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SUMMARY 
 
Due to the complexity of submarine environments, the nature of the dynamic response of free -spanning submarine 
pipelines, particularly inclined pipelines, is unclear. This paper aims to theoretically analyze the vibration behaviors 
of inclined fluid-transporting free-spanning submarine pipelines in the deepwater area. The mathematical model for 
the vibration of inclined fluid-transporting pipelines is established considering the influence of gravity on vibration 
response, and a non-linear wake oscillator is employed to model the vortex shedding behind the pipeline free span. 
The partial differential equation system is solved through the generalized integral transform technique (GITT), which 
is an analytical or semi-analytical method. Parametric analysis are carried out to investigate the effects of the 
inclination on the dynamic response of fluid-transporting pipelines. It is found that the inclination of the free-
spanning pipeline will radically alter the natural frequency of the structure, and consequently the VIV lock-in region. 
In addition, the slope of the seabed will cause a more significant internal flow effect. The thorough theoretical 
understanding of inclined fluid-transporting pipelines helps increase the design accuracy for pipelines installed on a 
seabed with a highly irregular topography. 
 
 
1. INTRODUCTION 
 
As a transportation facility in offshore engineering, the 
submarine pipeline plays a crucial role in transporting oil 
and gas from deep down the bottom of the sea to the far 
away user terminal. Deep and even ultra-deep water 
create a wide range of challenges for pipeline design in 
oil and gas industry and the safety operation of pipelines 
must be prioritized considering their importance and 
coverage in any oil and gas projects, particularly the 
offshore projects. 
 
In deepwater area, pipelines are laid on the seabed and due 
to scour of the current or seabed unevenness, some parts 
of submarine pipelines may have to cross a depression or 
a gully (Fyrileiv & Mørk, 2002), and the pipeline section 
between two touchdown points is called a free span 
(Vedeld, et al, 2013). If a free-span is exposed to currents, 
vortex shedding may occur and produce vibration of the 
pipeline structure. The vortex-induced vibration (VIV) of 
the suspended part of the pipeline may consequently 
induce accumulative fatigue damage of the pipelines. This 
consequence is one of the most concerned issues in the 
design of submarine pipelines. 
 
Due to its simplicity and effectiveness, the wake oscillator 
model has been acknowledged as a feasible way to model 
the vortex shedding. Facchinetti et al. (2004) investigated 
three different coupling terms, i.e. acceleration, velocity 
and displacement to study the VIV of pipelines, and 
concluded that the acceleration coupling best coincide 
with the experimental results. Low and Srinil (2016) 
carried out a nonlinear fluid-structure interaction analysis 
of marine risers by identifying the uncertainties of a wake 
oscillator model which simulates the fluctuating 

hydrodynamic force. However, the above-mentioned 
literature neglect the fact that pipelines and risers in 
offshore engineering often transport fluid. For pipelines 
that transport internal fluid, the dynamic behaviors are 
affected by both the current and fluid running inside itself. 
The currents and the pipelines transporting internal fluid 
interact with each other and form a coupled nonlinear 
system. The pipelines exposed to currents are prone to VIV, 
while the internal fluid travels along the curved pipeline 
amplifies the vibration of the system to an extent that the 
effect cannot be neglected when predicting the fatigue life 
of submarine pipelines (Guo, et al, 2006). 
 
Housner (1952) is one of the pioneers who studied the 
dynamic behaviors of pipelines considering the effect of 
internal fluid in pipelines and showed that at certain high 
velocity, the internal fluid will even cause dynamic instability 
of the pipeline. Based on Housner’s model, Shen and Zhao 
(1996) studied the impact of internal fluid on the fatigue life 
of the pipeline free span subject to VIV. Guo et al. (2004), 
Lou et al. (2005) and Guo and Lou (2008) investigated the 
coupled effect of internal and external fluid on the vibration 
behavior of free-spanning pipelines by using Finite Element 
Method (FEM). Kaewunruen et al. (2005) investigated 
nonlinear free vibrations of marine pipes transporting fluid, 
and determined the nonlinear fundamental frequencies and 
the mode shapes by the modified direct iteration technique. 
And lately, Dai et al. (2014) investigated the VIV of pipes 
conveying pulsating fluid through the direct perturbation 
method of multiple scales. 
 
