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SUMMARY 
 
Free-running model tests have been carried out based on a scaled chemical tanker ship model, having a guidance, control 
and navigation system developed and implemented in LabVIEW. In order to make the modelling more flexible and 
physically more realistic, a modified version of Abkowitz model was introduced. During the identification process, the 
model’s structure is fixed and its parameters have been obtained using system identification. A global optimization 
algorithm has been used to search the optimum values and minimize the loss functions. In order to reduce the effect of 
noise in the variables, different loss functions considering the empirical errors and generalization performance have been 
defined and implemented in the system identification program. The hydrodynamic coefficients have been identified 
based on the manoeuvring test data of free-running ship model. Validations of the system identification algorithm were 
also carried out and the comparisons with experiments demonstrated the effectiveness of the proposed system 
identification method.   
 
 
NOMENCLATURE 
 
U  Density of water (kg m-3) 
u  The forward velocity (m s-1) 
v  The transverse velocity (m s-1) 

cu  The current’s magnitude (m s-1) 
D  The current’s direction (rad) 
\  The heading angle (rad) 

ru  The relative forward velocity (m s-1) 
rv  The relative transverse velocity (m s-1) 

m  The mass of the ship (m) 
𝑋�̇�𝑟 The added mass in x direction 
𝑌�̇�𝑟 The added mass in y direction 
𝑌�̇� The added mass in r direction 
𝑁�̇�𝑟 The added moment in y direction 
𝑁�̇� The added moment in r direction 
c  The weighted average flow speed 

PA  The propeller area (m2) 

RA  The rudder area (m2) 
Z  The wake fraction 

fAu  The induced axial velocity (m s-1) 

TK  The propulsive coefficient  
D  The propeller diameter (m) 
e  The effective rudder angle  

newCoef  The regression coefficient 

CoefN  The adjustment coefficient   

0Coef  The hydrodynamic coefficients 
d  The draft of the ship (m) 

iy  The target output 
ˆiy  The mathematical model output 

1. INTRODUCTION 
 
The accurate mathematical model for simulation of the 
manoeuvring motion of real vessels is of great 
importance. Some tools and methods have been 
developed to compute these mathematical models for 
simulation purposes. The determination of a reliable 
manoeuvring mathematical model for marine surface 
vehicles is still an important topic and demanding task 
(Eloot and Vantorre, 1998). The captive model tests are 
an effective method, which is widely used to obtain 
hydrodynamic coefficients of marine surface vehicles, 
but it is much expensive and time consuming. It also 
should be noted that hydrodynamics coefficients of  
manoeuvring motion can also be determined by other 
means, such as slender body theory, empirical formulae, 
computational fluid dynamics and system identification 
(Yoon and Rhee, 2003) In this sense, system 
identification is one of the highlights among the research 
topics in engineering and also play an important role in 
control of autonomous vehicles. 
 
System identification (Ljung, 1987; Söderström and 
Stoica, 1989) has been widely used for mathematical 
modelling of dynamic systems (Söderström et al.  2003; 
Tang et al. 2014), robot simulation and training 
(Akanyeti et al. 2008; Iglesias el al. 2008; Kyriacou el al. 
2008), and  motion control (Åström and Källström, 1976; 
Tafner et al. 2014). The objective of system 
identification is to model the input-output behaviour of a 
system as well as possible. In (Schafroth et al. 2010), the 
parameters of a nonlinear dynamic model of a micro 
helicopter were identified using a nonlinear identification 
tool. A novel model identification methodology for ARX 
models based on transfer functions has been proposed by 
Kon et al.(2013).  
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The least square methods have been widely used for 
parameter estimation or white box modelling. For 
example, least-squares identification technology was 
used to estimate the parameters of nonlinear dynamic 
models in (Casenave et al. 2010). Alonge et al (2001) 
presented an offline GA-based identification method, 
which was used to estimate the parameters of motors. 
But the accuracy of least square methods is usually 
largely affected by the noise of training data and it 
usually leads to inconsistent estimates (Söderström, 
2013). In order to solve the noise-corrupted in system 
identification, an errors-in-variable method has been 
proposed and plays an important role in mathematical 
modelling. In (Söderström, 2007; 2010), a general 
introduction on the background and motivation of 
errors-in-variables method was presented, and some 
example were also provided to demonstrate the 
effectiveness. In (Chen and Ljung, 2013), the 
regularized least-squares method was used to solve the 
hyper-parameter estimation problem with large data 
sets and ill-conditioned computations. Black box 
system identification is a purely data-driven modelling 
tool, which means that a priori structure of the system 
is not need.   
 
