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The paper addresses the issue of actuality in ship 
hydrodynamics: the estimation of ship’s linear and angular 
oscillations with respect to the state of equilibrium. The 
prediction of  seakeeping properties raises a question about 
a relative importance of viscous and free-surface effects 
(Quérard et al. 2009), yet this question remains of more 
general importance in fluid mechanics, since it is related to 
the dynamic characteristics of objects/bodies immersed in a 
liquid. From a theoretical standpoint, the problem refers to 
flows with moving boundaries. It can also be considered in 
terms of fluid-structure interaction (FSI), however, not 
necessarily linked with the computation of the body 
deformation and stresses due to the flow. As the Author 
correctly notices, the computational solution to this problem 
in its full setup reveals to be extremely costly due to the 3D 
and unsteady nature of the fluid motion under turbulent flow 
conditions at nominally high Reynolds numbers (Re~109, as 
stated by the Author in Tab. 1) in presence of the free 
surface. For this reason, the full solution, or direct numerical 
simulation (DNS), of the governing Navier-Stokes (N-S) 
equations at these Re will remain unfeasible in the 
foreseeable future; see, e.g., Pozorski (2017) for an 
estimation of the DNS capability in simple wall-bounded 
turbulent flows. The situation gets even worse in ship 
hydrodynamics when a DNS of fluid flow would need to be 
coupled to the dynamics of the rigid body (of complex 
geometry, usually).  
 
When the statistical approach to turbulent flow 
computation is adopted in terms of the Reynolds-
averaged Navier-Stokes (RANS) closure, the mean 
hydrodynamic fields of velocity and pressure remain 
fully three-dimensional and time-dependent. Therefore, 
even a RANS computation of flow past a 3D hull is still 
quite costly, see Quérard et al. (2009) and references 
therein. As pointed out by those Authors, simpler 
methods based on the so-called strip theory are still of 
interest. In this theory, the 2D cross-sections (strips) of 
the hull are considered w.r.t. the ship’s longitudinal axis. 
To describe the dynamics of such  a section, the degrees 
of freedom correspond to rotational oscillations (roll) and 
to translational ones, both vertical (heave) and horizontal 
(sway). According to the strip theory, the governing 
equations to predict the seakeeping response in waves 

rely on a suitable estimation of the sectional added mass 
and viscous damping, see Eqs. (16). These two-
dimensional hydrodynamic coefficients have often been 
determined using the assumption of potential flow. 
Quérard et al. (2009) adopted the RANS approach and a 
CFD commercial solver to obtain the added mass and 
damping coefficients in turbulent flow conditions. 
 
Still staying on the grounds of strip theory, the IJME paper 
by M. Pawłowski discusses an important question about 
the role of viscosity when it comes to the estimation of the 
sectional coefficients for the added mass and damping. In 
the first part of the work, some concepts of turbulent flow 
modelling are revisited and discussed. For the sake of 
clarity and correct statement of these concepts, a number 
of comments to this part are due. First, the N-S equations 
are formulated for a compressible flow of the Newtonian 
fluid, with the νgrad(divV)/3 term present on the RHS of 
Eq. (2); there, ν is the kinematic viscosity coefficient. Such 
a general form is fine, provided that one keeps in mind a 
natural consequence of the compressibility assumption, 
which is the variability of the fluid density ρ and the 
presence of density fluctuations ρ’ in turbulent flows. 
Therefore, a rigorous derivation of the Reynolds-averaged 
momentum equation will give rise to a number of 
additional terms involving correlations of V’ and p’ with 
ρ’. Alternatively, the density-weighted (or Favre) 
averaging is most often applied, leading to a simpler form 
of the averaged equations. Since the problem considered in 
the paper basically refers to an incompressible flow, then 
the simplest way to keep the equations to their intended 
physical meaning would be to write Eq. (2) without the 
grad(divV) right from the outset term for the sake of 
consistency. Another point that might come out unclear 
from the reading of the paper is the notion of linear 
equations. As far as I understand, the linearity is important 
when constructing the system of (and fitting the 
coefficients to) equations of sectional dynamics, Eqs. (16). 
Yet, the linearised N-S equation as written in the paper, 
Eq.(5), means that the Stokes flow dynamics is considered 
and the inertia forces are negligible with respect to the 
viscous forces. In other words, the viscous time scale L2/ν 
is much shorter than the convective time scale L/V0 and the 
Reynolds number (which can be expressed as the ratio of 
the two scales) is very small. Under such conditions, the 
flow will not become turbulent. 
 
