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SUMMARY 
 
The research presented in this paper is dedicated to the development of a path planning algorithm for a moving object in 
a dynamic environment. The marine environment constitutes the application area. A graph theory-based path planning 
method for ships is introduced and supported by the results of simulation tests and comparative analysis with a heuristic 
Ant Colony Optimization approach. The method defines the environment with the use of a visibility graph and uses the 
A* algorithm to find the shortest, collision-free path. The main contribution is the development of an effective graph 
theory-based algorithm for path planning in an environment with static and dynamic obstacles. The computational time 
does not exceed a few seconds. Obtained results allow to state that the method is suitable for use in an intelligent motion 
control system for ships. 
 
NOMENCLATURE 
 
α coefficient defining importance of τ 
β coefficient defining importance of η 
η visibility 
ρ pheromone evaporation rate 
τ0 initial pheromone trail 
cv currently considered vertex 
nv neighbouring vertex 
f(v) fitness function 
g(v) length of currently considered path 
h(v) Euclidean distance from current vertex v to 

final vertex Ev 
Dip distance of OS to intersection point (nm) 
Dj distance of j-th TS from OS (nm) 
Ev final vertex 
E set of visibility graph edges 
N true north 
Nj bearing of j-th TS (º) 
Sv start vertex 
Vj speed of j-th TS (kn) 
V speed of OS (kn) 
W set of all of visibility graph vertices 
X longitude of OS position 
Y latitude of OS position 
ACO Ant Colony Optimization 
COLREGs International Regulations for  

Preventing Collisions at Sea 
GNC Guidance, Navigation and Control  
GNSS Global Navigation Satellite System 
OS  own ship 
TG trajectory generator 
TS target ship 
UAV Unmanned Aerial Vehicle 
USV  Unmanned Surface Vehicle 
VGA  Visibility Graph-search Algorithm 
 
 
1. INTRODUCTION 
 
Autonomous navigation is a dynamically developing 
topic of research. The reason for that is the emergence in 
recent years of many new application areas, such as 

military and commercial robotics (land, underwater and 
flying robots or autonomous cars). The development of 
soft computing techniques, which can be observed over 
the last years, also contributes to the progress in 
autonomous navigation. 
 
One of the main tasks in Autonomous Navigation 
Systems is path planning. The objective of path planning 
is to calculate a safe, optimal path for a moving object in 
a dynamic environment. The dynamic environment can 
be defined as the object's surroundings, where both static 
and dynamic (moving) obstacles occur. Similar approach 
to path planning can be applied for mobile robots as well 
as for other vehicles. 
 
In the research presented in this paper, the marine 
environment was chosen as an application area. 
Therefore, the aim of the research was to develop a new,  
effective path planning method for a ship in a collision 
situation at sea. 
 
The motivation for addressing this problem was to 
develop a new algorithm, working in near-real time, 
applicable in commercial solutions. Over the recent 
years, many approaches have been introduced, but these 
methods do not solve the problem definitely. They have 
some limitations, such as omitting consideration of 
static navigational constraints, problems with 
repeatability of results, applicability of the method (e.g. 
the trajectory has to fulfil specific rules), or with the 
achievement of low run time. The limitations of 
existing path planning methods are indicated in a more 
detailed way in the next section. 
 
2. LITERATURE REVIEW 
 
In order to outline the background and significance of the 
method presented in this paper, a review of the recent 
literature dedicated to ship’s path planning and collision 
avoidance has been carried out. The path planning problem 
for a moving object in a dynamic environment can refer to 
mobile robots, Unmanned Aerial Vehicles (UAVs) as well 
as ships and Unmanned Surface Vehicles (USVs). 
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Table 1: Comparison of different existing ship trajectory planning methods 
 

Method Dynamic 
obstacles 

Static 
obstacles 

Fitness 
function 

Computational 
time  

Repeatability Group Authors Year 

VD 1 obs. yes length <= 0.6 s yes graph Candeloro et 
al. 