Artificial Neural Networks (ANN) are one typical 
method for black box modelling and was used to model 
the manoeuvrability of a catamaran (Moreira and Guedes 
Soares, 2003, 2012). A radial basis function neural 
networks (NNs), which was employed to approximate 
the unknown ocean surface ship dynamics, is presented 
by Dai et al. (2012). Rajesh et al. (2010) investigated the 
performance of the neural network models for modelling 
nonlinear manoeuvring of ships. The advantage of ANN 
algorithm is that it does not imply any a priori structure 
of the ship mathematical model, but the disadvantage is 
that it cannot be extended, modified or tuned without full 
retraining which is not always possible (Sutulo and 
Guedes Soares, 2014, 2015).  
 
The estimation of hydrodynamic coefficients of marine 
surface ships based on free-running model tests is always 
an interesting topic, which drew a great attention due to 
its effectiveness and accuracy (Luo et al. 2016; Sutulo 
and Guedes Soares, 2014, 2015; Yoon and  Rhee, 2003; 
Zhang and  Zou, 2011).  Free-running model tests are 
often used to confirm manoeuvring properties of a ship 
configuration in the most direct and convincing way 
(Moreira and Guedes Soares, 2014; Perera et al., 2012).  
 
In this paper, a scaled model of a chemical tanker has 
been built and one guidance, control and navigation 
platform also has been developed and implemented on 
the model. Various sensors (i.e. GPS, IMS and fibre-
optic gyrocompass units) are integrated together in the 
LabVIEW platform. It consists of several program loops: 
FPGA loop, real-time loop and TCP/IP loop. The 
manoeuvring tests proposed by the Interim Standards for 
Ship Manoeuvrability (IMO) (ITTC, 2002) have been 
carried out in a swimming pool and the results are used 

for identify the parameters of the nonlinear manoeuvring 
mathematical model. 
 
System identification for marine surface ship has always 
drawn a lot attention. Many researchers have been 
working on this topic. In (Åström and Källström, 1976), 
the parameters of a linear continuous time model were 
identified using the maximum likelihood method. Further 
work can be found in (Källström and Åström, 1981), 
where full-scale experiments have been used to 
demonstrate the effectiveness of system identification 
method for ship steering modelling. An extended Kalman 
filter (EKF) was applied to identify the parameters of a 
modified Nomoto model for vessel steering in (Perera, et 
al. 2016, 2015). System identification can also be used to 
obtain the parameters of a more complex manoeuvring 
model. For example, in (Revestido Herrero and Velasco 
González, 2012), a grey box approach has been used to 
identify of nonlinear manoeuvring model of marine 
vessels, a two-step approach was used to handle the 
modelling problem. A classical linear model was 
identified in the first step and a refinement has been 
carried out with the Kalman filter in the second step.  
 
Recently the support vector machine, which was firstly 
used for classification, was applied to the regression 
purpose. Falck et al. (2012) presented an online least 
squares support vector regression for quality prediction. 
In (Luo et al., 2016; Luo et al. 2014; Zhang and Zou, 
2011) support vector machine was used to identify 
manoeuvring model of Mariner class surface ship, but the 
validation carried out so far does not permit to draw 
definite conclusions about the effectiveness of this 
method (Sutulo and Guedes Soares, 2014). A modified 
version, Least Squares Support Vector Machines, was 
also used to identify the 2nd Nomoto model with real 
experimental data obtained from a zigzag manoeuvre 
made by a scaled ship (Luo et al., 2014; Moreno-Salinas 
et al., 2013). In (Xu and Guedes Soares, 2016a, 2016b), 
Least Squares Support Vector Machines was applied to 
model the controller of marine surface vehicle for path 
following scenarios.  
 
In this paper, a nonlinear manoeuvring model was 
presented. To make the modelling more flexible and 
physically more realistic, modifications the Abkowitz 
model were introduced by including the rotation speed of 
the propeller and the flow velocity over the rudder. 
System identification is used to estimate the 
hydrodynamic parameters of an autonomous surface 
vehicle, whose true values of the hydrodynamic 
coefficients are not known before. Free-running model 
tests have been carried out based on a scaled chemical 
tanker ship model. Zigzag manoeuvring tests are used for 
identification purposes. Different metrics are defined 
considering the empirical errors and generalization 
performance, and a global optimization algorithm is 
implied to search the optimal parameters. At last, 
validation of the algorithm is carried out to verify the 
effectiveness of the proposed identification technology.   
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2. NONLINEAR MANOEUVRING 
MATHEMATICAL MODEL OF MARINE 
SURFACE SHIP 

 
A ship in a seaway has 6 degrees of freedom (DOF) to 
move freely in the space, as illustrated in Figure 1. In 
order to simplify the problem of manoeuvring modelling, 
some assumptions need to be adopted. The heave, roll 
and pitch motion are not important in manoeuvring 
problem, as the ship moves in the horizontal plane. The 
coordinate frames of surface ship in 3 DOF are presented 
in Figure.2. In estimation theory, a mathematical model 
of surface marine ship is needed to describe the dynamics 
of the system. The Abkowitz (1980) model will be 
modified in order to make the modelling more flexible 
and realistic physically. In this study, the current effect is 
considered as the main external excitation, because the 
ship model has a small above water structure.  
 
