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SUMMARY 
 
Application of strip theory for the prediction of ship motions in waves relies on sectional hydrodynamic coefficients; i.e. 
the added mass and damping coefficients. These coefficients apply to linearised problems and are normally computed for 
inviscid fluids. It is possible to account for viscosity but this cannot be done by the RANS equations, as in linear problems 
there is no room for turbulence. The hydrodynamic coefficients can include the effect of viscosity but this can be done 
rightly through the classic Navier–Stokes equations for laminar (non-turbulent) flows. For solving these equations 
commercial RANS software can be used, assuming no Reynolds stresses. 
 
 
NOMENCLATURE 
 
� sectional area 
A amplitude of oscillations 
a sectional added mass 
B sectional breadth of body 
b sectional damping coefficient 
c sectional coefficient of stiffness 
h distance from body surface 
I unit matrix 
k   (Z��Q)��� – wave number 
k'   (Z�Q)���   ����k 
K   k' �i, constant 
k   �S/O – wave number of regular wave 
k kinetic energy of turbulence 
k unit vector of the z-axis 
l characteristic length of body 
p pressure 
P stress tensor 
P
—

 stress tensor for smoothed motion 
r radius, distance from an axis 
R tensor of turbulent fluctuations 
Re Reynolds number 
RANS Reynolds Averaged Navier–Stokes equations 
S tensor of velocity 
Sd tensor of deformations 
T period of oscillations 
u forward speed of ship 
u� amplitude of velocity of oscillations 
v velocity field 
E incident angle between direction of wave  

propagation and ship speed 
G�   �/k   (�Q/Z)��� – skin depth (depth of  

penetration)�
I velocity potential 
O wave length 
Pt� dynamic coefficient of turbulent viscosity 
P� dynamic coefficient of viscosity 
Q�   P�U – kinematic coefficient of viscosity 
U density 
U' k'r   ����kr – module of .r 
U�   Kr – nondimensional radius (complex) 
Z�   �S/T – circular frequency of oscillations 
Z� circular frequency of regular wave 

1. INTRODUCTION 
 
A question arises if viscosity should be accounted for in 
ship's dynamics, particularly in seakeeping. When analysing 
a non-stationary ship's motion two hydrodynamic 
coefficients are used: the added mass and damping 
coefficients. Strictly speaking, they are applicable only to 
linearised equations of motion. In the case of inviscid 
fluids�, the field of velocity around the body has a potential 
I, fulfilling the Laplace equation 'I   � along with 
boundary conditions. The said equation is linear, leaving no 
room for turbulence. In other words, such a velocity field is 
always smooth, both for viscous and inviscid fluids, clearly 
observed outside the boundary layer, where flow is 
potential, despite the viscosity of water. To show this, it is 
sufficient to observe that the Laplacian of velocity vanishes 
in potential flow, when v   gradI. Namely: 
 

'v   'gradI   grad'I   �. 
 
We could change here the sequence of differentiation and 
account for the fact that the potential fulfils the Laplace 
equation 'I   �. Hence, outside the boundary layer the 
fluid behaves, as if it was inviscid. The same conclusion 
can be obtained resorting to a useful identity: 
 

'v { graddivv – rotrotv. (1) 
 
For incompressible (divv { �) and irrotational (rotv { �) 
flows, the Laplacian of velocity vanishes. 
 
For rotational flows, the potential of velocity does not 
exist. Vorticity is due to viscosity, which comes to action 
in close vicinity of the wall, as e.g. in the boundary layer 
in a wall-bounded flow. In such a case, the governing 
equation for laminar flows, neglecting the unit mass 
force, is the Navier–Stokes equation: 
 