It should be noted that the majority of the previous 
literature on this topic consider the pipelines in the 
horizontal position and neglect the fact that in real 
circumstances, pipelines are most likely to be placed over 
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a slope. For instance, it is reported that the maximum slope 
is about 22° for the Southern Route, and 25° for the 
Northern Route of the pipeline Transmed stretching from 
Algeria to Italy (Drago, et al, 2015). Paidoussis (1998) 
pointed out that for vertical pipelines vibrating freely, the 
effect of gravity is non-negligible, suggesting that the 
influence of gravity is important on the dynamic response 
of inclined pipelines and thus should be considered. Gan 
et al. (2015) and Jing et al. (2015) built a mathematical 
model to study the vibration behavior of an inclined 
viscoelastic pipe. Results show that the vibration of 
inclined fluid-conveying pipes demonstrates bifurcation 
processes. However, in their model, only the internal fluid 
was considered. 
 
In this work, considering the effect of gravity, a fluid-
structural model is proposed to analyze the dynamic behavior 
of inclined submarine pipelines subjected to internal flow and 
external current. A thorough understanding of their dynamic 
behaviors will help the design of pipelines. In Section 2, the 
governing equation for the vibration of inclined submarine 
fluid-transporting pipelines is established, and a non-linear 
wake oscillator is employed to model the vortex shedding 
behind the pipeline. Section 3 provides the analytical or semi-
analytical solutions for the transverse displacement using the 
generalized integral transform technique (GITT). Case 
studies, presented in Section 4, include the structural natural 
frequency, mode shapes, and effect analysis of the inclination 
and internal fluid on the dynamic response through time 
history, and frequency analyses. The final results and 
discussions are concluded in Section 5 of the paper. 
 
 
2. MATHEMATICAL MODEL 
 
Consider a Cartesian coordinate system of x’- and z’-axes, 
with its origin at the left end of the pipeline, where x’-axis 
is in the direction of the gravity. Being rotated counter-
clockwise by θ, a new coordinate system of x-, y- and z-
axes is sketched, where the y-axis is parallel to the current 
and orthogonal to x- and z-axes, and z-is the direction 
along which the pipeline deflects transversely. Taking the 
free-spanning submarine pipeline as an example, the 
diagram is illustrated in Figure 1. 
 

 
Figure 1: Schematic diagram of a fluid-conveying free-
spanning submarine pipeline over a slope. 
 
 

In the present study, the pipeline is assumed to be elastic, 
non-deformed, and simple-supported at both ends. The 
internal fluid inside the pipe travels at a constant velocity 
U, and the external current flows at a constant velocity V. 
The pipeline is cylindrical with a constant outer diameter 
D and inner diameter Di. Its outer cross section area is 
symbolized as Ae, the inner cross section area Ai, and the 
inner perimeter is Si. The axial tension and internal 
pressure are Ta and P, respectively. This model is 
constrained to cross-flow vibration. 
 
 
2.1 STRUCTURE MODEL 
 
The forces and moments acting on the fluid and pipe elements 
δx are analyzed respectively as Figure 2 shows. The internal 
fluid is assumed to be steady and incompressible. Since the 
diameter of the pipe is small compared with the wavelength 
of the disturbances to the fluid particle, its accelerations in x- 

and z-directions are respectively zero and 2U z
t x
w w§ ·+¨ ¸w w© ¹

.  

τ stands for the shear force acting on the inner surface of the 
pipeline, hence τSi represents the friction between the internal 
fluid and the inner surface. f is the transverse force between 
the pipe and the internal fluid. rs is the structural damping. g 
is the acceleration due to the gravity. For unit length of the 
pipeline, mi is the internal fluid mass, mp is the mass of the 
pipeline, and 2 / 4e M eCm DSU=   is the added mass due to 

external fluid, where CM is the added mass coefficient. The 
density of the pipe, the internal fluid and the external current 
are expressed respectively as ρp, ρi and ρe. Q is the transverse 
shear force on the pipe element, and M is the bending moment. 
Fw is the force due to the current in the cross-flow direction, 

expressed as  
2
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By neglecting the terms of second or higher order, according 
to the Euler beam approximation for small deformation, the 
force equilibrium equations are as follows: 
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(in z-direction)                       (1b) 
 