 
 

 

Figure 1: Motion of marine surface vehicle in 6 degree of 
freedom 
 

 
 
Figure 2: Coordinate frames for marine surface vehicle 
 
As presented in figure 2, the relative forward velocity ru  
and transverse velocity rv  are given by 
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The time derivatives of u  and v  are given: 
 

�̇� = �̇�𝑟 − 𝑢𝑐𝑟 sin(𝜓 − 𝛼)
�̇� = �̇�𝑟 − 𝑢𝑐𝑟 cos(𝜓 − 𝛼)                   (2) 

 
where the  accelerations of the motion in 3 degrees of 
freedom (surge, sway and yaw) are given in: 
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      (3)  

 
The dimensionless forces are defined as multi-variety 
third-order regression polynomials depending on the 
non-dimensional velocities. In equation (4), in order to 
model the ship in the surge, 1f is divided into two parts.  
The thrust term and *

1f c  is given by Eqs. (7-8) 
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In the equation (5), c is the weighted average flow speed 
over the rudder, which is evaluated as a sum of  (1 ) ruZ�  
and fAu .  
 
 

2 2 2[(1 ) ] (1 )P R P
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Au f  is the induced axial velocity far behind the propeller 
disk, which given by  
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            (10) 

 
 

 e  is the effective rudder angle given by Eq.  (11) 
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According to the parameter identification theory, the 
coefficients of added mass and inertia need to be 
estimated in advance. Slender-body approximations 
(Newman, 1977), originated in the field of aerodynamics, 
can provide a simple but effective way. It will be applied 
to estimate the sway forces and yaw moments during a 
ship manoeuvre. 
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With the derivative with respect to �̇� and �̇� , the non-
dimensional coefficients can be obtained. 
 
In order to estimate the hydrodynamic coefficients of 
equations (4-6), adjustment coefficients are introduced, 
which will randomly change within the interval [0.5, 1.5] 
in the identification process.  
 
 

Coef 0*newCoef CoefN                        (13) 
 
where, 0Coef is the base values of hydrodynamic 
derivative of the similar ship model, which are given in 
(Moreira et al. 2007; Xu and Guedes Soares, 2016a).  
 
The non-dimensional hydrodynamic coefficients of the 
similar ship model and the dimensional factor are 
presented in table 1. 
 
 
 

Table 1. The base values of hydrodynamic derivative 
Coefficient Value Coefficient Value 
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3. SYSTEM IDENTIFICATION BASED ON A 

GLOBAL OPTIMIZATION ALGORITHM 
 
In this section, different loss functions were firstly 
defined considering the effect of noise and the empirical 
errors, because the true values of hydrodynamic 
coefficient of ship mode was not known. A good loss 
function will increase the accuracy of the identified 
results and help to approach the true values.  Then a 
global optimization algorithm, Genetic Algorithm (GA), 
will be introduced and the structure of the identification 
program will be illustrated.  
 
It is worth to note that the input signal must change 
sufficiently in order to excite the system so that the 
experimental data contains enough information about the 
dynamics of the system. According the above 
mathematical model, the input signals for surge, sway 
and yaw motion are given as: 
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The matrix is obtained using measured data, it usually is 
positive definite. 
 
In order to measure the difference or distance between 
target systems output  𝑦𝑖(𝑖 = 1 ⋯ 𝑁) , and the 
mathematical model output �̂�𝑖(𝑖 = 1 ⋯ 𝑁) , the loss 
function will need to be defined. It usually has an 
important effect on the precision and generalization 
performance of the desired mathematical model.  With 
the assumed mathematical model, which can be obtain by 
a  mechanical analysis or a priori considerations, the 
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parameter identification  consists in seeking values that 
would minimize the loss function.  Some popular loss 
functions can be defined: 
 
The 1L -norm can be written as: 
 

1
1

1

1ˆ ˆ ˆ( , )  
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F y y y y y y

N      
(15) 

The 2L -norm can be defined as follow: 

2
2 2
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The Lf -norm can be written as: 
 

ˆ ˆ ˆ( , ) maxf
f  �  �i iL

F y y y y y y
         

(17) 
 
From Eqs. (15-17), the main purpose of the proposed loss 
function is to minimise the distance between the 
reference outputs and the mathematical model outputs. A 
good mathematical model should reproduce the reference 
outputs with small bias, and also with small variance.  A 
small variance can be obtained easily with a small 
number of parameters. In this paper, the mathematical 
model was defined with a certain number of parameters 
in section 2. The loss function considering the bias and 
variance between the reference outputs and the 
mathematical model outputs will provide more stable 
mathematical model. The loss function can be defined as: 
 

2 2
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where 

1
ˆ 

 
 �¦i N

i ii
E y y N  is the absolute mean value 

of the bias of the reference outputs and the mathematical 
model outputs.  
 