� � vvvvv
'Q�Q�� ���

w
w

U divgradgrad 3
11 p

t
, (2) 

 
where P and Q { P�U are the dynamic and kinematic 
coefficients of viscosity, respectively, and U is the density 
of fluid. The two terms on the left hand-side represent the 
acceleration of a particle dv/dt. This is a non-linear 
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equation of motion. The only non-linear term – the 
second one on the left hand-side – is the acceleration 
related to the convection of the particle, known as the 
convective acceleration, which is the source of 
turbulence. For linearised equations, in which the non-
linear term (v ��)v is neglected, the averaging process 
introduces no Reynolds stresses and therefore the 
linearised equations of motion remain unchanged after 
averaging. In other words, solutions to linearised N–S 
equations, despite viscosity, are still smooth. Such 
equations are closed and need no turbulence models. For 
that reason, employing turbulence models for linear 
problems, which is widely applied in literature, is 
conceptually wrong, see for instance Salui et al. (2000), 
Quérard et al. (2009), and many others. 
 
Linearised seakeeping analysis is normally based on the 
assumption of potential flow, applicable to inviscid 
fluids. Furthermore, in linear approach physical 
oscillations are replaced by virtual ones in which the 
body is assumed to be stationary, i.e. moving without 
oscillations. In such a case, motion of the fluid due to 
oscillations is depicted by the boundary condition on 
the surface of the body, crucial for the problem. That is, 
the normal component of fluid velocity on the outer 
surface of the body equals the normal component of 
velocity of the outer surface, which is such as on the 
body in real motion, completed by the boundary 
conditions on the free surface and in infinity. Fluid 
particles move (slide) along the surface of the body but 
this does not create any vorticity, as by assumption the 
fluid is inviscid. 
 
Evidence shows (Salvesen et al, 1970) that the prediction of 
ship motions based on potential flow provides satisfactory 
results, except for roll, where viscous effects are 
considerable, particularly for damping. But, even then, 
there are serious doubts, if the hydrodynamic coefficients 
should be determined resorting to turbulence. Flow 
around a rolling ship contains vorticity, particularly for V-
type and rectangular sections, but this does not mean 
necessarily that it is turbulent. 
 
To overcome this problem a number of experimental 
and numerical methods have been developed for the 
prediction of roll damping. The most known is a semi-
empirical method developed by Ikeda et al. (1978). 
The linearised-damping coefficient has been divided 
into a number of components, reflecting various 
effects. The idea of linearisation of the non-linear roll 
damping is thoroughly discussed by the author 
Pawłowski (2010). It is worth mentioning a substantial 
work on non-linear roll damping carried out by 
Spouge (1988). One common disadvantage of 
experimental methods is that the results obtained are 
limited to particular geometry of ships. To be free of 
this limitation, various numerical techniques are used 
for calculating the hydrodynamic coefficients for roll, 
such as discrete vortex method (DVM), random vortex 
method (RVM), and the Reynolds Averaged Navier–

Stokes (RANS) equations, discussed briefly below. 
Vortex methods were popular in the past, as they 
require much smaller computing power than finite 
volume collocated grid approaches, part of which are 
RANS solvers. But nowadays, with rapid advancement 
in computing, FEM became widely applied, backed-up 
by the Volume of Fluid method, used for modelling 
the free surface. They are the best means for solving 
viscous flows. They can reproduce the creation of 
vorticity in the boundary layer and vortex shedding. 
 
The hydrodynamic forces acting on the body in potential 
flows are found by integration of the dynamic pressure p, 
given by the Cauchy–Lagrange equation, over a wetted 
surface of the body in the mean position: 
 

p   �U(wI/wt � ½v�), (3) 
 
which results in the added mass m and damping coefficient 
N, both dependent on the circular frequency of forced 
oscillations Z   �S/T [rad/s], where T is the period of 
oscillations, and v   gradI. The term ½v� is usually 
neglected, as small quantity. 
 
The convective acceleration can be expressed in two ways: 
 

(v ��)v { Sv { ½gradv� � v u rotv, (4) 
 
where S { (�� v)7 is the tensor of velocity. In potential 
flows (v ��)v   ½gradv�. 
 