Another point that needs to be clarified here refers to the 
nature of the turbulent (Reynolds) stress tensor. As the 
Author recalls, this symmetric, second-rank tensor 
consists of six independent components and it can be 
represented by three diagonal elements, see the matrix 
expressions below Eq. (8), in the coordinate system 
determined by the eigenvectors of this tensor. Yet, to do 
so, a general transformation needs to be found at each 
point of the flow. It is given by the rotation matrix with 
three independent angles of rotation (the Euler angles). 
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Consequently, to fully describe the Reynolds stress 
tensor R, six quantities (and not just three) are needed 
anyway. The Author puts forward an assumption that the 
Reynolds stress tensor and the mean strain rate tensor S 
are aligned. Rigorously, on the grounds of the 
Boussinesq hypothesis, which makes the basis of the 
eddy-viscosity type closures in RANS, such an 
assumption should hold for the stress anisotropy tensor 
a=R-(2k/3)I. In other words, a=−2νtS, see for example 
Pope (2000), where νt is the turbulent (eddy) viscosity 
coefficient. Yet, an important caveat is in order. It is well 
known that the Boussinesq hypothesis is not true in 
general, in particular in complex flows, in the separation 
regions, etc. (BTW: the Prandtl mixing length hypothesis 
does not hold there, either). So, the assumption about the 
main axes of a and S being identical is also flawed for 
the same reason.  
 
One more remark seems appropriate at this point. 
The turbulent viscosity ν t used in RANS may be 
assessed a priori when complete information on the 
turbulent stresses and the mean velocity gradients is 
available. This is possible in DNS; a comprehensive 
study of the turbulent boundary layer (TBL), relevant 
for the present paper, was performed in a seminal 
paper by Spalart (1988). Based on this result, the 
profile of νt across the TBL can be determined, see 
Figure. 7.30 in the monograph by Pope (2000). This 
corresponds to the Author’s intuition, with zero value 
of turbulent viscosity at the wall, a maximum 
somewhere in the BL, and then again a zero 
asymptotic value outside of the layer. Yet, in my 
opinion the statement about the computation of ν t  
proportional to k2/ε as being “clearly ill conditioned” 
has to be taken with caution. First, depending on the 
inflow (or free-stream) levels of the turbulence 
kinetic energy k and its dissipation rate ε, their 
values, albeit small, may not be strictly zero outside 
the TBL; then, ε does not vanish at the wall either. 
Second, outside the boundary layer, the mean 
velocity gradients are usually much smaller than the 
mean shear within the TBL and so will be the 
stresses R computed with the Boussinesq hypothesis. 
As the last remark to this part, it is appropriate to 
note that unsteady flows may also be dealt with in 
the statistical approach, called unsteady RANS 
(URANS). It reveals to be useful in some situations, 
in particular when the non-stationarity in the mean 
flow field is due to a regular, large-scale process, 
such as (quasi-periodic) vortex shedding in flow past 
a bluff body, or when an external forcing is present, 
as in the so-called synthetic jets or in the unsteady 
TBL around the hull due to incoming surface waves 
(e.g., in the head sea conditions). 
 
Next, the paper discusses a number of analytical 
solutions of viscous flow problems, such as the 
oscillating plane, the oscillating and rotating cylinder, 
and a general rigid body. Thanks to the assumptions 
about the flow kinematics, true at small enough Re, these 

problems become linear and essentially 1D (the relevant 
spatial coordinate is wall-normal and goes across the BL-
type region), allowing for an analytical, time-dependent 
solution. The respective solutions yield the estimate of 
the so-called penetration depth δ which is, basically, the 
viscous length scale. The Author nicely identifies the 
unsteady boundary layer thickness in the roll motion of 
the hull with δ to have an estimation of the damping 
coefficient for individual sections. He estimates the 
boundary layer thickness in oscillating flows (or forming 
on oscillating bodies) as considerably smaller than the 
BL forming on a respective body (on a ship hull) in a 
steady forward motion. The presented analyses are 
certainly of relevance for the roll motion. Yet, is it 
justified to separate the two cases (when the seakeeping 
features are to be studied at the cruise speed, for 
instance)? Also, as argued before, the conclusion about 
the N-S solvers to be used without any turbulent stresses 
does not seem to be general or well substantiated, at least 
for sufficiently large Re that may occur in the finite-
amplitude oscillations. It seems that the account for the 
Reynolds stresses will make no harm, as they will appear 
as negligible in the laminar flow regions, after all. The 
computational overhead due to the RANS solver (rather 
than the one for unsteady 3D laminar flow) does not 
seem to be excessive. Finally, the discussion offered by 
the Author shows the main mechanisms how the 
viscosity acts (and where it should be accounted for) 
while estimating the hydrodynamic coefficients in 
seekeeping analyses.  
 
