
order of forty-five are evaluated for all the elements and 
they are assembled together to form the overall stiffness 
matrix [K0] and mass matrix [M0]. Once [K0] and [M0] are 
obtained the equations of motion of the plate may be 
expressed as 
 

[𝐾0]{𝛿} = 𝜔2[𝑀0]{𝛿} (18) 
 
After incorporating the boundary conditions in equation 
(18), it is solved by the simultaneous iterative technique 
following Corr and Jennings (Corr & Jennings, 1976) to 
obtain the natural frequency ω.  
 
The boundary conditions are defined as, 
 
Simply supported condition (denoted by S): 
 
𝑤 = 𝜃𝑥 = 0, at boundary line parallel to x-axis 
𝑤 = 𝜃𝑦 = 0, at boundary line parallel to y-axis 
 
Clamped condition (denoted by C): 
 
𝑤 = 𝜃𝑥 = 𝜃𝑦 = 0  
 
Free boundary condition (denoted by F): 
 
𝑤 ≠ 0, 𝜃𝑥 ≠ 0, 𝜃𝑦 ≠ 0  

The authors have previously shown this formulation to be 
able to yield very accurate results (Kalita & Haldar, 2017) 
(Kalita & Haldar, 2016) (Kalita & Haldar, 2018) (Kalita 
& Haldar, 2015) (Kalita, et al., 2018a) (Kalita, et al., 
2016b) (Kalita, et al., 2015) (Kalita, et al., 2016c) (Kalita, 
et al., 2016a) (Kalita, et al., 2018b). 
 
 
5. RESULTS AND DISCUSSION 
 
Numerical examples of skew isotropic and composite 
plates with skew cut-outs are solved by the present finite 
element formulation. The finite element approach used in 
this research is first established by comparing with the 
published results. Subsequently using the current high-
fidelity finite element analysis a few new results are 
reported as benchmark results for future studies. 
 
 
5.1 VALIDATION STUDY 
 
Example 1: Isotropic skew plate 
 
A simply supported isotropic skew plate as shown in 
Figure. 1a is analysed for different skew angles (30° and 
45°). The necessary transformation for the inclined edges 
is done. The present results are reported in Table 2 along 
with those of Liew and Lam (Liew & Lam, 1990). The 
results show convergence at 16 × 16 mesh.   
 
 

 
 

 
Figure.1. Configuration of plates considered in the study. 
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Example 2: Composite square plate with central square 
cut-out 
 
A simply supported, cross-ply (0/90), square laminate 
with thickness ratio (h/a=0.01) having square cut-outs at 
the center is considered (Figure. 1b). The study is made 
for different cut-out sizes where the edges of the cut-out 
are taken parallel to the edges of the plate. A mesh 
converge is carried out (not shown here) and in case of 
composite laminates, convergence is seen at 20x20. Thus, 
henceforth in this study, the same mesh is used unless 
otherwise stated. The present results are reported in Table 
3 along with those of Sheikh et al. (Sheikh, et al., 2004). 
Material properties are considered as E1=25E2, G12= G13= 
0.5E2, G23=0.2E2 and ν12=0.25. 
 
From the above two examples, it is seen that the current 
finite element formulation is capable of producing highly 
accurate results. Thus, the same formulation is used for 

analysis of composite skew plate having a skew cut-out at 
the center of the plate under different situations. 
 
5.2 NUMERICAL RESULTS 
 
Example 3: Perforated composite skew plates with and 
without rotary inertia. 
 
A simply supported skew-symmetric cross-ply (0/90/0), 
having a skew cut-out (0.2a × 0.2b) at the plate center is 
considered (Figure. 1b). The plate is analysed with different 
thickness ratios (h/a=0.01, 0.1 and 0.2). Both types of mass 
lumping (MLORI and MLWRI) schemes are used. From 
Table 4, it is seen that for thin plate there is no effect of rotary 
inertia. As thickness increases, the effect of rotary inertia also 
increases. Percentage change of results of both the lumping 
schemes is also been presented in Table 4. Since the lumping 
scheme MLWRI is useful for both thick and thin plates, the 
subsequent examples have been studied for mass lumping 
scheme MLWRI. 

