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SUMMARY 
 
The objective of this study is to develop a shipping emission inventory model incorporating Machine Learning (ML) 
tools to estimate gaseous emissions. The tools enhance the emission inventories which currently rely on emission 
factors. The current inventories apply varied methodologies to estimate emissions with mixed accuracy. Comprehensive 
Bottom-up approach have the potential to provide very accurate results but require quality input. ML models have 
proven to be an accurate method of predicting responses for a set of data, with emission inventories an area unexplored 
with ML algorithms. Five ML models were applied to the emission data with the best-fit model judged based on 
comparing the real mean square errors and the R-values of each model. The primary gases studied are from a vessel 
measurement campaign in three modes of operation; berthing, manoeuvring, and cruising. The manoeuvring phase was 
identified as key for model selection for which two models performed best. 
 
1. INTRODUCTION 
 
Trading and the ocean have a relationship that stretches 
through most of recorded history. International shipping 
emissions, unlike other trading industries, are increasing 
due to the growth in demand, slow changing technology, 
and fairly unrestricted emissions regulations (Acomi & 
Acomi, 2014; Bencs et al., 2017; Chu et al., 2016; Helfre 
& Boot, 2013). Marine transportation emission data is 
scarce considering the size of the industry and number of 
vessels, leading to one of the largest uncontrolled sources 
of pollutants (Agrawal et al., 2008; ). 
 
The five primary pollutants emitted by international 
shipping are sulphur oxides (SOx), Nitrogen oxides (NOx), 
carbon dioxide (CO2), particulate matter (PM), and carbon 
monoxide (CO). Shipping emission values differ with the 
different activity modes of the vessel including berthing, 
manoeuvring, and cruising. The source of vessel emissions 
is through the main engine combustion (Chu-Van et al., 
2018; Fridell et al., 2008; Lack et al., 2009; Lindstad et al., 
2013; Mueller et al., 2015). 
 
Essential to the emission discussion for policymakers and 
scientists studying the effects of climate change is an 
accurate emission inventory (Endresen et al., 2005). 
Valuable emissions data includes the quantity of emitted 
pollutants, the relationship between pollutants and the 
causes of each, and finally the location of emissions. A 
thorough breakdown of emissions allows for a 
comprehensive analysis of the causes, mitigation options 
and future trends. 
 
Emission inventory to estimate the amount of pollutants 
released into the atmospheric environment have been 
widely considered by different researchers (Dadashzadeh 
et al., 2011; Singer and Harley, 2012). Overall approaches 
for the estimation of emissions are either Top-down or 
Bottom-up (Smith et al., 2014). A top down approach uses 

overall fuel sales to estimate the emissions both 
internationally and domestically (Smith et al., 2014). The 
weakness of this approach is the uncertainty associated 
with the input data (Corbett & Koehler, 2004; Eyring et 
al., 2005; Olivier & Peters, 1999) and broad application of 
emission factors (Endresen et al., 2007). The Bottom-up 
approach uses individual vessel activity data and technical 
specifications to estimate the emissions by location (Smith 
et al., 2014). Current approaches applied in emission 
inventories, apply varied methodologies to estimate 
emissions for international and domestic shipping with 
varied accuracy (Miola & Ciuffo, 2011; Moreno-Gutiérrez 
et al., 2015). Inventories that focus on comprehensive 
Bottom-up approach have the potential to provide very 
accurate results due to the larger number of variables, the 
trade-off being the requirement for more detailed data 
which is usually difficult and costly to acquire with a high 
quality (Smit et al., 2010). A limitation to the Bottom-up 
approach is that the emissions factors applied to the input 
data are infrequently updated and are sourced from vessel 
campaigns not necessarily related to the technical details 
of applicable vessels (Goldsworthy & Galbally, 2011). 
Bottom-up emission approaches have been developed and 
implemented,  including Emission registration and 
monitoring shipping (EMS) (Hulskotte & Denier van der 
Gon, 2010), Tier III (Smith et al., 2014), Methodologies 
for estimating air pollutant emissions from transport 
(MEET) (Hickman et al., 1999), Swedish methodology for 
environmental data (SMED) (Cooper & Gustafsson, 
2004), National environmental research institute (NERI) 
(Olesen et al., 2009), and Monitoring programme on air 
pollution from sea-going vessels (MOPSEA) 
(Vangheluwe et al., 2007), Ship traffic emission 
assessment model (STEAM) (Jalkanen et al., 2009), and 
emissions from ocean shipping (Corbett & Koehler, 2003). 
 
Alternatively, machine learning (ML) models have 
proven to be a robust and accurate method of predicting 
response values to a set of predictor data with 
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applications in industries having previously used 
classical statistical models for prediction (Ahmed et al., 
2010; Bontempi et al., 2013). ML is especially applicable 
with a dataset containing a complex nonlinear feature 
space, the advantage being the ability of the algorithms 
to identify complex patterns in a hyperspace with no 
prior knowledge or data classification (Li et al., 2016). 
The main concern in the creation of ML models is the 
reduction of model training error while maintaining 
model performance (generalisation capacity) and a low 
model complexity (Chalimourda et al., 2004). 
 