In terms of the pipe element, similarly, the force 
equilibrium equations are concluded as follows: 
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 Considering 3

3

M zQ EI
x x

w w
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w w
, where EI is the flexural 

stiffness, the governing equation for the vibration of 
inclined fluid-transporting submarine pipelines is derived 
based on Equations (1) and (2): 
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According to Facchinetti el al. (2004), the structural damping 
can be calculated by 2s sr m ]= :  , where ζ is the damping 
ratio, and s:  is the angular structural natural frequency. For a 

simple-supported beam, it can be calculated through 

2
4s

EI
mL

S: =  (Clough & Penzien, 1975). 

 
2.2 WAKE OSCILLATOR MODEL 
 
In the present paper, a nonlinear oscillator equation is 
adopted to describe the fluid force acted on the structure 
by the current (Facchinetti, et al, 2004; Iwan, 1981), which 
is expressed as follows:  
 

  (4) 

The dimensionless wake variable q (as shown in Figure 3) 
is related to the fluctuating lift coefficient CL on the 
structure, i.e.  , where CL0 is the 

reference lift coefficient which can be obtained from 
experiments. On the right-hand side of Equation (4), the 

forcing term 
2

2

a zF
D t
w

=
w

 simulates the effects of the pipe 

motion on the near wake. 2 /f StV DS: =   denotes the 

vortex-shedding angular frequency, where St is the 
Strouhal number. The values of the van der Pol parameter 
ε and the coupling force scaling parameter A can also be 
gained through experiments. 
 

 

 

 

 

           

 

 
            (a) Fluid element                                  (b) Pipe element 

Figure 2: Forces and moments acting on the elements. 
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Figure 3: Wake oscillators for cross-flow vibration. 
 
 
2.3 COUPLING OF STRUCTURE AND WAKE 

MODELS 
 
By combining Equations (3) and (4), the following 
coupled fluid-structure dynamic system is derived: 
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subjected to pinned-pinned boundary conditions: 
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By introducing the following dimensionless variables: 
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the dimensionless coupling system is yielded, where the 
asterisks are omitted for simplicity: 
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together with the dimensionless boundary conditions 
expressed as:  
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Besides, a random noise with an amplitude of order  
O(10-3) is applied to the fluid variable q for the initial 
conditions (Violette, et al, 2007): 
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It has to be mentioned that θ is the angle between the 
pipeline and the direction of gravity, and the slope of the 
seabed or the inclination angle of the pipeline is assumed 

to be γ, and 
2
SJ T= − . 

 
 
3. INTEGRAL TRANSFORM SOLUTION 
 
In this section, the coupling system, i.e. the initial- and 
boundary-value problem given by Equations (8) and (9) 
are solved through GITT. This method is a semi-analytical 
method, which is a classical approach for solving heat and 
fluid flow problems, and can realize controlled accuracy 
and efficient computational performance (Cotta, 1993; 
Cotta, 1994; Cotta, 1997 and Cotta, 1998). The application 

of GITT has been further adopted in the area of structural 
mechanics (Ma, et al, 2006; An & Su, 2011; Matt, 2013a; 
Matt, 2013b; An & Su, 2014a; and An & Su, 2014b). The 
implementation of this technique to solve coupled fluid 
and structure problems has been more frequent over the 
last few years (Matt, 2009; Gu, et al, 2012; Gu, et al, 
2013a; Gu, et al, 2013b; An & Su, 2015; An, et al, 2016; 
Li, et al, 2016; and Gu, et al, 2016). 
 