In order to minimise the loss function, a global optimization 
algorithm (GA), was applied in the process of optimal 
parameters search. It is a very powerful optimization 
method due to its inherent property of implicit parallelism 
(Holland, 1992; McGookin et al. 2000; Xu and Guedes 
Soares, 2015).  It can explore a large number of potential 
solutions in parallel and is less likely to get stuck at a local 
optimum due to its mutation mechanism.  The work flow of 
a classic GA is presented in the Figure. 3. From this figure, 
the main operator to work on the parents is crossover, which 
is applied with a certain probability (pc). As shown in the 
figure 3, the crossover operator takes valuable information 
from both parents and combines it to generate new potential 
individuals.  It means that the crossover operator can exploit 
the potential solutions in the search space. But the crossover 
operator can’t introduce any new information into the 
population at the bit level (Kristinsson and Dumont, 1992), 
the mutation operator should be used to insure against such 
a loss and as a source of new bits. The mutation operator 
can also generate new individuals to ensure exploration of 

unvisited areas so that local convergence of the population 
can be avoided effectively. 
 
In order to demonstrate the performance of the obtained 
mathematical model, statistical metrics, 2R  , is used to 
quantify the fit to the data. It is defined as: 
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where y  is the mean value of the measured data. 2R  is 
the ratio of the variability in the data that is not explained 
by the model to the total variability in the data. Straight 
speaking, if 2R equal to zero, it means that the model 
fails to explain the measurement variability. Otherwise, if 

2R is equal to 1, it means that all the variability of 
measured data can be fully explained by the model. If 

2R is negative, it means the model can explain the data 
worse than the mean value. 
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Figure 3: The work flow of a classical generic algorithm 
 
 
4. FREE-RUNNING MODEL TESTS BASED 

ON AN AUTONOMOUS SURFACE SHIP 
MODEL 

 
In this section, the results of manoeuvring tests on board 
an autonomous surface vehicle (ASV) are presented. The 
ASV is a scale model of 2.5 metres, self-propelled and 
equipped with navigation and positioning equipment.  
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The tests were conducted in a large swimming pool 
during the last days of March 2016.   
 
4.1 AUTONOMOUS SURFACE SHIP MODEL 

PARTICULARITIES 
 
The ASV is a scaled model of a chemical tanker that was 
built in Portugal, as shown in Figure 4. The model is 
constructed from single skin glass reinforced polyester, 
with plywood framings and its design speed is 0.98 m/s. 
Its main particulars are given in Table 2. 
 

 
Figure 4: Prototype of the free-running ship model with 
various sensors 
 
Table 2. Main dimensions of the model 
CHEMICAL TANKER MODEL 
Length (mm) 2587.5 
Breadth (mm) 426.2 
Draught (estimated at the tests) (mm) 102 
Propeller diameter (mm) 82.2 
Design speed (m/s) 0.984 
Scaling coefficient 65.7 
 
 
4.2 HARDWARE STRUCTURE OF THE 

AUTONOMOUS SURFACE SHIP MODEL 
 
The hardware structure consists of all sensors and 
actuators that are used in the ASV real-time navigation 
and control platform. The hardware is further divided 
into two units of: command and monitoring unit (CMU) 
and communication and control unit (CCU) (Perera et al., 
2015, Hinostroza et al., 2017). 
 
The main objective of the CMU is to facilitate manual and 
autonomous control of the ASV that provides a human 
machine interface (HMI). As presented in the Figure. 5, the 
CMU mainly consists of several instruments: Laptop, GPS 
unit, industrial wireless unit, Compact-RIO, main AC power 
supply unit, DC power supply unit and Anemometer. 
 
A laptop is used in a HMI that is connected through industrial 
Wi-Fi unit for communication with the CCU. The laptop 
works as a data display unit as well as an automatic and 
manual control unit for the ASV. A GPS unit is used in the 
CMU for position measurements of the ASV. It is composed 
by two units of: base station and rover station. Both GPS units 

are used to improve the position accuracy of the ASV that is 
around the accuracy of ± 2 (cm). Industrial wireless unit is 
used for communication between the ashore based CMU and 
on-board CCU. The network topology in this system is 
considered as: ashore based CMU unit works as an “assess 
point” unit and on-board CCU works as a “client” unit. The 
shore based” assess point” unit acts as a master unit in the 
CMU. Furthermore, both units are configured into a bridge 
type Ethernet local area network (LAN), through an industrial 
Ethernet switch. The anemometer is used to measure the 
relative wind direction and wind speed at the location of tests. 
The compact-RIO 9074 unit consists of an industrial real-time 
processor with a 2M gate FPGA that has eight slots for NI C 
Series I/O modules with the operation power of 19 to 30 
VDC. All units in the CMU are powered by the shore based 
main AC unit that is also complemented by a NI DC power 
supply unit. 
 