Shipping emission inventories is an area that remains 
relatively unexplored with ML algorithms (Mohd Noor et 
al., 2016). Marine vessels have only been subject to ML 
research for the purpose of predicting engine speed and 
power (Chan & Chin, 2016; Mohd Noor et al., 2016). 
ML has been applied for prediction of diesel engine 
emissions from on-road sources. The research in this area 
commonly involves the use of detailed engine parameters 
measured in laboratory scenarios as predictor variables 
and this is not possible for a widely implemented vessel 
emissions inventory (Obodeh & Ajuwa, 2009; 
Shanmugama et al., 2011). Li et al. (2016) modelled the 
idling emissions of a light-duty gasoline vehicle using a 
variety of ML algorithms with the engine parameters and 
idling duration as input parameters in a process 
applicable to shipping emissions. In most on-road vehicle 
studies, an Artificial Neural Network (ANN) is used due 
to its performance with a large sample size and high 
quality data which they require to fully describe a 
condition (Rodriguez-Galiano et al., 2015). The 
drawback with shipping, and this study, is the limited 
access to data; therefore, the selected models have a 
greater flexibility to missing or limited data points. 
 
The algorithms used in ML are classified as either 
supervised or unsupervised. Supervised learning is used 
when the features used to classify a finite set of 
observations are known (Bontempi et al., 2013; Dukart & 
Hoffmann-La Roche, 2015). Unsupervised learning has 
no predetermined pattern or relationships for classifying 
the dataset (Dukart & Hoffmann-La Roche, 2015). 
Developing the Bottom-up approaches from a classical 
statistical method to include the use of ML tools can 
provide more reliable results as models respond to a wide 
range of dynamic input variables. This research attempts 
to identify an ML algorithm for training an emission 
model based on collected vessel data.  
 
 
2. METHODOLOGY 
 
2.1 MACHINE LEARNING ALGORITHMS 
 
The ML models were selected as they are state-of-the-art 
and represent the current trend of probabilistic regression 
model development. The following five ML models were 
applied to the shipping emission data to identify a best-fit 
model; Gaussian Process Regression (GPR), Principal 

Component Regression (PCA), Linear Dynamic System 
(LDS), Supervised Probabilistic Latent Variable 
Regression (SSPPLS), Supervised Mixture Probabilistic 
Latent Factor Regression (SMPPLS). The final 
prediction outcomes received by these models were 
compared by normalised Root Mean Square Error 
(RMSE) and the Pearson product-moment correlation 
coefficient R. The model with a lower RMSE and higher 
R-value is the best fit for purpose model. The ML tools 
considered in this study are discussed briefly in the 
following sections.  
 
 
2.1 (a) Gaussian Process Regression (GPR) 
 
GPR is a nonparametric Bayesian modelling technique 
(Ghassemi et al., 2015; Wang & Chaib-draa, 2017). 
Bayesian nonparametric models include prior 
distributions for the assistance in decision making by 
incorporating uncertainty into the design selection of the 
regression function Wang and Chaib-draa (2017); Woods 
et al. (2016). The regression function is treated as a 
smooth random function which consists of an infinite 
number of randomly and independently varying 
variables. The prior distribution for each of the infinite 
number of random variables is a Gaussian distribution, 
and the joint prior distribution of all the random variables 
is described by a prior Gaussian process. The prior 
Gaussian process can be considered as a random function 
generator. The variance of such a generator is specified 
by a kernel function. Such a prior Gaussian process can 
be updated with the observations of both the predictors 
and responses. As more data becomes available, the 
variance of the updated (posterior) Gaussian process 
reduces until it converges to the true regression function. 
The Gaussian process is flexible to model a large number 
of highly varying and smooth functions. However, the 
computational resources required to update the Gaussian 
process increases significantly with the size of the 
training data set. The Gaussian predictive distribution of 
𝑦∗ given a new nonlinear predictor 𝑥∗ is found by; 
 

𝑝(𝑦∗|𝑥∗, 𝑋, 𝑦; �̂�, �̂�, �̂�)    (1) 
 
with the mean value defined by mean function Ε[𝑓(𝑥)] =
𝑚(𝑥) and covariance defined by the covariance function 
𝑘(𝑥, 𝑥′) = [(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))], where �̂�, 
𝛽,̂ �̂� are hyperparameters estimated using an iterative 
coordinate descent procedure. This model and the kernel 
elements are further explained by Yu (2017). 
 
