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SUMMARY 
 
This paper focuses on application of model predictive control on attitude control of remotely operated underwater 
vehicle. These vehicles are used in scientific, defence and oceanography applications. Remotely Operated Vehicle 
(ROV) considered in this paper is nonlinear model and complex. MPC is applied on ROV model to track in desired set 
point trajectories in the presence of uncertainties. Simulation has been carried out in MATLAB environment. Model 
Predictive Control has given significantly good results compared to PID, Adaptive and Variable structure control. 
 
 
1. INTRODUCTION 
 
Marine robots helps human to understand ocean in a new 
ways. Important advances in marine robots are improved 
efficiency, low cost and reduce the risks in marine 
operations. Marine robots play an important role in 
scientific, industry and military operations. It often finds 
solutions that may not do through other conventional 
methods (Lynch and Ellery, 2014).  
 
ROV’s and AUV’s are considered as Marine robotic 
vehicles. ROV’s generally used tethers to move into the 
ocean. But tethers have constraints on vehicle operations.  
It has the capability of transmitting sensor data and high 
quality video images up to the control at surface from the 
bottom of the ocean. Cables and winches are required to 
support the vehicle. ROV’s use combination of hydraulic 
and electric cables for handling high power applications 
(Demarco, West & Howard, 2013; Corradini, Monteriù, 
& Orlando, 2011). 
 
Designing a controller for Remotely Underwater vehicle 
is a challenging task due to complex model. Other 
external disturbances like ocean currents, ocean winds, 
forces due to umbilical cable cause additional difficulties 
in the performance of control systems. The kinematics 
and dynamics plays an important role in modeling and 
control of any marine robotic vehicle. This paper mainly 
focuses on modeling and control aspects associated with 
ROV (Fossen, 1994). 
 
The main contribution of the paper is the application of 
model predictive control on ROV to stabilize and to 
control the position and orientation. Remotely Operated 
Underwater Vehicle model is considered from (Dyda, et 
al, 2015) and model is tested up to 10 % uncertainty 
using adaptive variable structure control. Model 
Predictive Control has been applied to improve the 
trajectory response in the presence of 15 % uncertainty. 
The transient and steady state response are better than 
Adaptive and PID controller (Dyda, et al, 2015).  
 
Number of control techniques have been applied on ROV 
to control and stabilize. Simple control to complex 
control has been applied in literature. PID control 

technique has been applied for steering, diving and speed 
control of ROV (Dyda, et al, 2015; Caccia, et al, 2008). 
Sometimes it is difficult to control the overall model (six 
degrees of freedom) of the system so control can easily 
applied o decoupled model. These techniques have been 
used in (Isa & Arshad, 2013; Corradini, Monteriù, & 
Orlando, 2011). Robust controller has been applied on 
ROVs in (Kim, Mohan & Kim, 2014; Rau & Schroder, 
2002). A H-infinity controller was applied on ROVs in 
(Jaulin & Bars, 2012). Sliding mode controller has been 
introduced to control the non-linear model of AUV 
(Bessa, Dutra & Kreuzer, 2010 & 2008; Cao & Ren, 
2012). Adaptive control technique has been used for 
trajectory control of ROV in (Dyda, et al, 2015; Zhao, et 
al, 2014). Formation control has been introduced in ROV 
(Sohn, Lee & Ha, 2006; Clement, 2012). Back stepping 
control has also been used for terrain following. Soft 
computing techniques like fuzzy logic, neural network 
control and Genetic Algorithm has been applied for 
control of underwater robot thrust (Bessa, Dutra & 
Kreuzer, 2010; Humphris, 2010). Hybrid control 
techniques sliding mode fuzzy control, robust H-infinity 
control has also been attempted to control depth and 
speed of ROV (Yuh, 1990; Falkenberg, Gregersen & 
Blanke, 2014). Model Predictive Control is the effective 
control for handling constraints, multivariable and 
coupled systems. 
 