 
Figure 5: Command and monitoring unit at shore 
 
 
The main objective of the CCU is to implement real-time 
control algorithms that are associated with course and 
speed controls of the ASV, as shown in the Figure. 6, the 
CCU consists of following instrumentations; Laptop, 
Compact-RIO, industrial Ethernet switch (IES), GPS unit, 
industrial wireless unit, DC motor with encoder, servo 
motor, fibre optic gyrocompass, batteries and fuse units. 
 
An on-board Laptop is used as Real-time acquisition 
system to record, processing and display signals from the 
gyrocompass and GPS unit. The connection is 
established by RS232/USB-serial ports. A compact RIO 
9004 composed by a 195 MHz industrial real-time 
processor with 64 MB of DRAM memory and 512 MB 
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of non-volatile Compact- Flash storage for data logging 
and that has 8 slots for NI C-series I/O modules, is used 
to control the propeller revolutions and rudder position. 
The I/O module NI 9505 full H-bridge DC servo drive is 
used to generate PWM and amplify current to control the 
motors. The Compact-RIO 9004 is powered by an on-
board battery through fuse units. A HS-5685MH 
servomotor with high voltage, High Torque, Metal Gear 
is used as actuator for rudder. A DC-Maxon Brushed 
motor is used as actuator for the propeller. Laptop and 
Compact RIO units are connected through the IES for the 
Ethernet communication. 

 
Figure 6: Equipment and sensors in communication and 
control unit  
 
4.3 SOFTWARE ARCHITECTURE OF THE ASV 
 
The software architecture is mainly programmed by 
LabVIEW software, as presented in Figure.7. The 
software architecture consists of several program loops: 
FPGA loop, real-time loop and TCP/IP loop. The FPGA 
loop is associated with collecting data from the sensors 
(i.e. GPS, IMS and fibre-optic gyrocompass units) and 
controlling the actuations of propeller and rudder sub-
systems that have been programmed under a 
reconfigurable FPGA platform, where LabVIEW 
provides the VDHL software codes. 
 
The real-time loop is associated with a reconfigurable 
FGPA platform and an embedded real-time processor. 

The associated PID controllers for rudder and propeller 
sub-systems are implemented under the internal 
deterministic control loop that has the highest responses, 
determinism and priority with compare to other software 
loops. The data processing and saving for the respective 
sensors are implemented under the internal non-
deterministic data processing loop that has lower priority 
with compare to the deterministic control loop. The 
sensor data has been incorporated into network shared 
variables that are forecasted along the entire network. 
The TCP/IP loop is associated with a real-time processor 
and the HMI is used for analysis, post-processing, data 
logging, communications and control of the ASV. The 
TCP/IP loop is implemented under wireless 
communication through the industrial Wi-Fi unit. 
 

 
Figure 7: Software architecture 
 
4.4 EXPERIMENTAL RESULTS OF FREE-

RUNNING MODEL TESTS 
 
Model tests on the ASV were conducted at the swimming 
pool of Piscina Oceanica, Oeiras, Portugal, seen in Figure 
8. The weather was sunny and dry, but some wind was 
constantly present, changing its speed (approximately in the 
interval of 1–2 m/s) and direction as time passed. The pond 
was certainly deep enough to neglect any shallow-water 
effects. The pool has a maximum length of 50 [m] and 
average breadth of 20 [m]. 
 

 
Figure 8:  Location of the free-running model tests 
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The RTK–GPS unit was initiated by manually fixing the 
coordinates of the ashore unit and then giving 
instructions to the on-board unit to communicate with the 
ground beacon station. The model was carefully 
launched on water and partly ballasted to get zero list and 
trim, although the design draught was not reached in 
these tests. Also, the model was not calibrated in the 
sense of reaching the scaled vertical position of the 
centre of gravity and scaled values of the moments of 
inertia. During all manoeuvring tests, the rpm order was 
kept constant. 
 
Unfortunately, due to the restricted area available for the 
execution of the trajectories it was not possible to take in 
consideration in the contents of the trial plan all the 
recommendations of the trial code proposed by the Interim 
Standards for Ship Manoeuvrability (IMO). The manoeuvres 
selected to be presented in this work is the zigzag. Altogether 
3 test runs were executed with ship model. 
 

Figure 9: The 20 20� zigzag manoeuvring test using 
free-running ship model 

Figure 10: Wind conditions during zigzag manoeuvring tests 
 
Figures. 9-11 present results of   and    Zigzag 
manoeuvres. The collected data have a high quality and 
suitable to carry out further manoeuvrability of the ship 
model. In the figure 10, the wind speed is about 2m/s and 

the direction is about . This data can be used to model the 
environment disturbance, especially the wind. 
 