 
2.1 (b) Principal Component Regression Model (PCR) 
 
PCA is an efficient algorithm for extracting latent 
features from high dimensional data (Yu et al., 2016). 
The model can be used to describe a single response 
variable for several predictor variables. The PCA feature-
extraction procedure involves computing the covariance 
matrix from high dimensional data samples and Eigen 
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decomposition of the covariance matrix for the 
eigenvectors called principal components (PCs). PCs that 
explain the majority of the variances are used to form the 
span of a subspace of a lower dimensionality (Yu et al., 
2016). This subspace is referred to as the feature space 
through subspace projection (Yu et al., 2016). The 
drawback of a standard PCA model is the sensitivity to 
the scaling of process data. For samples collected with 
varying measurement scales, the result can be the 
extraction of irrelevant PCs (Yu et al., 2016). The PCA 
process is shown through the following equations; an 
Eigen decomposition of the original matrix 𝑋 is 
performed; 
 

𝑉Σ𝑑𝑉⊺ = 𝑒𝑖𝑔 (𝑋⊺𝑋
𝑛−1)    (2) 

 
where 𝑉 is the eigenvector matrix and Σ𝑑 is the 
eigenvalue matrix. 𝑋 is projected into the 𝑉 vector space 
giving 𝑃. The predictor coefficient vector is estimated 
by�̂� = 𝑉(𝑃⊺𝑃)−1𝑃⊺𝑦 where 𝑦 is a vector of 
corresponding occurrences. A normalised prediction 𝑦 is 
given by applying 𝑊 to a vector of process variables 𝑥⊺. 
A further examination of this model is found in (Yu, 
2017) where both GPR and PCA are described and 
applied to a case study. 
 
 
2.1 (c) Linear Dynamic System (LDS) 
 
The modelling of dynamic and uncertain data sets can be 
addressed using dynamical Bayesian networks, or more 
specifically for a time-series state-space model an LDS 
that incorporates additional quality information is 
appropriate (Ge & Chen, 2016). An LDS model was 
introduced for a supervised fault detection case with 
multiple variables based upon the dual Kalman filtering 
model (Ge & Chen, 2016). The regression model 
extension applied in this study considers all response 
variables in a single model allowing for a complete 
solution to multiple emission elements where all previous 
data points are considered for each subsequent 
prediction. The expectation-maximization (EM) 
algorithm is used to estimate the maximum likelihood 
parameter. The EM algorithm is an iterated two-step 
method. The first step is the expectation step (E-step) 
where the posterior distribution of the latent variables is 
calculated according to the current parameter values. The 
second step is the maximization step (M-step) where the 
values of all parameters are updated by maximizing the 
expected log-likelihood function. The model structure of 
the LDS in a basic form is described by three equations; 
 

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝜂𝑡
ℎ   (3) 

 
𝑥𝑡 = 𝐵𝑥ℎ𝑡 + 𝜂𝑡

𝑥     (4) 
 

𝑦𝑡 = 𝐵𝑦ℎ𝑡 + 𝜂𝑡
𝑦    (5) 

 

where ℎ𝑡 is the latent variable, 𝐴 is the transition matrix, 
𝜂𝑡 is the Gaussian noise for the respective variables, 𝐵𝑥 
and 𝐵𝑦 are emission matrices for the respective variables. 
The conditional probability distributions of the latent and 
observed measurement are both Gaussian. The joint 
probability for the sequences of both latent variables ℎ𝑡 
and observed variables 𝑜𝑇  are both Gaussian distributed 
and are formulated as; 
 

𝑝(𝑜1:𝑇, ℎ1:𝑇) = 𝑝(ℎ1)𝑝(𝑜1|ℎ1) ∏ 𝑝(ℎ𝑡|ℎ𝑡−1)𝑝(𝑜𝑡|ℎ𝑡)
𝑇

𝑡=2
 

(6) 
 
This model is further explained in Ge and Chen (2016) 
from which the model in this study is sourced. 
 
 
2.1 (d) Supervised Probabilistic Latent Variable 

Regression Model (SSPPLS) 
 
The Supervised Probabilistic Latent Variable Regression 
Model is developed as an advancement of the 
deterministic model such as PCA modelling (Ge, 2016). 
Like LDS, maximisation algorithms are implemented in 
both the single probabilistic model and the mixture form. 
The model is robust in its ability to handle missing data 
(Ge, 2016). The incorporation of factor analysis (FA) 
allows for the estimation of noise variance related to each 
predictor variable to be individually estimated (Ge, 
2016).  A Gaussian distribution is assumed for both the 
latent factor and the noise within each model and unity 
variance is assumed for the latent factor variable (Ge, 
2016). The SSPPLS algorithm modelling structure is 
given as the following; 
 

𝑥 = 𝐴𝑥𝑡 + 𝑒𝑥   (7) 
 

𝑦 = 𝐴𝑦𝑡 + 𝑒𝑦   (8) 
 
These rely upon the iterative EM process to maximise the 
likelihood function 𝐸[𝐿(𝑋, 𝑌, Θ)] during the M-step of 
the EM algorithm by setting the partial derivatives for 
each parameter to zero allowing the calculation of the 
latent factors �̂�𝑛𝑒𝑤 and model predictions �̂�𝑛𝑒𝑤 for each 
new input data vector 𝑥𝑛𝑒𝑤; 
 
�̂�𝑛𝑒𝑤 = 𝐴𝑦�̂�𝑛𝑒𝑤 = 𝐴𝑦𝐴𝑥𝑇(Σ𝑥 + 𝐴𝑥𝐴𝑥𝑇)−1𝑥𝑛𝑒𝑤   (9) 

 
where 𝐴𝑥 and 𝐴𝑦 are the factor loading matrices, 𝑒𝑥 and 
𝑒𝑦 are measurement noises of 𝑋 and 𝑌 respectively, also 
Σ𝑥 captures the different variable measurement noise 
variances. 
 