 
Assuming that the convective acceleration is small relative 
to other terms, it can be neglected. The non-linear 
equation of motion (2) for viscous flows reduces then to 
the linear one: 
 

vvv
'Q�Q�� 

w
w

U divgradgrad 3
11 p

t
. (5) 

 
As such, it leaves no room for turbulence provided that the 
Reynolds number for a given case of flow is less than the 
critical value, i.e. when Re � Recrit. Its solutions are smooth 
then, though not necessarily of laminar type, due to the 
complexity of flow induced by vorticity, in particular – by 
trailing vortices. Complex flows are not the same as 
turbulent. Nonetheless, the said equation is typically 
solved using various RANS solvers along with turbulence 
models, though a plain FEM would be entirely sufficient. 
 
The right-hand side of equation (5) equals to �/UDivP, where 
P   �pI � �P(Sd � ⅓Idivv) is the stress tensor, p is the 
pressure, I is the unit matrix, and Sd is the tensor of 
deformation. The stress tensor P is essential for 
calculating the stress vector pn   Pn, where n is a unit 
vector normal to given surface element.  
 
Once, the instantaneous stress tensor P is obtained by 
integrating equation (5) along with the equation of 
continuity and boundary conditions, instantaneous values of 
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the hydrodynamic forces and moments can be obtained by 
integrating the elementary forces pndS over the wetted 
surface S of the submerged body. 
 
Frequently, the pressure field p is either constant or a fun-
ction of the velocity field v. In such cases, equation (5) 
reduces to the equation of diffusion: 
 

wv /wt   Q'v, (6) 
 
well known in theoretical physics. 
 
 
2. AVERAGED NAVIER–STOKES  

EQUATIONS 
 
As we can see, the linearised Navier–Stokes equation (5) 
is capable of providing realistic solutions for the 
hydrodynamic coefficients in roll, accounting for 
viscosity. But we have to be cautious here. The above 
statement is valid for laminar flows only, when Re � 
Recrit, which is in practice the case. Otherwise, instability 
of flow (turbulence) happens due to the omitted convective 
acceleration (v ��)v. The said instability opens room for 
turbulence stresses, important for analysis of the 
boundary layer, essential for the problem of steady 
resistance of the ship, and not for seakeeping. 
 
When flow is turbulent the velocity field can be presented, 
as v   v— � v', where v— is the mean (time-averaged, smoo-
thed) component, of laminar type, and v' is the velocity 
of fluctuation (turbulent pulsation), of stochastic nature. 
Similarly, the pressure p   p— � p'. Substituting v and p to 
equation (2), after averaging the following is obtained for 
the equation of turbulent flow: 
 

� � vvvvv
'Q�Q�� ���

w
w

U divgradgrad 3
11 p

t
. (7) 

 
If divv'   �, the averaged convective acceleration equals: 
 
� � � � � �

� � � � � � , DivRvvvvvv
vvvvvv

��� c�c���� 

 c��c��� ��  (8) 

 
 
where R { (v'� v') is a dyad (tensor) of averaged 
turbulent fluctuations made up of two the very same 
vectors v'  and v', whose elements Rij   �v'iv'j! are 
averaged with respect to time: 
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where v'�, v'�, v'� are components of the velocity of 
fluctuation at any orthogonal co-ordinate system, while 

v'p, v'q, v'r are components of fluctuations in the principal 
system. For a stationary flow (in terms of smoothed 
quantities) this tensor is independent of time, but 
dependent on space point, i.e. Rij   Rij(r). Further, R is a 
symmetric tensor for which the principal co-ordinate 
system pqr can be found in which the cross-product 
elements vanish. For this reason, the tensor of turbulent 
fluctuations has three degrees of freedom (not six but 
three), i.e. three its elements are independent of the 
remaining ones. In other words, to define the tensor of 
fluctuations R it is sufficient to define the three degrees of 
freedom, e.g. the three principal values on the main 
diagonal. This opens room for modelling turbulence. 
 
The easiest case for modelling is isotropic turbulence, 
invariant under rotations, with equal principal values on the 
main diagonal, as only one quantity has to be estimated. 
However, isotropic turbulence does not occur in 
technical applications. Another easy case for modelling 
is flow through a pipeline, where only one element of 
tensor R is meaningful: R�� { Rrz. 
 