2.  MODELING OF AN ROV 
 
Mathematical model of Remotely Operated Underwater 
Vehicle has been considered for analysing the position 
and orientation set point tracking (Dyda, et al, 2015; 
Steenson, et al, 2014). This model is unstable, nonlinear 
multivariable and coupled system.  In order to handle all 
these complexities, model predictive control has chosen 
to track the vehicle in desired path. Finite value of 
Uncertainties has also been considered in this paper. 
Model Predictive Control is giving satisfactory response 
even for more values of uncertainties when compared 
with adaptive variable structure controller. 
 
The ROV model has six degrees of freedom. The vehicle 
model is considered in inertial frame. The variables 
associated in horizontal plane for control purpose are 
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surge (x), sway(y), heave (z), roll (ψ), pitch (θ) and yaw 
(ϕ). The ROV model is described by a set of following 
differential equations 
 
p1�̈� + (p2ǀcos(ϕ)ǀ +p3ǀsin(ϕ)ǀ)VxǀVǀ + p4x-p5VcxǀVcǀ = Tx 

(1) 
 
p1�̈� + (p2ǀsin(ϕ)ǀ +p3ǀcos(ϕ)ǀ)VyǀVǀ +p4y-p5VcyǀVcǀ =Ty  

(2) 
 
p6�̈� + p7�̇�ǀ�̇�ǀ + p8ǀVcǀ2sin(𝜙−𝜙𝑐

2 )+ p9 =  Mz      
(3) 

 

 
Figure.1 Operational Configuration of Remotely 
Operated Vehicle (Dyda, et al, 2015) 
 
 
Mathematical expressions of the model parameters are as 
given in table-I (Dyda, et al, 2015). 
 
 
Table 1.   

      p1=M+m p2=
1
2ρwCd1Cr1S1 p3=

1
2ρwCd1Cr1S1 

     
p4=W/[log(1+𝑊𝐿

𝑇𝜐
)] 

 
p5= (p4L+𝑇𝜐) 
ρwCdc

𝐷𝑐
2𝑊 

 
p6=𝐼𝑧+𝑖𝑧 

 p7=
1
2ρwCdCrSr3 p8= 

1
2ρw[Cd1Cr1-
Cd2Cr2]d1d2d3 

p9= Mc 

 
 
where ‘M’ and ‘m’ are the mass and added mass of the 
vehicle, resistance moment of the cable, Mc, cable length 
is denoted as ‘L’, weight of the vehicle in the water is 𝑇𝜐, 
the weight for cable length is ‘W’, water density, ρw, drag 
coefficient of the cable is Cdc, drag coefficient of  ith side 
wall (i=1,2) is Cdi  , coefficient of packing of the i-th side 
wall (i=1,2) is Cri,  equivalent area of rotation is Si, 
equivalent arm of action is r, and di(i=1,2,3) are the 
dimensions of the vehicle along the xa, ya, za axes, Vc= 
[Vcx Vcy]T is the subsea current velocity, V=[Vx Vy]T = [( 

�̇� −Vcx)( �̇� −Vcy)]T, ϕ is the yaw angle, and 𝜙𝑐 is the 
angle between the x axis and the velocity direction of the 
current. Coefficient expressions ai (i=1,2…9) are given in 
Table 1. 
 

The thrust and torque quantities, Tx, Ty, and Mz provided 
by four propellers in vehicle. The mathematical 
expressions for inputs are given as 
 
 Tx= cos(ϕ)Txa-sin(ϕ) Tya  
 Ty= sin(ϕ)Txa-cos(ϕ) Tya 
 Mz = Mza 
 
The four propeller positions are as follows 
 
 Txa= (T1+ T2+T3+T4)cos(𝛼) 
 Tya=(-T1-T2+T3+T4)sin(𝛼) 
 Mza= (-T1+T2-T3+T4)da 
 
Where 𝛼 = 𝜋4,  da= (dxsin(𝛼)+ dycos(𝛼))     
 
 
2.1 MODELING OF ROV THRUSTER 
 
Four electric motors are used in driving the propellers of 
ROV. The torque force ‘Q’ and thrust force ‘T’ 
developed by each thruster is described (Dyda, et al, 
2015) by 
 