 
2.1 (e) Mixture Probabilistic Latent Factor Regression 

Model (SMPPLS) 
 
The Mixture Probabilistic Latent Factor Regression 
Model framework is an extension of the Supervised 
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Probabilistic Latent Variable Regression Model (Ge, 
2016). The mixture modelling form, relative to the single 
latent model, is capable of handling complex nonlinear, 
multimode regression problems (Ge, 2016). Unlike the 
single model form, the mixture model does not assume a 
single Gaussian distribution; this model can be apply 
many distributions in application to multi-modal 
distributed data. The number of mixture components is 
related to the clustered relationship between predictor 
and response variable data. Several response variables 
can be predicted using a single model related to one or 
more time series predictor data sets. This algorithm is 
given by the following input 𝑥𝑖 and output 𝑦𝑖  variables; 
 

𝑥𝑖 = ∑ 𝑝(𝑘)𝐾
𝑘=1 (𝜇𝑥,𝑘 + 𝐴𝑥,𝑘𝑡𝑖,𝑘 + 𝑒𝑥,𝑖,𝑘) (10) 

 
𝑦𝑖 = ∑ 𝑝(𝑘)𝐾

𝑘=1 (𝜇𝑦,𝑘 + 𝐴𝑦,𝑘𝑡𝑖,𝑘 + 𝑒𝑦,𝑖,𝑘)  (11) 
 
where 𝑝(𝑘) is the mixing proportional value of each 
model, 𝐴𝑥 and 𝐴𝑦 are the factor loading matrices, 𝑡𝑘 is 
the Gaussian latent factor vector, and 𝑒𝑥,𝑘 and  𝑒𝑦,𝑘 are 
Gaussian noise vectors. Following the EM algorithm 
where the log-likelihood function is maximised and the 
posterior probability 𝑝(𝑘|𝑥𝑛𝑒𝑤) for 𝑘 model is 
determined; 
 

𝑝(𝑘|𝑥𝑛𝑒𝑤) = 𝑝(𝑥𝑛𝑒𝑤|𝑘)𝑝(𝑘)
𝑝(𝑥𝑛𝑒𝑤)

    (12) 
 
The latent factor variables in each model 𝑡𝑘 are used with 

the factor loading matrix 𝐴𝑦,𝑘 to make local model 
predictions 𝑦𝑘,𝑛𝑒𝑤; 
 
𝑦𝑘,𝑛𝑒𝑤 = 𝐴𝑦,𝑘𝑡𝑘,𝑛𝑒𝑤 = 𝐴𝑦,𝑘𝐴𝑥,𝑘𝑇 (Σ𝑥,𝑘 + 𝐴𝑥,𝑘𝐴𝑥,𝑘𝑇 )−1𝑥𝑛𝑒𝑤  

(13) 
 
The subsequent summation of prediction results from 
different models 𝑘 provides the final weighted 
prediction; 
 

𝑦𝑛𝑒𝑤 = ∑ 𝑝(𝑘|𝑥𝑛𝑒𝑤)𝑦𝑘,𝑛𝑒𝑤𝐾
𝑘=1   (14) 

 
The full model description for the single and mixture 
model forms including the EM algorithm is found in (Ge, 
2016). The characteristics of the five models are 
compared in Table 1 summarising the main elements of 
each as described in the above sections. 
 
2.2 ACCURACY OF PREDICTED RESPONSES 
 
Validation of a model is completed through cross 
validation where the original data is separated into one or 
more training, validation, and test subsets (Chalimourda 
et al., 2004; Dukart & Hoffmann-La Roche, 2015). 
Overfitting to a single dataset, and therefore low 
applicability to new data, occurs when the performance 
of the model parameters obtained from the training set 
are not validated with a separate dataset (Chalimourda et 
al., 2004; Dukart & Hoffmann-La Roche, 2015).  
 