 
 
AUTHORS’ RESPONSE  
 
The Author is grateful to Professor Jacek Pozorski for 
detailed discussion of the paper. It provides a good 
opportunity for some clarifications and elucidation. The 
subject of turbulence is not easy, and often misunderstood. 
 
Firstly, it is worth recalling the reasons for turbulence. The 
sufficient condition for this phenomenon is vorticity, which 
occurs in the vicinity of the wall, whereas the necessary 
condition is that flow is fast enough, i.e. the Reynolds 
number for given problem is higher than the critical one. 
 
Hence, the idea of turbulence does not apply to inviscid 
flows, as they are irrotational by nature. Fluid particles in 
such flows perform a translational motion, without 
rotation. Such flows have a potential I that defines the 
velocity field v gradI . The potential fulfils the Laplace 
equation 0'I   along with boundary conditions. As this 
problem is linear, it leaves no room for turbulence. Apart 
from that, its solutions are unique, which follows directly 
from the properties of the Neumann problem, well known 
in theoretical physics, in which the values of the normal 
derivatives of the potential (normal components of 
velocity) are specified at the boundaries of the domain. 
There is no such a theorem for viscous flows. Solutions of 
the N–S equations can be twofold: laminar or turbulent. 
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It is worth noting, however that viscous flows can also be 
potential (irrotational) provided that there are no solid 
walls, as in the case of surface waves, e.g. ocean waves, 
or other sources of vorticity, as in the case of baroclinic 
flows. In other words, no walls, no vorticity in barotropic 
flows, which means potential flows, free of turbulence, 
see equation (1) in the paper. In the case of atmospheric 
winds, turbulence occurs, the so-called free turbulence, 
when masses of the air have different velocities, rubbing 
against each other, and/or they are baroclinic. The latter 
comes from works of Vilhelm Bjerknes (1862–1951), a 
founder of modern meteorology and weather forecasting. 
 
Hence, turbulence is associated with vorticity. By the way, 
when Newton established his formulation for the shear 
stress W  Pw v/ w y, he did not realise that flow near the 
wall was rotational – this notion did not exist that time. 
Even nowadays, hardly anyone links the slipping of fluid 
films against each other with vorticity. Everybody links 
this phenomenon with the shear stress, but not with 
vorticity. 
 
When the Reynolds number exceeds the critical one, the 
regular vorticity lines (rings – in flow through a pipeline 
or horseshoe lines – in flow past a flat plate) are no longer 
flat. They become irregular in shape, creating 3-D 
velocity pulsations, in otherwise stationary flow, that are 
next converted into the additional apparent stress tensor 
�ρR, see equation (11) in the paper. For this reason, 
turbulence is always 3-D. In other words, 2-D 
turbulence does not exist. The link between vorticity 
and velocity pulsations opens room for theoretical 
analysis of turbulence. 
 
Going back to the Navier–Stokes equation – equation (2) 
in the paper – the Laplacian of velocity 'v is the source of 
velocity pulsations v' that are converted to the tensor of 
Reynolds stresses �ρR by the non-linear convective 
acceleration (v ��)v. For potential flows the source of 
velocity pulsations vanishes ('v { 0), therefore the 
convective term (v ��)v has nothing to convert into the 
turbulent stress tensor (�UR { �). Potential flows are 
therefore never turbulent. 
 
For the sake of generality, equation (2) in the paper is 
written for a compressible flow. Professor Pozorski is 
right – in such a case the said equation should by 
complemented by a number of additional terms, providing 
correlations between v', p' and U'. Bearing in mind that the 
paper refers basically to incompressible flows (divv = 0), 
the simplest way to keep the equations to their intended 
meaning is to neglect all the terms containing divv, as e.g. 
graddivv. 
 