 T= CT(𝜎)𝜌

8[𝑉𝜔2 + (0.7 𝜋nD)2] 𝜋D2𝜔                      (4) 
 Q= CQ(𝜎)𝜌

8[𝑉𝜔2 + (0.7 𝜋nD)2] 𝜋D3                        (5) 
 
where CT and CQ are coefficients, functions of the angle 
of advance of the thruster, obtained from hydrodynamic 
characteristic curves of the thrusters. ‘𝑉𝜔 ’  is the speed at 
which water is directed for the propeller, ‘D’ is the 
propeller diameter, ‘n’ is the number of revolutions per 
second of the propeller. ‘𝜎’ is the angle of advance of 
propeller. Considering the speed of water entering the 
propeller is equal to the velocity component parallel to 
the line of action of the propeller, then 𝜎 = 0; with 
 
𝜎 = tan-1(  𝑉𝜔

0.7𝑛𝜋𝑛𝐷) 
T= CT(0) 𝜌8 (0.7)2ǀnǀn𝜋3D4 
Q== CQ(0)𝜌

8(0.7)2ǀnǀn𝜋3D5 
 
 
Assuming DC motor is used in underwater propulsion. 
The combined dynamics of electrically driven circuit and 
shaft of the propeller are represented (Dyda, et al, 2015) as  
 
 
  𝐽𝑚

𝑑𝑛
𝑑𝑡  + 𝐾𝑛n + Q= Ki                               (6) 

 
 L𝑑𝑖

𝑑𝑡  + Ri + Kn=𝑢𝑒                                             (7) 
 
 
where the moment of inertia is denoted by 𝐽𝑚, revolution of 
propeller is n, the damping coefficient is denoted by Kn, 
coefficient of conversion is K, electrical current, I,  armature 
inductance, L, resistance, R,  applied voltage, 𝑢𝑒. 
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2.2 DYNAMIC MODEL OF ROV 
 
Considering state and input vector as z1= x, z2=y, z3= ϕ, 
z4=�̇�, z5=�̇�, z6=�̇� 
u = [Tx, Ty, Mz]T 
 
The nonlinear model of ROV described by a set of 
equations (1-3) can be represented in state model as the 
combination of linear and nonlinear part 
 
 �̇� = Az+Bu+h(z)                                                   (8) 
 y= Cz 

where A=

[
 
 
 
 
 
 0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

−𝑎4
𝑎1

0 0 0 0 0
0 −𝑎4

𝑎1
0 0 0 0

0 0 0 0 0 0]
 
 
 
 
 
 

 ;   B= 

[
 
 
 
 
 
 
 0 0 0
0 0 0
0 0 0
1
𝑎1

0 0
0 1

𝑎1
0

0 0 1
𝑎6]

 
 
 
 
 
 
 

; 

C=I6; 
 
and  
 
h(z)= [0 0 0 h4(z)  h5(z)  h6(z)]T 
h4(z)=- 1

𝑝1
[(𝑝2ǀ𝑐3ǀ + 𝑝3ǀ𝑠3ǀ)VxǀVǀ-𝑝5VcxǀVCǀ] 

 
h5(z)=- 1

𝑝1
[(𝑝2ǀ𝑠3ǀ + 𝑝3ǀ𝑐3ǀ)VyǀVǀ-𝑝5VcyǀVCǀ] 

 
h6(z)=- 1

𝑝6
[(𝑝7𝑧6ǀ𝑧6ǀ + 𝑝8ǀ𝑉𝑐ǀ2sin((𝑝3−𝜙𝑐)

2 )+p9] 
 
 
where Vx = z4-Vcx, Vy= z5-Vcy,  
 

V=√𝑉𝑥2 + 𝑉𝑦2,  
 
c3=cos(z3); 
 
s3=sin(z3) and I is the identity matrix 
 
 
3. MODEL PREDICTIVE CONTROL 
 
The potential of MPC are 1) it can handle constraints 
very effectively 2) it has optimizer which is used to 
optimize the control law 3) it is well suited for 
multivariable and interacting systems 4) It can be used 
for both linear and nonlinear systems 5) it can be used for 
both stable systems and unstable systems. One of the 
limitation of MPC is sometimes it may not give 
guarantee on stability (Corradini & Orlando, 2014).  
 