The first step in applying GITT is to define the auxiliary 
eigenvalue problem. For the transverse displacement of a 
pipeline and the wake variable, the eigenvalue problems 
are chosen respectively as: 
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where X and iI  are the eigenfunction and the eigenvalue of 
problem Equation (10a); likewise kY   and kM   are the 
eigenfunction and the eigenvalue of problem Equation (10b). 
The eigenfunctions both satisfy the following orthogonality, 

1
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where ijG   and klG   is the Kronecker delta. For i jz  , 

0ijG =  ; and for i j=  , 1ijG =  . Likewise, for k lz  , 
0klG = ; for k l= ,  1klG = . 
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The normalization integrals are: 
1 2

0
( )di iN X x x= ³                   (13a) 

1 2

0
( )dk kN Y x x= ³                   (13b) 

 
The eigenvalue problems (10a) and (10b) with the 
boundary conditions (11a) and (11b) are now analytically 
solved to yield: 
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where the eigenvalue is obtained: 
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And by introducing Equations (14) and (15) to Equation 
(13), the normalization integrals are evaluated as 
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Therefore, in this case, the normalized eigenfunction 
correlates with the original eigenfunction through the 
following function: 
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The next step is to define the integral transform pair – the 
integral transform itself and the inversion formula. For the 
transverse displacement of the free span: 
 

1

0
( ) ( ) ( , )d  ,  transformi iz t X x z x t x= ³    (18a) 

1
( , ) ( ) ( ) ,  inversionii

i
z x t X x z t

f

=

=¦    (18b) 

 
For the wake variable: 
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The third step is the transformation of the governing 
partial differential equations into a system of ordinary 
differential equations with respect to the time t, by 
employing the definition of ( )iz t  and ( )kq t  given by 
Equations (18a) and (19a). By multiplying both sides of 
equation system (8a) by ( )iX x   and ( )kY x  
respectively, integrating on x from 0 to 1, and then using 
Equations (18b) and (19b), the following ordinary 
differential equation system is yielded: 
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where the coefficients are analytically determined by the 
following integrals: 
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The initial conditions are also transformed with spatial 
coordinate being eliminated, yielding 
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For computation efficiency, the expansions for ( , )z x t  
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and ( , )q x t  are both truncated to N orders. When ( )iz t  
and ( )kq t   in Equation (20) are numerically evaluated, 
the inversion formulas Equations (18b) and (19b) are then 
applied to recover the analytical expressions for the 
dimensionless ( , )z x t  and ( , )q x t . 
 
4. RESULTS AND DISCUSSION 
 
In this section, the semi-analytical results for the transverse 
displacement ( , )z x t   of the inclined fluid-transporting 
submarine pipelines subject to uniform internal flow and 
external cross flow will be solved through GITT in case 
studies. The convergence behavior of the GITT solutions is 
concluded to have a good performance based on the 
convergence analysis in the literature mentioned previously 
(An & Su, 2014b; Li, et al, 2016). For this reason, the 
convergence analysis will not be discussed for the present 
study, and for all the following work the truncation order N = 
12 will be used in the case study. 
 
The main geometric and physical properties of submarine 
pipeline and the fluid in the parametric studies are 
summarized in Tables 1 and 2. In addition, the reduced 
velocity r s/ ( )V V f D=  is introduced here, where 

/ (2 )s sf S:=   is the fundamental natural frequency. The 
range of the reduced velocity studied in the present paper 
is within [4,  8]Vr�  , corresponding the dimensionless 
external current velocity range [0.018, 0.036]V�  , 
which is the lock-in region of VIV.  
 
4.1 GRAVITY EFFECT 
 
The existing mathematical model, as shown by Equation 
(22), for predicting the dynamic response of free-spanning 
pipelines often ignores the gravity terms (Fyrileiv & Mørk, 
2002; Lou, et al, 2005), which is the same if the 
acceleration due to the gravity g is set as zero in Equation 
(3). However, the proposed structural model Equation (4) 
in the present paper takes into consideration not only the 
angle terms but also the gravity terms. 
 
The time history results of the mid-point of a horizontal 
free-spanning pipeline is calculated with dimensionless U 
= 0.5, V = 0.03, as shown in Figure 4. It is found that when 
the gravity terms are ignored, i.e. g = 0, the vibration 
center of the span mid-point is z = 0; and when the gravity 
terms are considered, i.e. g = 9.8 m/s2, the vibration center 
of the span mid-point deviates to z = -9.7930. 
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Table 1 Geometric and physical properties of submarine pipeline. 