Another point worth discussing is the notion of linearity 
of the equations of ship motion in waves. If the said 
equations are linear, the response of the ship in realistic 
sea conditions, subjected to irregular waves, can be 
obtained with the help of superposition and spectral 

analysis. In particular, equations (16) are linear, if the 
hydrodynamic coefficients aii, bii, cii (for i   �, �, and �) 
are independent of the amplitude of forced oscillations. 
This is the case, if equations for fluid motion are linear. 
Though roll is prone to viscosity and non-linear effects, 
evidence shows (Salvesen et al., 1970) that the prediction 
of ship motions based on potential flow, with the omission 
of viscosity, provides satisfactory results. 
 
Professor Pozorski is right saying that the Boussinesq 
hypothesis does not always hold, in particular in complex 
flows, in separation regions, for flows over curved 
surfaces, etc. Notwithstanding the above, the 
Boussinesq hypothesis is widely applied, without any 
criticism, as if it were universal. Nonetheless, it is worth 
knowing that in cases where it does hold, the net 
Reynolds stress tensor (�UR + pt I) and net mean strain 
rate tensor of deformation (Sd � ⅓Idivv

—) are aligned, and 
related to each other by equation (13) in the paper. The 
above statement is difficult to find in literature. In such a 
case, turbulence is entirely described by one quantity – 
the coefficient of turbulent viscosity Qt, found with the 
help of any turbulent model. 
 
It would be a good practice that papers dealing with 
turbulent boundary layers show the run of turbulent 
viscosity Qt across the boundary layer. This quantity 
should vanish on the wall and on the outer surface of the 
layer. Regrettably, it is difficult to find information in 
literature on this topic. Figure 1, taken from the 
monograph of Pope (2000), one of the few shows how 
turbulent viscosity Qt varies across a boundary layer. As 
can be seen, it does not vanish on the outer edge of the 
layer, as it should be expected. 

 
Figure 1. Turbulent viscosity and mixing length across a 
turbulent boundary layer (Spalart, 1988) 
 
A much better profile of turbulent viscosity across the 
boundary layer on a flat plate can be found in the paper 
of Li at al. (2016). As seen in Figure 2, taken from this 
reference, the Reynolds shear stress <u'v'> clearly 
vanishes at the extremities of the boundary layer. The 
resulting turbulent viscosity Qt is shown in Figure 3. It 
vanishes at the extremities of the boundary layer, 
reaching a maximum value inside the layer. It is worth 
noting that this quantity is much larger than the kinematic 
coefficient of viscosity Q. 
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Figure 2. Turbulent shear stress �u'v'!� versus distance 
from wall y� in flow past a flat plate (Li at al., 2016) 
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Figure 3. Turbulent viscosity across a turbulent boundary 
layer on a flat plate (Li at al., 2016) 
 
The Author’s paper is mainly concerned with 
hydrodynamic forces acting on oscillating bodies. There 
is no problem to calculate them for potential flows. 
However, many researchers are concerned with the 
omission of viscosity, which means for them the omission 
of turbulence. The Author’s opinion is that turbulence has 
little chance to develop on oscillating bodies. One of the 
symptoms proving this statement is a much thinner 
boundary layer, by about one order, than for stationary 
flows. Many researches do apply turbulence models, 
developed for steady flows, for unsteady flows, which is 
unreasonable. One could think that a neat remedy in this 
situation is the application of the unsteady RANS 
(URANS), but this can be tricky, if the time for 
averaging is improperly suited to oscillations. As 
discussed by McDonough (2007), the unsteady RANS 
methods are problematic. 
 
We have to tell loudly that a good prediction of turbulence 
is not an easy task. To be not ungrounded, consider a well-
known case of flow through a pipeline. In such a case, only 
one Reynolds stress component R rz { Wt has to be estimated 
with the help of the mixing-length hypothesis: 
 
�U<v'rv'z> = Ulm

�(du/dy)�, 
 
where du/dy is the derivative of the smoothed velocity 
profile with respect to the distance y   R � r from the inner 
surface of the pipeline. According to Prandtl, the mixing 
length is given by the equation:  
 
lm/R   ���� � ����(r/R)� – ����(r/R)�, 

dependent on the relative radius r/R. On the other hand, 
the turbulent shear stress is given by the equation: Wt   
Pt(du/dy). Equating the two equations for the shear stress 
yields the equation for the kinematic turbulent viscosity: 
Qt   lm�(du/dy). Assuming for the velocity profile u   u� 
� (y/R)���, the gradient of velocity equals: 
 
du/dy   ���(u�/R)(y/R)����,  
 
where u� is the maximum velocity at the axis of a pipeline. 
A graph of turbulent viscosity Qt is shown in Figure 4, 
while for turbulent shear stress – in Figure 5.  
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Figure 4. Run of turbulent viscosity vt in pipeline 
 