Figure 11: The 30 30� zigzag manoeuvring test using 
free-running ship model 
 
 
5. PARAMETER IDENTIFICATION AND 

VALIDATION OF THE IDENTIFICATION 
ALGORITHM 

 
In this section, the nonlinear manoeuvring mathematical 
model with fixed structure is chosen and its parameters are 
identified based on the free-running model tests. The genetic 
algorithm discussed in the previous section will be used to 
minimise the loss functions. The 20 20� zigzag 
manoeuvring test will be chosen as the training purpose.  
 
As in the figure 9, the 20 20�  zigzag manoeuvring 
test was successfully carried out and the result is good. 
At the same time, the velocity of surge, sway and yaw 
are also recorded during the test by using the IXSEA 
inertial measurement unit. The results are presented in 
figure 12. As can be seen, the velocity of surge and 
sway change smoothly, but there are some oscillations 
of yaw rate, especially during the transition. In order 
to minimise the effect of noise, a moving average 
filter will be applied, which smooth data by replacing 
each data point with the average of the neighbouring 
data points defined within the span (Moler, 2004). 
This process is equivalent to low pass filtering with 
the response of the smoothing given by the difference 
equation (Eq. 18). The algorithm is also available in 
MATLAB (smooth.m). The smoothed yaw rate is also 
presented in the figure 8. It shows that the moving 
average filter works well and reduce the oscillations 
effectively.  
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ID 

Rudder angle  Date/Hour Data characteristics Wind conditions 

Z1 20/20 (deg.) 28042016/12:16:14 All equipment working, good 
data. 

Moderate ≈ 2 [m/s] 

Z2 25/25 (deg.) 28042016/11:15:32 Corrupted data, not presented. Too windy ≈6 m/s 
Z3 30/30 (deg.) 28042016/12:27:54 All equipment working, good 

data. 
Moderate ≈ 2 [m/s] 
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Figure 12: The velocity of surge sway and yaw from the 
inertial sensor during the 20 20� zigzag manoeuvring 
test. 
 
 

Figure 13: Evolution of the loss function values with the 
1L -norm metric  

 
 
Before the process of parameter identification, the 
parameters of generic algorithm need to be defined in 
advance. The size of the population was 200 
individuals. The optimization process was assumed to 
be converged after 2000 evolutions, which was proved 
to be sufficient. So the total number of generations 
was 2000. The one-point crossover probability was 0.8 
and the single-bit mutation probability was 0.02.  
 
As mentioned in the previous section, different loss 
functions will be applied in the system identification 
process. An example of the evolution of the loss 
function is presented in figure 13. The evolutions can 
be converged whether the inputs are the raw data or 
the smoothed data. The only difference is that the loss 
function value is smaller when using the smoothed 
data, which also agrees with common sense. Because 
there are some oscillations in the raw data, which is 
will increase the total values of loss functions 
unavoidable.  
 
The identified adjusted coefficients of the 
hydrodynamic parameters of nonlinear manoeuvring 
mathematical model are presented in table 4. Because 
the “true” values of the parameters of the 
mathematical model are never known in real-world 
applications, the values of the adjustment parameters 
should be limited in a proper range based on the 

similar ship model, whose hydrodynamic parameters 
was already known in advance. So the identification 
procedure will provide a mathematical model of the 
ship which would reasonably accurately reproduce the 
behaviour of the ship in manoeuvring motion. As 
presented in the table 4, RC c is the resistance 
coefficient, which should be close to the similar ship 
model. It also mean that the adjusted coefficient of RC c  
should be around 1. It shows that all the metrics 
provide good results. Some of the adjustment 
coefficients, namely those with subscripts 0Y c  and 0N c , 
however, kept fixed in Sutulo and Guedes Soares, 
(2015), because their influence is considered less 
important. So the adjustment coefficients should be 
near 1. From the table 4, the metric of Lf - norm 
provide a worse results. It is because the infinity norm 
does not provide sufficient information. 
 