 
 
Table 2. Frequencies 𝜆 = 𝜔𝑎2√ℎ𝜌 𝐷⁄  of a simply supported isotropic skew plate (h/a=0.01) 

Skew angle (α) Source First five natural frequencies 
1 2 3 4 5 

30° Present (16 × 16) 24.89 52.59 71.62 83.71 122.56 
Liew and Lam (Liew & Lam, 1990) 25.07 52.90 72.34 84.78 - 

45° Present (16 × 16) 34.77 66.20 100.09 106.83 140.46 
Liew and Lam (Liew & Lam, 1990) 34.94 66.42 100.87 107.78 - 

 
 
Table 3. Frequencies 𝜆 = 𝜔𝑎2√𝜌 𝐸2⁄ /ℎ of a square laminate with square cut-out at plate center (h/a=0.01, a=b) 

Cut-out size Source First five natural frequencies 
1 2 3 4 5 

0.2a × 0.2a Present (20 × 20) 9.11 25.41 25.41 38.00 53.99 
Sheikh et al. (Sheikh, et al., 2004) 9.12 25.50 25.51 38.04 54.03 

0.4a × 0.4b Present (20 × 20) 9.09 20.41 20.43 35.48 44.60 
Sheikh et al. (Sheikh, et al., 2004) 9.09 20.30 20.30 35.46 44.28 

0.6a × 0.6b Present (20 × 20) 11.14 18.51 18.51 32.71 34.34 
Sheikh et al. (Sheikh, et al., 2004) 11.11 18.54 18.55 32.94 34.27 

 
 
Table 4. Frequencies 𝜆 = 𝜔𝑎2√𝜌 𝐸2⁄ /ℎ of a simply supported, cross-ply (0/90/0) skew laminate having skew cut-out 
(0.2a × 0.2b) at the plate center (a=b, α = 30°) 

Mass lumping h/a First five natural frequencies 
1 2 3 4 5 

MLORI* 
0.01 

15.45 27.88 50.31 50.71 65.91 
MLWRI& 15.45 27.88 50.29 50.70 65.88 

% variation 0 0 0 0 0 
MLORI (20 × 20) 

0.1 
12.70 21.45 25.31 27.45 35.18 

MLWRI (20 × 20) 12.58 21.23 25.31 27.22 34.69 
% variation 0.95 1.036 0 0.845 1.41 

MLORI (20 × 20) 
0.2 

9.60 12.65 14,78 16.55 18.41 
MLWRI (20 × 20) 9.43 12.65 14.55 16.02 18.04 

% variation 1.8 0 1.58 3.31 2.051 
*Mass lumping without rotary inertia / &Mass lumping with rotary inertia 
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Example 4: Perforated composite skew plates at different 
skew angles. 
 
In the next example, a simply supported skew laminate 
(0/90/0) with a skew cut-out (0.2a × 0.2b) at the center is 
analysed considering thickness ratio h/a=0.1. An analysis 
is performed considering various skew angles (α=15°, 30°, 
45°, 60° and 75°) as shown in Figure. 1b. The results are 
presented in Table 5. As expected, as the skew angle 
increases, frequency also increases since the mass of the 
plate decreases. 
 
Example 5: Perforated composite skew plates with 
different cut-out sizes.  
 
Cross-ply (0/90) skew laminate having simply supported 
(Figure. 1b) and fixed supported (Figure. 1c) along all 
the four edges with skew laminate (α=30°), thickness 

ratio h/a=0.01 and different cut-out sizes at the plate 
center are analysed. The results are reported in Table 6. 
It is seen that as cut out size increases, frequency 
decreases due to decrease of the stiffness of the plate in 
case of simply supported but it is reversed in case of the 
fixed supported plate. 
 
Example 6: Perforated composite skew plates with 
different aspect ratios. 
 
Next, a four-layer anti-symmetric (0/90/0/90) skew 
laminate with two inclined edges fixed and other two 
straight edges are free having central skew cut out (0.2a × 
0.2b) is investigated (Figure. 1d). The analysis is 
performed considering different aspect ratio (a/b=1.0, 1.5, 
2.0, 2.5, 3.0). Results are presented in Table 7. It is seen 
that as the aspect ratio increases frequency decreases, 
since the mass of the plate increases. 

 
 
 
Table 5. Frequencies 𝜆 = 𝜔𝑎2√𝜌 𝐸2⁄ /ℎ of a simply supported, cross-ply (0/90/0) skew laminate having skew cut-out 
(0.2a × 0.2b) at the plate center (a=b, h/a=0.1) 

Skew angle First five natural frequencies 
1 2 3 4 5 

15° 

11.41 

 

18.67 

 

22.88 

 

25.57 

 

27.94 

 

30° 

12.59 

 

21.23 

 

25.31 

 

27.22 

 

34.69 

 

45° 

15.50 

 

26.47 

 

27.23 

 

30.99 

 

40.48 

 

60° 

22.23 

 

26.87 

 

36.31 

 

38.58 

 

42.58 

 

75° 

23.97 

 

29.70 

 

40.14 

 

49.31 

 

50.70 
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Table 6. Frequencies 𝜆 = 𝜔𝑎2√𝜌 𝐸2⁄ /ℎ of a simply supported and clamped cross-ply (0/90) skew laminate having skew 
cutout at the plate center (a=b, α = 30°). 