2017 

FMM no yes multiple < 1 s yes potential 
field 

Song et al. 2017 

DG yes no risk a few seconds yes deterministic Lisowski 2016 
BPF 1 obs. yes length < 10 s yes potential 

field 
Montiel et al. 2015 

EEA* no yes energy ms yes graph Lee et al. 2015 
ANN no 2 obs.  risk − yes artificial 

intelligence 
Simsir et al. 2014 

FL no yes risk − yes artificial 
intelligence 

Mohamed-
Seghir 

2014 

CPP 5 obs. no α = 30º 7 s yes deterministic Tam & 
Bucknall 

2013 

A* 1 obs. yes length − yes graph Naeem et al. 2012 
EA yes yes multiple < = 60 s − artificial 

intelligence 
Szlapczynski 

& 
Szlapczynska 

2012 

PSO 1 obs. yes multiple − − swarm 
intelligence 

Chen & 
Huang 

2012 

APF 3 obs. yes length − yes potential 
field 

Xue et al. 2011 

EA 4 obs. no multiple 200 - 800 s no artificial 
intelligence 

Tam & 
Bucknall 

2010 

 
 
 
 
 
 
 
In recent years (2010 – 2018), many new approaches 
have been introduced. The proposed methods can 
generally be classified into one of the two groups: 
deterministic or stochastic approaches. A recent review 
of path planning approaches for ships has been presented 
in (Fişkin et al., 2018). 
 
The classical representative of stochastic methods is the 
evolutionary algorithm (EA), which became very 
popular in application to ship's path planning. Recent 
approaches utilizing this algorithm were introduced e.g. 
by (Tam & Bucknall, 2010) and (Szlapczynski & 
Szlapczynska, 2012). The main limitations of 
algorithms based upon evolutionary computations 
might be their relatively long computational time (even 
hundreds of seconds) and problems with repeatability of 
solution for the same input data. Other methods 
classified to the stochastic group are the swarm based 
approaches such as the Particle Swarm Optimization 
(PSO) presented by (Chen & Huang, 2012). 
 
One of the most promising and very popular optimization 
method used for path planning is the Bacterial Potential 
Field (BPF) approach, introduced by (Montiel et al., 
2015) and Artificial Potential Field (APF) method 

proposed by (Xue et al., 2011). (Song et al., 2017) 
proposed the Fast Marching Method (FMM). A different 
deterministic approach, called the Cooperative Path 
Planning (CPP) algorithm is presented in (Tam & 
Bucknall, 2013). 
 
The graph-search algorithms constitute another very 
popular subgroup of ship trajectory planning methods, 
presented in (Candeloro et al., 2017) (Voronoi diagram - 
VD), (Naeem et al., 2012) (A*) and (Lee et al., 2015) 
(Energy Efficient A* - EEA*). Other recent approaches 
include application of artificial neural networks (ANN) 
(Simsir et al., 2014), fuzzy logic (FL) (Mohamed-Seghir, 
2014) and differential games (DG) (Lisowski, 2016).  
 
A comparison of different ship trajectory planning 
methods was presented in Table 1. The analysis of these 
approaches leads to the conclusion, that the development 
of an effective path planning algorithm for dynamic 
environments, applicable in near-real time systems, 
constitutes an open research problem. All of the above-
mentioned approaches have some limitations concerning 
the run time, optimality of solution or constraints 
consideration. This was the motivation to carry out the 
presented research. 
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Figure 1: A general diagram of the Guidance, Navigation and Control system based upon (Fossen, 2011) 
 
 
 

3. PATH PLANNING ALGORITHM  
 
3.1 THE SYSTEM ARCHITECTURE 
 
In ship control, the motion control system, called the 
Guidance, Navigation and Control system (GNC) is 
composed of three main subsystems, as shown in Figure 
1. The role of the Guidance System is to calculate an 
optimal path (trajectory) for a ship based upon data from 
motion sensors (course, speed, position). The results of 
these computations are then fed into the Control System. 
The task of the Control System is to control the ship by 
determining appropriate control forces in order to follow 
the path, calculated by the Guidance System. The 
Navigation System determines the ship's position, course 
and speed with the use of the Global Navigation Satellite 
System (GNSS) and motion sensors such as 
gyrocompasses and speed logs. A similar motion system 
can be defined for mobile robot control. The objective of 
a research presented here is the development of a new 
path planning algorithm to be applied in the Trajectory 
Generator (TG) module of the Guidance System. 
 