 
 
 
Table 1. Comparison of different ML tools used in this study  
GPR PCA LDS SSPPLS SMPPLS 
Single response 
variable 
 
Flexible application 
of Gaussian 
distributions 
 
Performance 
decreases with data 
set size 
 
Non-parametric 
model – Bayesian 
modelling technique 
 
Fully specified by 
mean and covariance 
functions 
 
No predictor-
response assumptions 
 

Multiple response 
variable 
 
Neglects insignificant 
input variables 
 
Computationally 
inexpensive 
 
Sensitive to data 
scaling 
 
 
Efficiently extracts 
latent features 

Multiple response 
variables 
 
Assumes Gaussian 
distribution 
 
Based on dual 
Kalman filtering 
model 
 
Incorporates 
additional quality 
information 
(historical data 
points) 
 
Expectation-
maximization (EM) 
algorithm 
 

Multiple response 
variables 
 
Assumes a single 
Gaussian distribution 
 
Robust handling of 
missing data 
 
Factor analysis 
estimates individual 
input variable noise 
 
Expectation-
maximization (EM) 
algorithm 
 
Advancement of 
deterministic 
modelling 
 

Multiple response 
variables 
 
Assumes multiple 
Gaussian 
distributions present 
 
Extension of SSPPLS 
model 
 
Factor analysis 
estimates individual 
input variable noise 
 
Expectation-
maximization (EM) 
algorithm 
 
Handles complex 
nonlinear, multimode 
regression problems 
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The performance of the parameters obtained through 
modelling is calculated by the Mean Square Error and 
compared against other training subsets for a general 
error (Chalimourda et al., 2004). The Root Mean Square 
Error (RMSE) is the measure of the separation between 
the predicted response and the testing data response 
value. This error indicates alignment between the model 
and the expected values. A range normalised RMSE is 
used to compare different ML models and their 
performance during testing given by; 
 

𝑅𝑀𝑆𝐸 =  √∑ (𝑦𝑖−𝑦𝑖
∗ )2𝑛

𝑖=1
𝑛

   (15) 

 
Where 𝑦𝑖  and 𝑦𝑖

∗ are the actual emission and predicted 
emission at sampling interval 𝑖 respectively, 𝑛 is the total 
number of data points. The fitting level of predicted 
values to the observed values is measured by the R-
value, which is obtained in Equation 16; 
 

𝑅 = ∑ (𝑦𝑖−�̅�)(𝑦𝑖
∗−𝑦∗̅̅̅̅ )𝑛

𝑖=1

√∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖

∗−𝑦∗̅̅̅̅ )2𝑛
𝑖=1

  (16) 

 
Where �̅� and 𝑦∗̅̅ ̅ are the average actual and predicted 
emission levels. Ideally, the emission model with the 
lowest RMSE and total highest R-value is the model of 
best fit. 
 
 
2.3 TEST PLAN AND DATA COLLECTION 
 
The emissions emitted during the berthing, 
manoeuvring and cruising phases of the vessel are 
modelled in this study with the main engine as a 
consistent source for both vessels. The berthing 
emissions modelled are from a single vessel (vessel 1), 
vessel 2 emissions were excluded as the auxiliary 
engine was in use. The manoeuvring phase of 
operation has significant variation compared to the 
other phases. This phase is identified by low-speed 
manoeuvres conducted normally inside a harbour, 

exclusive of activity while berthed. The main engine 
for each of the two vessels is the source of all the data. 
 
The data used in this study is from a previous 
measurement campaign described in Chu Van et al. 
(2016) . Two large cargo ships had measurements taken 
on both main and auxiliary engines in different operating 
conditions (at berth, manoeuvring, and at sea). The first 
ship transports from Port of Brisbane to Port of 
Gladstone, and the second ship from Gladstone to 
Newcastle. The emission of gaseous pollutants was 
collected as well as engine parameters; engine power, 
and shaft speed. 
 
The collected engine test data recorded from vessel 
instrument panels; shaft speed (rpm) and shaft power 
(kW) is used as input variables. The emission data 
collected through installed instruments; NO, CO, CO2, 
SO2, and NOX all in ppm units are the model outputs. 
Table 2 explains a list of the input and output variables. 
For each model, the vessel data for each phase was 
combined and randomly split into two parts for training 
and testing. Seventy percent of the data was randomly 
selected for training the models and thirty percent 
randomly selected for validation purposes. 
 
 
3. RESULTS AND DISCUSSION 
 
The emission prediction results from applying each of 
the five models are presented in Tables 3-7 and Figures 
1-6. The same predictor variables are used in each of 
the models and all six-response variables are modelled 
as listed in Table 2. The models are compared for their 
normalised RMSE and R-values to allow for 
performance comparison between models. The results 
presented in Tables 3-7 are ranked by the total error for 
each model. The results of the modelling are illustrated 
as the individually observed emissions against each 
model’s prediction in time series for each operational 
phase, and as a function of individual emissions 
observed and predicted against engine power for each 
operation phase. 
 