Block diagram of Model Predictive Controller is given in 
Figure 2. In conventional feedback control, error signal 
can be computed using the difference between set point 
and controlled variable, whereas in MPC, the error signal 
is calculated using the deviation between set point future 
trajectory and the controlled variable prediction 
trajectory. 
 
The error signal is vector value in MPC. The vector 
represents from current state to future state (Wang, 2010; 
Steenson, et al, 2014).  
 
The important variables associated to any system are 
manipulated variables, controlled variables and 
disturbance variables. MPC has mainly three components 
(Rau & Schroder, 2002; Steenson, et al, 2014): 
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1) A system model that predicts the system output in 
the future up to prediction horizon (typically, 120 or 
more scans) 

2) The number of scans are equal in set point trajectory 
and predicted system output trajectory 

3) The main idea of computing the control algorithm is 
the error between the set point trajectories and the 
prediction system output 

 
Model plays a crucial role in MPC. Consider a MIMO 
system which is described by a nonlinear discrete time 
state model (Rau & Schroder, 2002).  
 

x(k+1) = Ax(k)+BΔu(k)+K𝒩ℒ(y(k))  (9) 
      y(k) = 𝐶𝑇x(k)+DΔu(k) 
  
where A, B, C, D are matrices of system. The vector ‘K’ 
describes the coupling of nonlinearity into the system. Δu 
is the increment of the input signal between two sampling 
instants with constraints. This model formulation is well 
suited for this Remotely Operated Vehicle because other 
MPC formulation is not suitable for nonlinear and 
unstable systems. In this system, linear portion is 
dominating the nonlinear portion. So, the following cost 
function and control law is proposed here. 
 
The cost function is defined as 
 

2 2 2 2

1 1
min [ ( ) ( )] [ ( 1)]

P M
pred

u i j
r k i y k i u k jJ O

' = =
¦ + − + + ¦ ' + −    

     (10) 
 
where   ′𝛾’ is the weight on the output error 
 ‘λ’ is the weight on the change in input 
 ‘r’ is the set point, ‘u’ is the input and ‘y’ is output 
 
 
The higher λ is chosen, the slower will be the resulting 
controller. In order to minimize the cost function, future 
system outputs are required. A j-step ahead predictor is 
analysed by equation (10). 
 
The control law based on least square solution in the 
form of Dynamic Matrix Control is 
 

Δu=𝐾𝑚𝑝𝑐𝜀(k+p)                                  (11) 
 
Where  𝐾𝑚𝑝𝑐=(𝐴𝑇𝛤𝛤𝛤𝐴 + 𝛬𝑇𝛬)−1𝐴𝑇ΓΓΓ(r- �̅�-d) 
                       𝜀(k+p) is the error vector 
 
The performance and stability of system depends on M, 
P, Λ, Γ. Λ and Γ are diagonal matrices having the weights 
λ and γ. Stability of the system can be achieved by 
increasing Λ and P and reducing the value of M relative 
to P. Most of the simulation studies, performance of the 
system is improved with the help of Λ, Γ and M while 
keeping P constant. M and P are control and prediction 
horizons. Proof of guarantee on stability using MPC has 
been taken from (Chatterjee & Lygeros, 2015).  
 

Model plays a key role in Model Predictive Control for 
prediction of output over a horizon. This data is used for 
the construction of cost function in controller design. 
Optimization is also possible in model predictive control. 
In this work, quadratic optimization is used. An 
algorithm is developed in this work for prediction of 
sequences of sampling periods (Corradini, Monteriù & 
Orlando, 2010).  
 