The quantity Qt /umD in Figure 4 plays the role of the 
inverse of a turbulent Reynolds number Ret, where um { 
u� is the mean velocity of flow, and D is the diameter of a 
pipe. For instance, for Re   ���, �/Re   ����, it is easy to 
deduce from Figure 4 that the turbulent viscosity Qt is about 
�� times larger than the molecular viscosity Q. Regarding 
the run of the turbulent viscosity Qt it seems to be 
faulty, as it should vanish at the axis of a pipeline, for r   

�, where the vorticity and gradient of velocity vanish. 
 
Of the key meaning for the analysis of flow in a boundary 
layer is the knowledge of the shear stress on the wall 
Ww. For flow through a pipe this quantity results from 
the equation: 'p¼SD�   SDlWw, where 'p   O(l/D)½Uu�� 
is the drop of pressure along the pipeline of length l, and O 
is the friction factor, dependent on the Reynolds number. 
The equation yields Ww   ⅛OUu��. Substituting for Ww   

UuW
�, where uW is the friction velocity, useful in 

applications, we get uW   (⅛O)���u�. 
 
The maximum flow velocity u  is given by the equation: 
u�   8.74uWReW���, where ReW   uW R/Q   ¼(½O)���Re, and 
Re   u�D/Q is the Reynolds number. Substituting for uW, 
the following is obtained: u�   u��8.74(½)����O���Re���. 
Substituting now the Blasius formulation for the friction 
factor O   0.3164/Re���, we get eventually that u�   

1.25u�, independent of the Reynolds number. 
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Figure 5. Turbulent sheer stress Wt in pipeline – solid line, 
dashed line – total 
 
 
Now, the nondimensional shear stress on the wall equals: 
Ww/Uu��   ⅛O( u�/u�)�   0.08O, or Ww/Uu��  0.125O. Inside 
the pipe, the shear stress varies linearly: W   Wwr/R, as seen 
in Figure 5 (dashed line for Re   ���, with Ww/Uu��   
0.00396). The shear stress W varies linearly inside a 
pipeline both in laminar and turbulent flows. 
 
As can be seen in Figure 5, there is amazingly large 
discrepancy between the real and calculated values of 
turbulent shear stresses inside the pipeline. The former is 
dependent on the Reynolds number, while the latter – not. 
Such a situation indicates a conceptual error. The mixing 
length lm should depend simply on the Reynolds number 
for any viscous flow, not only for flow through a pipe. 
 
Regarding the application of CFD, it is equally well 
applicable to laminar and turbulent flows. Calculations 
for turbulent flows are, however, much more complex 
and time consuming, as there is need to solve more 
differential equations, needed for definition of the tensor 
of Reynolds stresses. 
 
Figure 1 in the paper shows a comparison between 
experimental results of the hydrodynamic coefficients for 
roll with inviscid (potential) theory. The differences are 
modest even for extreme cases, such as a rectangular 
section. If we apply the N–S equations or RANS 
equations the improvement can be limited by the nature 
of things. The problem is that nearly everybody applies 
RANS equations instead of the N–S ones, because of the 
widely available commercial codes. Meanwhile, results 
obtained by the RANS equations are not sensational and 
dubious, which can be seen in literature, e.g. in the two 
references: Quérard et al. (2009) and Salui et al. (2000), 
cited in the paper. It should be obvious that applying 
steady turbulent models to unsteady cases cannot 
guarantee reliable results. But even if we apply the 
same turbulent models to the same case of steady flow as 
other researches it does not guarantee that we get similar 
results. As shown by McDonough (2007) (page 93, Figure 
2.3), results obtained from various commercial flow 
codes are amazingly different. For potential flows such a 

situation is impossible – results obtained from different 
sources are practically the same. 
 
The three analytical solutions for oscillating bodies, 
discussed in the paper, could be used as reference for 
validation of the commercial codes, assuming no 
Reynolds stresses. 
 
The main purpose of the paper is to show that in the case 
of oscillating bodies resorting to turbulent models is 
unnecessary and conceptually wrong, due to the thin 
boundary layer and the lack of well developed turbulent 
models for unsteady flows. To some extent the situation 
resembles the flow around a wing –aerodynamic forces are 
found without resorting to turbulence. Note that in section 
5.4 reference is made to Landau (2009), a Nobel Prize 
winner in physics for 1962. 
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