 
 
 
Table 2. Monitored vessels input (X) and output (Y) variables. 
Variable number Variable description Units 
X1 Shaft speed rpm 
X2 Engine power kW 
Y1 Nitrogen monoxide (NO) ppm 
Y2 Nitrogen dioxides (NO2) ppm 
Y3 Nitrogen oxides (NOX) ppm 
Y4 Carbon monoxide (CO) ppm 
Y5 Carbon dioxide (CO2) ppm 
Y6 Sulphur dioxide (SO2) ppm 
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Table 3. Normalised relative mean squared error for berthing prediction of the five ML emission models. 
Rank Model NO CO NO2 CO2 NOX SO2 
1 SMPPLS 10.6% 1.2% 14.0% 8.8% 10.7% 8.2% 
2 LDS 11.6% 1.3% 17.3% 9.5% 11.8% 9.1% 
3 GPR 13.4% 1.2% 14.2% 9.6% 13.5% 8.8% 
4 PCA 12.6% 1.3% 17.8% 9.6% 12.7% 8.9% 
5 SSPPLS 13.8% 1.3% 19.9% 10.4% 13.9% 9.7% 

 
 
 
Table 4. R-value for prediction of berthing emissions using five ML models. 
Rank Model NO CO NO2 CO2 NOX SO2 
1 SMPPLS 0.82 0.37 0.81 0.83 0.82 0.83 
2 GPR 0.72 0.47 0.80 0.80 0.72 0.80 
3 LDS 0.80 0.28 0.72 0.81 0.80 0.80 
4 PCA 0.74 0.34 0.67 0.79 0.73 0.79 
5 SSPPLS 0.72 0.19 0.60 0.77 0.71 0.77 

 
 
 
Table 5. Normalised relative mean squared error for manoeuvring prediction of the five ML emission models 

Rank Model NO CO NO2 CO2 NOX SO2 
1 SMPPLS 8.8% 6.0% 12.4% 7.1% 8.8% 9.8% 
2 GPR 13.3% 6.2% 9.9% 6.5% 11.9% 10.3% 
3 PCA 8.9% 6.0% 18.1% 7.8% 9.0% 10.7% 
4 SSPPLS 11.8% 6.0% 18.2% 8.0% 11.9% 11.3% 
5 LDS 12.4% 6.0% 18.4% 8.4% 12.5% 11.6% 

 
 
 
Table 6. R-value for prediction of manoeuvring emissions using five ML models. 
Rank Model NO CO NO2 CO2 NOX SO2 
1 GPR 0.91 0.28 0.89 0.90 0.92 0.88 
2 SMPPLS 0.94 0.23 0.82 0.88 0.93 0.89 
3 PCA 0.93 0.08 0.58 0.85 0.93 0.86 
4 LDS 0.89 0.16 0.58 0.83 0.89 0.84 
5 SSPPLS 0.88 0.01 0.58 0.85 0.88 0.84 

 
 
 
Table 7. Normalised relative mean squared error for cruising prediction of the five ML emission models. 
Rank Model NO CO NO2 CO2 NOX SO2 
1 SMPPLS 2.2% 4.1% 2.0% 2.0% 2.2% 2.5% 
2 PCA 2.5% 3.7% 2.4% 2.1% 2.5% 2.9% 
3 SSPPLS 2.6% 3.8% 2.4% 2.2% 2.6% 3.0% 
4 GPR 3.7% 3.4% 3.0% 3.6% 3.7% 3.6% 
5 LDS 3.8% 4.1% 3.9% 3.9% 3.9% 3.8% 
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The agreement between the predicted and actual 
emissions for two of the models is more accurate than 
the others. The berthing phase values are for vessel 1 
only as vessel 2 was recorded using its auxiliary engine 
rather than its main engine. The error values and R-
value for this phase are a possible indication of the 
performance when applied to additional vessels. The 
value ranges are similar to those in the manoeuvring 
phase. However, the performance will depend on the 
actual activity during this operation. During berthing, 
the engine activity may vary between highly variable 
when loading, through to a consistent level for low 
activity times (Figure 1). These activity levels are each 
similar to manoeuvring and cruising respectively. 
Therefore, it is expected that the performance will range 
between these two points and an algorithm can be 
applied as selected through these two modes. 
 
The manoeuvring phase of operations identified two 
models as superior to the others; SMPPLS and GPR. 
The SMPPLS model produced a lower error than the 
GPR model (Table 5) while both yielded similar R-
values (Table 6). All five models performed similarly in 
predicting four of the six pollutants; NO, CO2, NOX, 
SO2. The defining area of performance was in 
predicting CO and NO2 in which both the SMPPLS and 
GPR models outperformed the other models allowing 
them to be disregarded from selection. The much 
smaller R-value of CO suggests alternative influences 
outside engine load may be affecting the emissions 

pattern. The high R-values for four of the pollutants 
indicate strong ability of the models to explain the 
vessel emissions with limited input variables, showing 
that a large portion of the emissions variance is 
explained by the engine operating levels.  
 