 
3.1 DESIGN PARAMETERS OF MPC (Romagnoli 

& Palazoglu, 2006) 
 
Some of the important design parameters of MPC are as 
follows: 
 
M is the control horizon, P is the prediction horizon, Δt is 
the sampling period, N is the model horizon, Q and R are 
the weighting matrices on prediction errors and control 
moves. 
 
 
3.1 (a) Selection of MPC parameters 
 
1. Δt and N 
The product of these two parameters should be selected 
such that NΔt≥ openloop settling time. The standard 
value of N lies between 30 and 120. 
 
2. Prediction Horizon, P 
The control action depends on P. The selection of P is 
equal to N+M. M is control horizon. Higher the value of 
P leads to poor aggressive control action 
 
3. Control Horizon, M 
The typical values of M are 5 < M < 20 or N/3 < M < 
N/2.Higher values of M leads to improved control action 
 
4. Weighting matrices γ and λ 
‘𝛾’ is the output weighting matrix and high values can be 
given to important variables. ‘λ’ is the input weighting 
matrix. Increasing the values of weights tends to make 
the MPC controller more conservative by reducing the 
magnitudes of the input moves 
 
This paper concentrates on set point tracking of position 
and velocity control of remotely underwater vehicle. 
Here constraints are considered on input only. Based on 
simulation parameters and its values the vehicle is 
travelling as per the set point. Simulation has been 
developed in MATLAB environment. Parameters used in 
simulation are given in Table 2. 
 
The algorithm used in proposed model predictive 
calculations  
1. Control variables (Output), Manipulated variables 

and Disturbance variables should be chosen based on 
system model. 

2. Evaluate model predictions using equation number (9) 
3. Calculate control structure/law using Kmpc 
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4. Checking errors 
5. Set points calculations 
6. Perform control calculations using equation number 

(10) and (11) 
7. Manipulated variables send to the ROV to get 

desired response 
 
 
Table 2  

Simulation Parameters Value 
Original Position /m [0, 0] 
Desired Position /m [20, 20] 
Desired Speed /m-sec [10, 10] 
Desired Heading /degree 120 
Sampling time /s 0.2 
Time /s 10 
Control horizon 5 
Prediction Horizon 50 
Force constraint in x-
direction /kN 

1 

Force constraint in y-
direction /kN 

1 

Moment constraint /kN-m 1 
 
 
3.2 SIMULATION RESULTS 
 
Figure.3 represents the set point trajectories of ROV 
states with respect to step signal in the presence of ocean 
currents 
 
Figures. 4, 5, 6 represents the reference set point 
trajectories for position in x, y direction and heading 
direction 
 
Figure.3 represents the vehicle states following step 
trajectory. States x (m), y(m), ϕ (deg), 𝑑𝑥𝑑𝑡  (m/s), 𝑑𝑦𝑑𝑡  (m/s), 
𝑑𝜑
𝑑𝑡  (deg/s) are considered on y-axis and time (s) are taken 
on x-axis. 

 
   
Figure.3 Set point trajectory of underwater vehicle states 
subjected to step input 

Set point is taken as 20 m in x-direction. ROV is tracking 
along the set point. 
 
 

 
Figure.4 position control of ROV in x-direction 
 
 
Set point is taken as 10 m in y-direction. ROV is tracking 
along the set point. 

 
Figure.5 position control of ROV in y-direction 
 
 
Figure 6 represents ROV in yaw angle of ROV and set 
point is taken as 120 degrees depth. 
 

 
Figure.6 ROV Heading 
 
 
4. CONCLUSIONS 
 
The desired attitude control of remotely operated vehicle 
has been maintained at their set points with the proposed 
model predictive control. ROV is unstable, nonlinear, 
multivariable and coupled system. In general MPC may 
not give guarantee on stability. The MPC formulation 
used in this paper stabilizes the ROV without using 
output feedback or state feedback technique. The desired 
path of the vehicle tracking is controlled and effective. It 
is observed through MATLAB software. The results 
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shows vehicle is following set points in the presence of 
disturbances when compared with PID and adaptive 
control techniques. 
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