 
3.2 ASSUMPTIONS 
 
In order to address the path planning task, the following 
assumptions and process constraints have been defined: 
1. the motion data of all of the ships taking part in an 

encounter situation, which constitute the input data 
to the algorithm, are available; 

2. the data concerning static obstacles (lands, shallows) 
are also available; 

3. the trajectory is calculated between the predefined 
start and final waypoints; the start waypoint is the 
current ship's position received from navigational 
equipment, the final waypoint is the next waypoint 
of the ship's global path; 

4. a calculated path has to enable collision avoidance 
with all of static and dynamic obstacles; 

5. the path has to fulfil the objective defined by a 
fitness function (the shortest path, the smoothest 
path, minimal transition time); 

6. the path has to be compliant with the rules specified 
in the International Regulations for Preventing 
Collisions at Sea (COLREGs) – COLREGs 
compliance is ensured by a proper shape and size of 
the target ship domain; 

7. computations have to be executed in near-real time 
(about a few seconds) and a solution has to be 
repeatable for the same input data set; 

8. target ships (TSs) maintain their motion parameters; 
9. a kinematic model of ship's motion is applied, 

dynamic properties of an own ship (OS) are taken 
into account with the use of the time of manoeuvre 
parameter. 

 
The path planning algorithm utilizes the graph theory to 
calculate the solution. The algorithm is composed of the 
following main procedures: 
1. relative motion parameters calculation for every 

moving obstacle; 
2. determination of dangerous obstacles (TSs); 
3. visibility graph construction; 
4. graph-search algorithm for path planning; 
5. presentation of results. 
 
 

 
Figure 2: An intersection check between OS and TS, 
where Dip is the distance of OS to the intersection point 



Trans RINA, Vol 161, Part A2, Intl J Maritime Eng, Apr-Jun 2019 

A-158                      ©2019: The Royal Institution of Naval Architects 

3.3 DANGEROUS OBSTACLES 
DETERMINATION 

 
At this stage of the algorithm, each moving obstacle (TS) is 
evaluated in terms of the collision risk posed for an own 
ship (OS). This procedure checks, whether the TS intersects 
its direction of movement (course) with the course of an OS, 
as shown in Figure 2. If the intersection exists, then the 
evaluated TS is marked as a dangerous obstacle and is taken 
into account during visibility graph construction. All of the 
static obstacles are considered as dangerous obstacles, so the 
dangerous obstacle determination procedure does not 
include their evaluation. 
 
3.4 VISIBILITY GRAPH CONSTRUCTION 
 
In path planning approaches, one of the main tasks to be 
solved is to define the environment of the moving 
objects, for which the path will be calculated. The 
environment can be represented as a visibility graph, a 
Voronoi diagram or with the use of the cell 
decomposition method. In the approach presented in this 
paper the environment representation is a visibility 
graph. A visibility graph is composed of vertices, which 
include the start and final position (waypoint) and the 
vertices belonging to the areas of obstacles. Static 
obstacles are defined as polygons. Dynamic obstacles 
(target ships) are defined with the use of a ship's domain 
term. A ship's domain is an area around a target ship that 
constitutes a safety margin during the process of collision 
avoidance. Edges of a visibility graph connect these 
vertices, for which the connection does not intersect the 
areas occupied by obstacles. 
 