Emission estimation in the cruising phase shows high 
correlation (Figure 6) and low error values (Table 7 and 
Figure 5) for all models. This can be attributed to 
constant engine operation and therefore constant 
emissions. The high correlation values are due to the lack 
of variation in the values creating two clusters of input vs 
output data as seen in Figure 6. These values are easily 
predicted by the models. All the models perform 
similarly when applied to input and output variables with 
lacking variation, therefore, this phase does not eliminate 
or promote one model over another.  
 
Due to the nature of the results described above, the 
evaluation of the above five models in the three 
operational phases is dependent on the performance of 
each in the manoeuvring phase. The manoeuvring 
results indicate clearly that the SMPPLS and GPR 
models performed beyond the other three models. The 
poor performance of the LDS model indicates there is 
no temporal correlation between data points. Applying 
the model to an increasing number of vessels would 
require further input variables to be incorporated into 
the models as the pattern of emissions levels varies 
between ship types. 
 

 
 

 
Figure 1: Berthing emissions estimates for all models broken time by pollutant; (a) NO, (b) CO, (c) NO2, (d) CO2, (e) 
NOx, (f) SO2 
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3.1 SMPPLS MODELLING RESULTS 
 
The predicted emissions using the SMPPLS model for 
each pollutant rank either first or second with the GPR 
model for each operation phase. The SMPPLS in the 
manoeuvring phase performs similarly to the GPR 
model with high R-values in five of the six pollutants 
measured. The R-values are high for all but the 
pollutant CO, indicating strong correlations to the 
actual emissions for the prediction with CO being the 
only weakly correlated response. The SMPPLS 
performs well in this case due to the application of 
multiple Gaussian distributions to the multi-modal 
data seen in Figure 4 as distinguishable clusters. The 
advantage of the SMPPLS model, beyond its higher 
performance, lies in its design where it processes 
multiple time-series response data simultaneously, in 
this case, six different pollutant responses, whereas 
the GPR model requires separate models for each 
time-series response variable. 

3.2 GPR MODELLING RESULTS 
 
The manoeuvring emissions for the GPR model show the 
R-values for each pollutant, excepting CO, are high with 
values of between 0.84 and 0.94 indicating a strong 
correlation between predicted and actual emissions.  The 
value of 0.28 for CO suggests a weak correlation 
between the predicted and actual emissions. The relative 
error for the GPR is higher than the SMPPLS model, 
however this difference is represented for the most part 
in the prediction of NO2 and SO2. In fact, the GPR has a 
lower or equal error value in four of the pollutant 
responses (NO, NO2, CO2, NOX). The weakness of the 
GPR model is its limitation to only predict a single 
output for an input time series. The requirement to repeat 
modelling for each output, combined with decreasing 
performance with the size of a data set, indicates an 
increasingly computationally expensive model, 
unsuitable for wider implementation. 

 

 

 

 
 
Figure 2: Berthing emissions estimates relationship to engine power for all models broken down by pollutant; (a) NO, 
(b) CO, (c) NO2, (d) CO2, (e) NOx, (f) SO2 
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Figure 3: Manoeuvring emissions estimates for all models broken time by pollutant; (a) NO, (b) CO, (c) NO2, (d) CO2, 
(e) NOx, (f) SO2 
 

 
Figure 4: Manoeuvring emissions estimates relationship to engine power for all models broken down by pollutant; (a) 
NO, (b) CO, (c) NO2, (d) CO2, (e) NOx, (f) SO2 
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Figure 5: Cruising emissions estimates for all models broken time by pollutant; (a) NO, (b) CO, (c) NO2, (d) CO2, (e) 
NOx, (f) SO2 
 

 
Figure 6: Cruising emissions estimates relationship to engine power for all models broken down by pollutant; (a) NO, 
(b) CO, (c) NO2, (d) CO2, (e) NOx, (f) SO2 
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Figure 7: Range normalised RMSE for all phase predictions of SMPPLS ML model and existing shipping emission 
models 
 
3.3 COMPARISON WITH EXISTING 

MODELS 
 
The emission prediction results for the SMPPLS ML 
model are presented in Figure 7 alongside the pollutant 
emissions estimated by existing Bottom-up approaches 
(Cooper & Gustafsson, 2004; Corbett & Koehler, 2003; 
Hickman et al., 1999; Hulskotte & Denier van der Gon, 
2010; Jalkanen et al., 2009; Olesen et al., 2009; Smith et 
al., 2014; Vangheluwe et al., 2007). The SMPPLS model 
was chosen for comparison due to its superior 
performance compared to the other ML models studied. 
The emissions estimation from each model are created 
from engine data from which all estimation in this study 
has been based. The range normalised RMSE is plotted 
for each model where emission factors are provided in 
each mode of operation for four pollutants (CO, CO2, 
NOx, SO2). 
 