The tensor of fluctuations R has the same properties, as 
any symmetric tensor of the third order, as e.g. the stress 
tensor known from strength of materials. Hence, the sum 
of elements on the main diagonal R�� � R�� � R�� is 
independent of the orientation of the system and equals �k, 
where k is the turbulence kinetic energy (TKE). This 
quantity value is one of the three invariants of tensor R and 
the most important characteristic of turbulence. TKE 
vanishes on the surface of the body and on the outer 
surface of the boundary layer. Regarding the principal 
axes, it can be assumed they are parallel to the principal 
axes of the tensor of deformations Sd for smoothed 
velocity field v—. 
 
Elements on the main diagonal R��, R��, R�� have the mean-
ing of variance of fluctuations, whereas R��, R��, R�� have 
the meaning of covariance, representing correlation between 
fluctuating velocities.  
 
For isotropic turbulence, elements on the main diagonal 
R11   R22   R33   ⅔k are the same, the cross product terms 
R12   R13   R23   � vanish, and the principal axes are 
indefinite. The fluid has then no turbulence sheer stresses. 
For instance, if flow through a pipeline featured isotropic 
turbulence, the velocity profile would be the same, as 
for laminar flow, which is contradictory to reality. 
 
Substituting formulation (8) to equation (7), the following is 
obtained for the equation of motion for a turbulent flow: 
 

� �

,Div  divgradgrad Rvv

vvv

�'Q�Q��

 ���
w
w

U 3
11 p

t  (9) 

 
known as the RANS equations, where a bar above the 
notation denotes a smoothed (averaged) quantity. The 
first three terms on the right-hand side equal to ��UDivP

—
, 
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where P
—

   � p—I � �P(Sd � ⅓Idivv—) is the stress tensor for 
smoothed motion, p—  and Sd is the pressure and tensor of 
deformation for smoothed velocity field, respectively. 
With this notation, equation (9) can be written as: 
 

� �RPv
U� U Div1

dt
d , (10) 

 
where P

—
 � UR   �(p— � ⅔Pdivv—)I � �PSd � UR, and 
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The tensor��UR is the additional apparent stress tensor, 
owing to the fluctuating velocity field, called the turbulent 
stress tensor, or the tensor of Reynolds stresses. 
 
The pressure terms on the main diagonal are negative, while 
the tangential terms must have the same sign, as correspon-
ding elements of the tensor of deformation for smoothed 
velocity field Sd, which follows from their physical 
meaning. By the very nature of things, turbulence 
increases the absolute value of all the stresses. 
 
The divergence of the tensor of fluctuations R is directly 
connected to vorticity, hidden in the RANS equations. This 
is clearly seen if one resorts to equation (4): 
 

DivR   (v' � �)v'  { ½grad ¢v' �² � ¢v'u rotv' ², (12) 
 
where ¢v' �²   R11 � R22 � R33   �k. Equation (12) shows 
the importance of vorticity in generation of the Reynolds 
stresses. These stresses require relating them to 
characteristics of the averaged velocity field to close the 
RANS equation for solving, which has led to the 
creation of many turbulence models. 
 
There are generally two types of turbulence models: 
algebraic and Reynolds-stress models. Models of the first 
group (k�H, k�Z) are very popular. They resort to the 
idea of turbulent viscosity, introduced by Boussinesq 
in 1877, shortly discussed below. 
 
The Reynolds stress tensor can be presented as: 

�
�UR   �ptI � (�UR � ptI), 

 
where pt   ⅔Uk is the mean turbulent pressure. It is 
assumed that the tensor in parentheses is proportional to 
the net tensor of deformation in smoothed flow, i.e.: 
 

(�UR � ptI)   �Pt(Sd � ⅓Idivv—), (13) 
 

 
where Pt is the so-called (dynamic coefficient of) turbulent 
viscosity, termed also the eddy viscosity. Equation (13) is 

strict, if the principal directions of the two tensors are the 
same, which is true in the case of straight-linear flows. The 
whole stress tensor takes then the form: 
 

P
—

 � UR   �[  p— � pt  � ⅔(P � Pt)divv—] I �  
� (P � Pt)�Sd. 