 
Figure 3: The pseudo code of the VGA algorithm 
 
 
3.5 THE VISIBILITY GRAPH-SEARCH 

ALGORITHM (VGA) FOR PATH PLANNING 
 
The Visibility Graph-search Algorithm (VGA) is a 
modified version of A* algorithm, adapted for use on a 
visibility graph. The pseudo code of the algorithm used 

in the presented study is shown in Figure 3, where W is 
the set of all of the visibility graph vertices, E is the set 
of visibility graph edges, cv is the currently considered 
vertex and nv is the neighbouring vertex, x is the minimal 
value of the fitness function determined from fitness 
functions values for all of the considered vertices and 
v(x) is the vertex with the fitness function value equal to 
x. The fitness function f(v) is composed of two 
components: g(v) and h(v). The first one g(v) is defined 
as the length of the currently considered path from the 
start waypoint (vertex) Sv to the currently considered 
vertex v. The second component h(v) is defined as the 
Euclidean distance from the current vertex v to the final 
waypoint (vertex) Ev.  
 
The algorithm terminates when it reaches the final vertex 
(when the currently considered vertex constitutes the final 
one). The final step of the algorithm includes graphical and 
numerical presentation of the computed trajectory.  
 
 
4. RESULTS OF SIMULATION TESTS 
 
The Visibility Graph-search Algorithm (VGA) has been 
tested with the use of both simple (with one TS) and 
more complex (with up to ten TSs and static obstacles) 
test cases. The algorithm has been implemented in the 
MATLAB programming language. The solutions 
obtained with the use of the VGA algorithm have been 
compared with the results received with a heuristic 
method based on Ant Colony Optimization (ACO). 
 

 
Figure 4: The TS hexagon domain 
 
4.1 SIMULATION PARAMETERS 
 
The dynamic constraints (TSs) were described with the 
use of a ship domain term. The ship domain is an area 
around the ship that ensures the safe distance between the 
ships during manoeuvres. The TS hexagon domain 
(Figure 4) dimensions used in the algorithms were: a = 
1.0 nm, b = 0.6 nm, c = 0.4 nm, d = 0.4 nm and e = 0.6 
nm. The following parameters of the ACO-based 
algorithm were used for calculations: τ0 = 1, ρ = 0.1, α = 
1, β = 2, iterations = 20 and ant_number = 10. A PC with 
an Intel Core i5 M450 2.27 GHz processor, 2GB RAM, 
32-bit Windows 7 Professional was used to carry out the 
simulation tests. 
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4.2 SIMULATION RESULTS 
 
Numerical results of three representative test cases have 
been chosen for presentation in the paper. Test case 1 
represents an encounter situation between an OS and 
three TSs. Input data describing this scenario are listed in 
Table 2. In Figure 5 instantaneous positions of the ships 
are presented. A comparison of the paths calculated by 
the VGA and ACO algorithms is shown in Figure 6. 
Numerical results are compared in Table 3. The VGA 
algorithm returned a solution in 1.16 seconds, composed 
of two course alterations: by 20 degrees and by 37 
degrees. The trajectory returned by the ACO algorithm 
was 0.36 nm longer than the VGA solution and the 
calculations lasted about 30 seconds. 
 
Table 2: Input data of test case 1 

Ship Course 
[º] 

Speed 
[kn] 

Bearing 
[º] 

Distance 
[nm] 

0 0 12 - - 
1 270 9 45 6 
2 190 11 2 4 
3 90 8 315 5 

 
Table 3: Results of test case 1 

Method Path length 
[nm] 

OS course 
[º] 

Run time 
[s] 

VGA 9.5 20, 343 1.16 
ACO 9.86 22, 333 about 30 

 
 
Test case 2 is an encounter situation between an OS and five 
TSs. Input data of this test case are listed in Table 4. Figure 
7 presents instantaneous positions of the ships during OS 
movement along the calculated path. A comparison of the 
solutions calculated by VGA and ACO algorithms is 
presented in Table 5 and Figure 8. The trajectory calculated 
in 1.27 seconds by the VGA algorithm consists of three 
course alterations: by 10 degrees, 45 degrees and 27 
degrees. It is 0.05 nm shorter than the result returned by the 
ACO algorithm in about 60 seconds. 
 