 

 
Figure 14: The 20 20�  zigzag manoeuvring response 
reproduced on the basis of the parameters identified from 
the raw data 
 

 

Figure 15: The 20 20�  zigzag manoeuvring response 
reproduced on the basis of the parameters identified from 
the smoothed data 
 
 
The adjustment coefficients from table 4 were later used 
for modifying the mathematical model and the modified 
model was then run to obtain verification and validation 
responses. The 20 20� and 30 30� zigzag manoeuvring 
tests, which were not used in training process, will be 
considered as the verifying responses although compared 
were time histories for the yawing angle. The comparisons 
of time histories obtained with identified parameters with 
the reference time histories for the 20 20� and 30 30�
zigzag manoeuvring tests is realised in figure 14 - 17.  
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Table 4.  The adjusted coefficients of the hydrodynamic parameters of nonlinear manoeuvring mathematical model 

Subscript 
sL -norm 1L -norm 2L -norm Lf -norm sL -norm 1L -norm 2L -norm Lf -norm 

Raw data Smoothed data 

1K c  
0.8189 0.7851 0.9036 0.8555 0.9314 0.9224 0.8848 0.8493 

2K c  1.0875 1.0899 0.9439 0.9286 1.0245 1.0240 0.9382 1.1379 

3K c  0.5050 0.5058 0.5073 0.5239 0.5125 0.5049 0.5130 1.1677 

RC c  1.0197 0.9724 0.9968 1.0811 1.0868 0.9434 0.9982 0.9978 
2
rv

X c
 0.5048 0.5112 0.5052 0.5606 0.5035 0.5075 0.5032 0.5274 

eeX c  0.5825 0.5235 0.5477 0.9796 0.5662 0.6053 0.5640 0.9464 
rrX c  1.3853 1.3080 1.3335 1.3363 1.3400 1.3126 1.2933 0.8551 

rv rX mc c�  0.5008 0.5003 0.5008 0.5025 0.5004 0.5003 0.5008 0.5015 

rrvvX c  0.5022 0.5040 0.5028 0.5366 0.5031 0.5050 0.5013 0.5038 

0Y c  0.8950 1.0583 0.9609 0.9513 0.9246 0.9508 0.9280 0.8879 

rvY c  0.5036 0.5132 0.5066 0.5280 0.5060 0.5102 0.5100 0.5089 

YG
c  0.5081 0.5118 0.5092 0.5122 0.5081 0.5055 0.5018 0.5073 

rY c  0.5178 0.5170 0.5256 0.5262 0.5217 0.5053 0.5157 0.5250 

rrrvY c  0.5006 0.5022 0.5019 0.5009 0.5011 0.5027 0.5036 0.5011 
eeeY c  1.1391 1.0310 1.1637 1.1185 1.0277 1.2124 0.9931 1.0040 

0N c  1.0302 1.0507 0.9962 0.5666 0.9231 1.0123 1.0418 1.1430 

rvN c  1.3377 1.3455 1.2113 1.1521 1.3984 1.1732 1.2636 1.2491 
NGc  0.5307 0.5171 0.5431 0.5352 0.5117 0.5137 0.5115 0.5357 

rN c  0.5170 0.5127 0.5097 0.5265 0.5203 0.5168 0.5102 0.5393 

rrrvN c  0.5060 0.5300 0.5143 0.5094 0.5065 0.5168 0.5080 0.5125 
eeeN c  0.8515 0.9980 1.0670 1.0187 1.1017 1.0600 1.0524 0.8764 

 
 
 
The identified parameters, which were obtained using the 
previous mentioned loss functions with the raw data, were 
used to compare the zigzag 20 20�  manoeuvring test 
firstly. In figure 14, the heading angle output was 
reproduced very well on the basis of the parameters 
identified from the raw data when all metrics were used. It 
has to be mentioned that Lf -norm metric also demonstrated 
good results, although it can’t provide reasonable 
parameters. When the identified parameters obtained from 
smoothed data were used, the heading responses were 
presented in figure 15.  In this figure, sL -norm metric 
demonstrated better reproducibility in all smoothed cases. It 
means that the filter technology for inputs is very necessary 
when implying the system identification. From the figure 
14-17, the metrics sL -norm and 1L -norm demonstrated a 
good result.   
 
In order to verify the generalization of the performance 
of the proposed parameter identification technology, a 
large rudder deflection test, the 20 20� zigzag 
manoeuvring test was also carried out, and the result will 
be compared with the yawing angle response of the 
identified nonlinear mathematical models. The results are 
presented in figures 16-17. The response history of 
yawing angle of the nonlinear manoeuvring 

mathematical model on the basis of the parameters 
identified from the raw data is presented in figure 16. As 
shown in the figures, the models can provide an accurate 
response compared with the experiment values. It also 
demonstrated that the identified mathematical model can 
be used for a large rudder deflection manoeuvring test. 
The goodness of fit criterion, 2R , is given in Table 5-6. 
The obtained parameters can provide a good prediction 
of zigzag manoeuvring response.   
 