(14) 

 
Velocity field is defined by equation (10) in which the 
divergence of the whole stress tensor is given by the 
following formulation: 
 

Div(P � UR)   �grad (p— � pt) � (P � Pt)' v— � 
� ⅓(P � Pt)graddiv  v— � ⅔div  v—gradPt � �gradPt Sd. (15) 

 
The above equation requires some comments. Firstly, the 
Reynolds stress tensor �UR and the tensor (�UR � ptI) 
yield the same sheer stresses. Secondly, in close vicinity of 
the surface of the body the turbulent pressure pt   ⅔Uk 
varies mainly in a plane normal to the average velocity v—. 
Therefore, for the sake of simplicity the longitudinal 
component of gradpt (along v—) can be neglected. A good 
example is flow through a boundary layer or a pipeline, 
where the longitudinal component of the gradpt is ignored. 
The rejection of pt does not affect the sheer stresses. 
 
TKE and turbulent viscosity vanish on surface of the body 
and outside the boundary layer. Equation (15) implies that 
a turbulent flow can be viewed as the laminar one with 
a varying viscosity. The latter depends on the Reynolds 
number and distance from the surface of the body, with 
a maximum value somewhere inside the boundary layer. 
However, none of the publications available in literature, 
including the two mentioned earlier, shows how turbulent 
viscosity varies across the boundary layer or how its 
thickness varies along the body. 
 
In the k�H model the kinematic coefficient of turbulent 
viscosity Qt { Pt/U is approximated by Qt   ����k�/H, where 
k is the TKE and H is the rate of dissipation of TKE. The 
model comprises as well two PDE (transport equations) 
for k and H. The equation for Qt is clearly ill conditioned on 
extremes of the boundary layer, as k and H vanish. 
Therefore k�H models have generally poor performance 
in realistic flow situations, discussed in detail by 
McDonough (2007). Somewhat better results provide 
Reynolds stress models in which transport equations are 
derived for elements Rij, but they are expensive in terms of 
computational time. Still, a complete description of 
turbulence remains one of the unsolved problems in 
classical physics. 
 
Turbulence models have been developed mainly for 
stationary flows within the boundary layer. Stationary – 
in terms of smoothed quantities. There are doubts if 
turbulence exists at all outside the body (in the wake), 
behind the separation point. These doubts are due to 
decay of the normal derivative of velocity at the 
separation point and, what goes with it, the vanishing of 
turbulent stresses just at this point. This follows 
immediately from Prandtl's mixing-length hypothesis. 
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No turbulence models exist for non-stationary flows, and 
oscillatory motions in particular. Further, these models 
would have to be time dependent, which is not feasible. 
Presumably, all models have been developed and calibrated 
for stationary flows. Use of any turbulence model for 
oscillating bodies is therefore strongly speculative, and of 
little real merit. 
 
 
3. HYDRODYNAMIC COEFFICIENTS 
 
The idea of the hydrodynamic coefficients, i.e. the added 
mass and damping coefficients is solely applicable to linear 
problems, in which the body hardly moves, if at all. In such 
circumstances there is no room for developing turbulence. 
Hence, it can be assumed that there are no Reynolds stresses 
at all, which reduces RANS equation (9) to regular N–S 
equations (2). Hence, the same solver can be used for 
solving both the N–S and RANS equations, e.g. commercial 
RANS solvers ANSYSCFX10.0, COMET, CFDSHIP-
IOWA, etc., assuming no Reynolds stresses. 
 
In non-linear harmonic oscillations of finite amplitude in 
calm water the hydrodynamic coefficients are not constant 
in respect to time and, apart from that, they are dependent 
on the amplitude of oscillations. Consequently, they have 
to be averaged over time. 
 
In linear problems the body is stationary, performing no 
oscillations. Its motion is depicted by the kinematic 
boundary conditions. Though it is acceptable to assume 
that the body physically oscillates calculations become 
cumbersome and results less accurate. 
 