 
Table 4: Input data of test case 2 

Ship Course 
[º] 

Speed 
[kn] 

Bearing 
[º] 

Distance 
[nm] 

0 0 10 - - 
1 270 10 45 5 
2 275 9 75 7 
3 272 10 58 9 
4 90 8 327 7 
5 95 7 315 9 

 
Table 5: Results of test case 2 

Method Path length 
[nm] 

OS course 
[º] 

Run time 
[s] 

VGA 9.24 10,325,352 1.27 
ACO 9.29 14, 342, 0 about 60 

 

 
Figure 5: Solution of test case 1 
 
 

 
Figure 6: Comparison of VGA and ACO solutions for test 
case 1 
 
 

 
Figure 7: Solution of test case 2 
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Figure 8: Comparison of VGA and ACO solutions  
for test case 2 
 
Test case 3 is an encounter situation between an OS and 
three TSs with one static obstacle in the environment. 
Table 6 presents input data of this test case. In Figure 9 
temporary positions of all ships are presented. Graphical 
solutions returned by the VGA and ACO algorithms are 
compared in Figure 10, while numerical results are listed 
in Table 7. The VGA algorithm returned a solution in 
1.42 seconds. The ACO algorithm calculated a longer 
trajectory (by 0.81 nm) in about 60 seconds. 
 
Table 6: Input data of test case 3 

Ship Course 
[º] 

Speed 
[kn] 

Bearing 
[º] 

Distance 
[nm] 

0 0 10 - - 
1 165 16 2 4.6 
2 250 15 41 6 
3 300 4 25 7 

 
Table 7: Results of test case 3 

Method Path length 
[nm] 

OS course 
[º] 

Run time 
[s] 

VGA 9.12 5, 345, 339 1.42 
ACO 9.93 34, 342 about 60 

 

 
Figure 9: Solution of test case 3 

 
Figure 10: Comparison of  VGA and ACO solutions  
for test case 3 
 
 
4.3 DISCUSSION 
 
The analysis of received results allows to formulate the 
following remarks: 
1. the VGA algorithm enables calculation of a safe 

trajectory for a ship in a collision situation with a 
few static and dynamic obstacles; it is able to return 
a solution for both simple and more complex 
collision scenarios in a reasonable amount of time (a 
few seconds) and is therefore applicable in 
commercial ship motion control systems; 

2. the VGA returns better solutions than ACO in terms 
of both the path length and run time, the comparative 
analysis of both algorithms demonstrates the 
effectiveness of the presented approach; 

3. it is possible to consider a solution to the ship's path 
planning problem using a ranking method; the 
ranking method will constitute a second stage of 
calculations. In the first stage ACO and VGA 
algorithms will calculate the solution and after that 
with the use of a ranking method the trajectory most 
suited to the user's preferences will be determined 
and presented. 

 
 
5. CONCLUSIONS 
 
The paper introduces a new path planning method for 
ships. The approach utilizes a graph-search algorithm. 
The navigation environment is described with the use of 
a visibility graph. A graph-search algorithm, utilizing a 
modified version of A* algorithm, is applied for 
searching the shortest path on the graph. The method is 
applicable for environments with both stationary (lands, 
shallows) and moving (target ships) obstacles. The main 
advantages of the method are relatively low 
computational time (at most a few seconds), ability to 
consider static and dynamic obstacles and repeatability of 
solution for the same input data. 
 
The method was also compared with a heuristic Ant 
Colony Optimization-based algorithm (ACO). The 
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approach achieves better results than ACO in terms of 
the run time and the path length. 
 
Summarizing, the main contribution of the paper is the 
presentation of a new path planning method for a moving 
object in a dynamic environment. The feasibility and 
effectiveness of the proposed method was demonstrated 
by the results of simulation tests. Future works planned 
to be carried out include tests on-board a ship. 
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