Cut-out size First five natural frequencies 
1 2 3 4 5 

Simply supported 
0.1a × 0.1b 13.14 29.43 38.65 46.19 66.84 
0.2a × 0.2b 12.75 28.67 35.03 46.17 65.52 
0.3a ×.3b 12.74 27.16 29.08 45.38 59.85 
0.4a × 0.4b 13.30 24.55 26.12 44.44 50.78 
0.6a × 0.6b 12.74 22.44 27.71 40.28 45.99 

Clamped 
0.1a × 0.1b 25.42 45.32 57.38 65.67 89.57 
0.2a × 0.2b 26.11 43.97 50.17 65.70 86.31 
0.3a × 0.3b 28.69 42.03 46.18 64.64 77.08 
0.4a × 0.4b 35.78 42.82 49.47 64.85 68.03 
0.6a × 0.6b 70.62 71.48 77.86 82.09 89.27 

 
Table 7. Frequencies 𝜆 = 𝜔𝑎2√𝜌 𝐸2⁄ /ℎ of a cross-ply (0/90/0/90) skew laminate having skew cut-out (0.2a × 0.2b) at the plate 
center (h/a = 0.1, α = 30°) 

a/b 
First five natural frequencies 

1 2 3 4 5 

1 

22.57 

 

24.90 

 

37.07 

 

58.81 

 

63.20 

 

1.5 

10.06 

 

11.75 

 

24.85 

 

26.71 

 

29.86 

 

2.0 

5.65 

 

6.86 

 

15.88 

 

16.73 

 

22.41 

 

2.5 

3.61 

 

4.54 

 

9.66 

 

11.11 

 

18.87 

 

3.0 

2.50 

 

3.30 

 

6.71 

 

7.94 

 

13.23 
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Table 8. Frequencies 𝜆 = 𝜔𝑎2√𝜌 𝐸2⁄ /ℎ of simply supported angle-ply skew laminate having skew cutout (0.2a × 0.2b) 
at the plate center (a=b, α = 30°) 

Ply orientations First five natural frequencies 
1 2 3 4 5 

For symmetric laminate 

45/-45/45 

15.77 

 

32.30 

 

43.55 

 

59.65 

 

62.74 

 

45/-45/45/-45/45 

19.85 

 

43.34 

 

50.25 

 

73.12 

 

90.04 

 

45/-45/45/-45/45/-45/45 

20.93 

 

45.17 

 

52.99 

 

75.22 

 

96.37 

 

45/-45/45/-45/45/-45/45/-45/45 

21.40 

 

45.72 

 

54.42 

 

75.86 

 

98.29 

 
For anti-symmetric laminate 

45/-45 

15.30 

 

29.27 

 

37.46 

 

48.30 

 

64.43 

 

45/-45/45/-45 

20.95 

 

42.55 

 

54.00 

 

69.85 

 

93.45 

 

45/-45/45/-45/45/-45 

21.81 

 

44.54 

 

56.44 

 

73.07 

 

97.77 

 

45/-45/45/-45/45/-45/45/-45 

22.10 

 

45.21 

 

57.26 

 

74.16 

 

106.53 
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Example 7: Perforated composite skew plates with 
different number of layers. 
 
In this example, a simply supported angle ply skew 
laminate with skew cut out (0.2a × 0.2b) at the center is 
analysed (Figure. 1b). In this analysis different number 
of layers is considered and the results are presented in 
Table 8. Both symmetric and anti-symmetric plates are 
analysed. As the number of layer increases, stiffness of 
the laminate increases and thus, frequencies increase. 
 
Example 8: Perforated composite skew plates with corner 
point constraints and having different cut-out sizes.  
 
In the last example an angle-ply skew laminate (30/-30/30) 
with skew cut out having different sizes at the center is 
analysed (Figure. 1e). The skew laminate is fixed along the 
left edge and the opposite two corner points A and B are 
also restrained with all the five degrees of freedom. The 
results are presented in Table 9. Here it is seen that as the 
cut-out size increases the frequency decreases. 
 
Table 9. Frequencies 𝜆 = 𝜔𝑎2√𝜌 𝐸2⁄ /ℎ of an angle-ply 
skew laminate (30/-30/30) having skew cutout at the plate 
center (a=b, h/a=0.01, α = 45°) 

Cut out size 
First five natural frequencies 

1 2 3 4 5 

0.1a × 0.1a 10.01 17.12 17.62 34.71 40.43 

0.2a × 0.2a 9.89 16.89 17.32 34.05 39.68 

0.3a × 0.3a 9.80 16.46 16.84 33.94 38.21 
 
 
6. CONCLUSION 
 
In this research, the equivalent single layer theories are 
critically discussed. A brief cross-section of the literature 
on equivalent single layer theories is reviewed. An 
exhaustive survey on works related to the analysis of skew 
composite laminates is also presented. A finite element 
analysis on free vibration behavior of skew laminates is 
then carried out. The shear deformation across the 
thickness is included by considering a first-order shear 
deformation theory. The rotary inertia effects are also 
included. Certain numerical examples are solved using the 
formulation which will serve as benchmark results for 
future studies. 
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