 
 
Figure 16: The 30 30�  zigzag manoeuvring response 
reproduced on the basis of the parameters identified from 
the raw data 
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Figure 17 The 30 30�  zigzag manoeuvring response 
reproduced on the basis of the parameters identified from 
the smoothed data 
 
 
Table 5.  The 2R  goodness of fit criterion of  20 20�  
zigzag manoeuvring test 

 
sL -norm 1L -norm 2L -norm Lf -norm 

Raw data 0.9613 0.9720 0.9628 0.9532 

Smoothed 
data 

0.9650 0.9623 0.9595 0.9435 

 
 
Table 6. The 2R  goodness of fit criterion of  30 30�  
zigzag manoeuvring test 

 
sL -norm 1L -norm 2L -norm Lf -norm 

Raw data 0.9838 0.9854 0.9841 0.9776 

Smoothed 
data 

0.9842 0.9842 0.9837 0.9728 

 
 
6. CONCLUSION 
 
In this paper, system identification based on free-running 
tests has been used to estimate the hydrodynamic 
coefficients of autonomous surface ship model.  A 
guidance, control and navigation system have been 
programed in the LabVIEW platform and implemented 
on a scaled chemical tanker ship model. Manoeuvring 
tests proposed by the Interim Standards for Ship 
Manoeuvrability (IMO) were carried out and the results 
were used for training and validation purpose. In order to 
make the modelling more flexible and physically more 
realistic, the classical nonlinear Abkowitz model has 
been modified by including the rotation speed of the 
propeller and the flow velocity over rudder. The flow 
velocity over rudder was used to nondimensionalize the 
forces and moment induced by rudder deflection, due to 
the complicated fluid region around the rudder. An 
offline parameter identification algorithm has been 
programmed, and different loss functions have been 
defined for minimising the distance between target 
systems output and the mathematical model output. The 
evaluation of the stability and generalization was also 
included in the loss function. A global optimization 
algorithm has been implied to minimise the loss 
functions and search the optimum parameters. In order to 

reduce the effect of noise, a low pass filtering technology 
has been applied to smooth the data. The adjusted 
coefficients of the hydrodynamic parameters of nonlinear 
manoeuvring mathematical model were obtained using 
the different metrics, and then used for reproducing the 
zigzag manoeuvring response.  
 
The 20 20�  and 30 30� zigzag manoeuvring tests, 
which were not used for training purposes, were used for 
validation.  By comparing the predicted response with 
experiment, the metric of Lf - norm cannot provide 
reasonable parameters, it is because the infinity norm 
does not provide sufficient information. The metrics sL -
norm and 1L -norm usually demonstrated a good result, 
and have a good agreement with the experiment. The 
system identification technology proposed in this paper is 
quite encouraging for manoeuvring modelling of surface 
ship base on free-running model tests. The comparison 
with experiment also demonstrated the validity of the 
proposed identification technology.   
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40. SÖDERSTRÖM, T., and STOICA, P. G. System 
identification. Prentice Hall. (1989) 

41. SUTULO, S., and GUEDES SOARES, C. An 
algorithm for offline identification of ship 
manoeuvring mathematical models from free-
running tests. Ocean Engineering, 79, 10–25. 
(2014) 

42. SUTULO, S., and GUEDES SOARES, C. 
Offline system identification of ship 
manoeuvring mathematical models with a 
global optimization algorithm. In MARSIM 
2015 (pp. 8–11). Newcastle University, United 
Kingdom. (2015)  

43. TAFNER, R., REICHHARTINGER, M. and 
HORN, M., Robust online roll dynamics 
identification of a vehicle using sliding mode 
concepts. Control Engineering Practice, 29, 
pp.235-246.( 2014) 

44. TANG, S., ZHENG, Z., QIAN, S. and ZHAO, 
X., Nonlinear system identification of a small-
scale unmanned helicopter. Control Engineering 
Practice, 25, pp.1-15. (2014) 

45. XU, H., & GUEDES SOARES, C. An optimized 
path following algorithm for a surface ship 
model. Guedes Soares, C., Dejhalla, R. and 
Pavletiæ, D. (Eds), Towards Green Marine 
Technology and Transport, Taylor & Francis 
Group 151–158. (2015)  

46. XU, H., and GUEDES SOARES, C. Vector field 
path following for surface marine vessel and 
parameter identification based on LS-SVM. 
Ocean Engineering, 113, 151–161. (2016a) 

47. XU, H., and GUEDES SOARES, C. Waypoint-
following for a marine surface ship model based 
on vector field guidance law. In (Eds.) Guedes 
Soares, C. and Santos T. A. (Ed.), Maritime 
Technology and Engineering 3 London, UK: 
Taylor & Francis Group. pp. 409–418). (2016b) 

48. YOON, H. K., and RHEE, K. P. Identification 
of hydrodynamic coefficients in ship 
maneuvering equations of motion by 
Estimation-Before-Modeling technique. Ocean 
Engineering, 30(18), 2379–2404. (2003) 

49. ZHANG, X. G., and ZOU, Z. J. Identification of 
Abkowitz model for ship manoeuvring motion 
using ε-support vector regression. Journal of 
Hydrodynamics, 23(3), 353–360. (2011) 

  