D [m] L [m] Di [m] ρp [kg/m3] E [Pa] ζ 
0.35 76 0.325 8200 2.0×1011 0.005 

 
Table 2 Physical properties of internal and external fluid. 
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Figure 4: Cross-flow time history of the mid-point of a horizontal free span. 
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If the time history of the span mid-point which considers 
the gravity effect (i.e. the black curve) is translated 
upwards by 9.7930, Figure 5 is plotted. Observation 
indicates that, for horizontal spans, the gravity effect on 
the vibration amplitude is very subtle. When gravity is 
ignored, the maximum displacement-to-diameter ratio is 
0.6029; and when gravity is considered, the maximum 
displacement-to-diameter ratio is 0.6043. The results are 
very close. The spectral analysis shown in Figure 6 (where 
PSD refers to power spectral density) also proves that 
gravity does not affect vibration frequency of the 
horizontal free-spanning pipeline. 
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Figure 5: Comparison of the vibration amplitude between 
horizontal free spans considering gravity and ignoring 
gravity ( [15,  30]t� ). 
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  (a) g = 9.8 m/s2  

   (b) g = 0 
Figure 6: Frequency analysis of the horizontal free span. 

The same comparison is also done for a free span over a 45° 
slope. The time history results of the mid-point of an inclined 
free-spanning pipeline is calculated with dimensionless U = 
0.5, V = 0.03, as shown in Figure 7. It is found that when the 
gravity terms are ignored, i.e. g = 0, the vibration center of the 
span mid-point is z = 0; and when the gravity terms are 
considered, i.e. g = 9.8 m/s2, the vibration center of the span 
mid-point deviates to z = -6.8506. 
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Figure 7: Cross-flow time history of the mid-point of a 
free span with a 45° slope. 
 
If the time history of the span mid-point which considers 
the gravity effect (i.e. the black curve) is translated 
upwards by 6.8506, Figure 8 is plotted. It can be observed 
that, for inclined free spans, the gravity effect will change 
the vibration amplitude of the system. When gravity is 
ignored, the maximum displacement-to-diameter ratio is 
0.6029; and when gravity is considered, the maximum 
displacement-to-diameter ratio is 0.5823, and the 
difference is very distinct. The FFT analysis shown in 
Figure 9 displays that gravity does not affect vibration 
frequency of the inclined free-spanning pipeline. However, 
it has to be admitted that the difference in the vibration 
amplitude cannot be ignored, thus if the free-spanning 
pipeline system is over seabed slope, the inclination of the 
free-spanning pipeline has to be considered when 
predicting the dynamic behaviors of the system. 
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Figure 8: Comparison of the vibration amplitude between 
the free span with a 45° slope considering gravity and 
ignoring gravity ( [15,  30]t� ). 
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Figure 9: Frequency analysis of the free span with a 45° slope. 
 
 
The mode shapes of free-spanning pipelines with U = 0.8, V 
= 0.035, and γ = 45° are shown in Figure 10, where (a) is 
depicted when gravity is considered and (b) is depicted when 
gravity is ignored. The lines are plotted for a time internal of 

0.05 during t ∈ [15, 16]. The mode shapes also clearly 
reveal the difference between the two different cases. 
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Figure 10: Instantaneous displacement during t ∈ [15, 16] 
 
 
 
 
4.2 NATURAL FREQUENCY 
 
To calculate the natural frequency of the free-spanning 
pipeline system using GITT, both the external and internal 
flow velocities are set as zero. A random noise with an 
amplitude of order O(10-3) is applied to the dimensionless 
transverse displacement z. Calculations are done 
respectively for the free-spanning pipeline with a slope 
angle of 0°, 15°, 30° and 45° respectively. The spectral 
analysis of the midpoint vibration under the above-
mentioned conditions are provided in Figure 11.  
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Figure 11: Frequency analysis of the free vibration of free span with different slope angles. 

 
 
 
 
 
 
 
 
The dominating frequencies shown in Figure 11 (a-d) 
represents the fundamental natural frequency of the free-
spanning pipeline. It can be observed that with the increase 
in seabed slope, the natural frequency of the free-spanning 
pipeline will also increase. This can be explained as the 
slope rises, the axial force will increase due to gravity, 
hence the natural frequency being increased. The results 
provided in Figure 10 are non-dimensional, and the natural 
frequencies in Hz are summarized in Table 3. 
 