The comparison between the models in Figure 7 
illustrates that there is variation in the performance of 
each, depending on the mode of operation and pollutant 
studied. However, for each broken-down section, the ML 
model performed with lower error than the traditional 
Bottom-up approaches utilising an emission factor for 
estimation. The trends in performance when ML models 
are applied to fleet wide data are uncertain due to the 
required development required in model development 
when the variation in predictor parameters increases. The 

results shown are an indication of how the use of 
machine learning in estimating pollutant emissions can 
be an improvement to the performance of an emission 
inventory over the use of emission factors. 
 
 
4. EMISSIONS INVENTORY 
 
This section proposes a methodology for addressing the 
uncertainty that exists in current shipping emission 
inventories in the manoeuvring phase of operation. The 
emission of pollutants in an in-port environment differs 
from that of an at-sea environment, with engine loads 
varying between high and low power for short time 
periods. This variability has not been captured in 
traditional approaches with existing inventories typically 
estimating an average speed and duration for specific 
ports and applying a small sample size of emission 
measurements to the wider fleet.  
 
A new approach that incorporates the use of ML 
algorithms is suggested which uses the engine load 
information of specific ship types and the corresponding 
emissions measurements from a sample of vessels to 
predict future emissions based on engine load data. This 
data is easily accessible from individual vessels although 
the measurement of emissions from individual vessels is 
an intensive process. The incorporation of an ML model 
trained on similar ship types allows for a non-intensive 
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estimation of in-port shipping emissions in any 
geographic location. 
 
The division of an emission inventory into in-port and at-
sea inventories allows for the varied operating conditions 
to be targeted specifically. The steady state operation of 
vessels can be estimated using an extensive Automatic 
Identification System (AIS) based inventory such as that 
of Jalkanen et al. (2009). The increasing applicability of 
an inventory such as this will rely upon the distribution 
and accessibility of the AIS system. However, with an 
ML based inventory estimating in-port emissions, the 
data that local regulators and port authorities require to 
inform decisions and planning can be accurately 
available with a low cost beyond the collection of engine 
operation records for the period or location of interest. 
The engine data required to be modelled is measured and 
displayed digitally, thus storing this information in a 
format capable of distribution, if that is not already the 
case, is a simple matter. 
 
A possible development of the at-sea emission inventory 
model of Jalkanen et al. (2009), where the 
comprehensive data modelling conducted for engine 
power estimation, would be an ideal input to an ML 
model for emissions prediction. This combination would 
allow the prediction of emissions without the use of 
emission factors. The difficulty of this suggested model 
is the requirement for measurement campaign data. 
However, the nature of the required measurement 
campaigns would be in line with those for emission 
factors, therefore existing data would be applicable for 
model development and any new effort for emission 
factor development would be an opportunity for 
extending emission inventories in two paths for more 
extensive validation studies. 
 
 
5. CONCLUSIONS 
 
With the aim of identifying a model to predict shipping 
emissions based on engine parameters, GPR, PCA, 
SMPPLS, SSPPLS, and LDS models are proposed. The 
emissions trained and tested in each model are NO, NOX, 
SO, SO2, CO, CO2. Performance of the models has been 
evaluated by calculating the RMSE and R-value for each 
model. The results from the cruising phase illustrated the 
low variation in emission with constant engine activity 
and therefore had similar performance across the five 
models. The berthing emission results showed similar 
activity to the manoeuvring phase. However, it is 
acknowledged that the results are likely to be similar to 
either a cruising phase or manoeuvring depending on the 
current activity. The manoeuvring phase was therefore 
identified as the phase to dictate model performance. The 
predictions obtained from this phase were very good for 
all types of emissions, excepting CO, with two models; 
the SMPPLS and GPR exceeding the performance of the 
others. The SMPPLS model performs better by applying 
multiple Gaussian distributions to the multi-modal data 

and has an advantage over the GPR model in that it 
estimates multiple time-series variables simultaneously 
while the GPR model estimates each individually. The 
comparison of the SMPPLS model to existing Bottom-up 
approaches is an indication of the improved estimation 
ability of a model incorporating ML tools rather than 
emission factors. Applying the developed model as a 
specific in-port emissions inventory would allow for 
complex engine conditions to be captured and the 
accuracy of vessel emissions to be increased. The 
described methodology serving in addition to ‘at-sea’ 
inventories allows for a full measurement of shipping 
emissions. 
 
 
6. FURTHER RESEARCH 
 
The methodology and modelling described in this study 
are focussed on the manoeuvring emissions of two 
vessels. There are however many opportunities for 
expanding this program of study through ship types. The 
requirements for further study are for additional or 
existing emission measurement campaign data upon a 
greater and appropriate sample size of ship types with a 
variety of designs. Expanding study into an increasing 
number of ship types will require the capture of input 
variables such as fuel and engine data because as the 
variety of vessels increases, the variance in emissions 
requires more input variables to explain the variation. 
Areas of study appropriate for expansion lie in the 
pollutants monitored; particulate matter is a pollutant 
from shipping that is important for measurement and 
estimation due to its environmental and health effects. 
Trialling particulate matter emissions with ML 
algorithms would increase the quality and relevance of 
estimated emissions. 
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