 
Table 3 Effects of the slope angle on the natural frequency 
of the free spanning pipeline. 

Seabed slope 
γ 

Fundamental natural frequency 
[Hz] 

0 0.0993 

15° 0.0995 

30° 0.0997 

45° 0.1001 

 
 
 
Figure 12 summarizes how the internal flow affects the 
structural natural frequency. The descending curves in the 
figure imply that with the increase in internal flow velocity, 
the structural natural frequency will decline. And when the 
internal flow velocity is the same, the steeper the seabed 
slope is, the higher the natural frequency is. 
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Figure 12: Natural frequency with different slope angles. 
 
 
4.3 SLOPE EFFECT 
 
Assume the internal flow velocity is zero, the effect of the 
seabed slope on the vibration amplitude of the free-
spanning pipeline system is studied. Results show that 
when the reduced velocity 6Vr d , the vibration amplitude 
increases as the slope reduces; when 6Vr ! , the vibration 
amplitude increases as the slope increases (as shown in 
Figure 13). This indicates a shift in the lock-in region as 
the slope changes. Since the structural natural frequency is 
increased with the increase of the slope, which has been 
proved in Section 4.2, the lock-in will occur under higher 
vortex-shedding frequency, or higher current velocity, for 
free-spanning crossing the steeper slope. 
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Figure 13: Maximum cross-flow displacement of free span with different slope angles under different current velocity. 

 
 

   
(a) Vr = 4                       (b) Vr = 6                       (c) Vr = 8 

Figure 14: Maximum displacement of free span with different slope angles subject to different internal flow velocity. 
 
 
When the pipeline is conveying internal fluid, three 
different reduced velocities, i.e. Vr = 4, 6, 8 are chosen for 
the parametric studies, representing respectively the three 
stages in VIV lock-in, namely, the lock-in start, the 
resonation and the lock-in end. The maximum 
displacement-to-diameter ratios are calculated, and the 
results are displayed in Figure 14. It is observed that before 
the resonance happens, the amplitude of vibration 
increases as the internal flow velocity increases. When the 
resonance happens, i.e. Vr = 6, the effect of internal flow 
velocity change on the amplitude of vibration is very 
subtle for the horizontal free span; however, as the seabed 
slope become steeper, the effect of internal flow velocity 
change becomes more distinct. When the lock-in finishes, 
the amplitude of vibration declines as the internal flow 
velocity increases; and the steeper the slope is, the sharper 
the declining trend is.  
 
5. CONCLUSION 
 
In the present paper, the mathematical model for the 
vibration of inclined fluid-transporting free-spanning 
submarine pipelines is established, and a non-linear wake 
oscillator is employed to model the vortex shedding behind 
the pipeline free span. With GITT, the governing equation 
system of vibration is solved, and the semi-analytical 
solutions for the transverse displacement is obtained. Hence 

the conclusion can be summarized as follows: 
 
(1) It is proved that for horizontal free-spanning pipelines, 

the effect of the gravity can be ignored when 
predicting the dynamic behaviors; while for inclined 
free-spanning pipelines, the gravity effect has to be 
taken into consideration. If the effect of the gravity is 
ignored for inclined pipelines, the vibration amplitude 
will be over-estimated. 

(2) It is calculated that with the increase in seabed slope, 
the natural frequency of the free-spanning pipeline 
will also increase. Besides, with the increase in 
internal flow velocity, the structural natural frequency 
will decline. To fully understand the natural frequency 
of inclined fluid-conveying pipelines provides a 
reliable guide for pipeline design. 

(3) The existence of the internal flow will affect the 
displacement of the free-spanning pipeline system, 
while the slope of the seabed will further signify the 
internal flow effect. As the degree of the slope 
changes, the VIV lock-in region will also change. 
Since the increase of the slope will cause a rise in 
structural natural frequency, the lock-in will occur 
under a higher vortex-shedding frequency. The 
accurate prediction of the structural dynamic 
behaviors and lock-in region is of vital importance for 
pipeline design and fatigue life prediction. 
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