In the case the body physically oscillates, equations for 
the hydrodynamic sectional forces are as follows: 
 
sway: )(2222 tFybya y �� , 
heave: )(333333 tFzczbza z ��� , 
roll: )(444444 tMcba x D�D�D� , 

(16) 

 
 
where in general a is the added mass (in kg/m – for a�� 
and a��, in kgm – for a��), b is the damping coefficient (in 
kg/sm – for N�� and N��, and in kgm/s – for N��), and c is 
the coefficient of stiffness, all per unit length. For heave, 
c��   BUg [N/m�], where B is breadth of the body at the 
waterline. For roll, c��   Ug�GM [N], where � is the 
sectional underwater area, and GM is the height of the 
metacentre above the waterline (the origin G is normally 
taken at the centreline of the waterline) .The right hand-
sides represent the hydrodynamic forces, obtained by 
measurements or by integration of the pressure p and 
tangential stresses W over the wetted surface of the body. 
 
In the case of virtual oscillations, the hydrostatic terms 
vanish, as z   D   �. The hydrodynamic forces are 
obtained by integrating the linearized pressure over the 
wetted surface of the body, the same as in the mean 

position of the oscillating body (Faltinsen, 1990; 
Salvesen et al., 1970). 
 
The main difficulty is to extract from the whole dynamic 
force, the time dependent harmonic part, which should be 
resolved next into the inertial and damping components. 
 
The hydrodynamic forces on the right hand sides of 
equations (16), i.e. Fy(t), Fz(t), Mx(t) are provided 
measurements or by numerical calculations per unit length 
as time histories. They are calculated for forced harmonic 
oscillations in calm water for y, z, and D, of general form 
AsinZt, with given amplitude A and circular frequency Z. 
 
Applying Fourier analysis to equations (16), after 
performing simple mathematics, we get in general the 
following expressions for the sectional added mass and 
damping coefficients: 
 

� �³
�

Z
SZ

�
Z

 
Tt

t
dtttF

A
ca sin1

2
, (17) 

  

� �³
�

Z
S

 
Tt

t
dtttF

A
b cos1 , (18) 

 
where T   �S/Z is the period of oscillations, A is the 
amplitude of forced oscillations, and F(t) stands for the 
time varying hydrodynamic force or moment for given 
circular frequency Z and amplitude A. These forces 
deviate from harmonic runs, if the equations of motion 
are non-linear. The coefficient of stiffness c in equation 
(17) is treated as known quantity. 
 
 
4. THE EFFECT OF FORWARD SPEED 
 
Regarding seakeeping, most research has been devoted to 
calculating the hydrodynamic coefficients for a stationary 
ship oscillating in calm water. As will be shown later, in 
such a case the boundary layer is marginal, and can be 
ignored. The hydrodynamic coefficients, except for roll, 
can be therefore calculated traditionally, assuming no 
viscosity of water, and, what goes with it, assuming 
potential flow, governed by the Laplace equation 'I   �. 
For roll, however, the hydrodynamic coefficients have to 
be calculated accounting for viscosity. 
 
Measured values of the added mass a�� are smaller, 
while for the damping coefficient b�� – higher from 
those for potential flow in proportion to the amplitude 
of roll (Figure. 1). The effect is noticeable. Measured 
values, denoted by points for three different amplitudes 
A: ����, ���, ��� rad (�����q, ����q, ����q) are taken from 
Vugts (1968). Values for potential flow (thick line) 
were obtained by Dudziak (1988) with the help of 
multi-pole potentials. To obtain the hydrodynamic 
coefficients with the effect of viscosity, a FEM can be 
used for the integration of equations of conservation, or 
any RANS solver, ignoring the Reynolds stresses. 
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Figure. 1.  Nondimensional hydrodynamic coefficients 
for roll of a rectangular section 
 
For a ship advancing with forward speed in regular seas, 
the hydrodynamic coefficients can be calculated in two 
ways. 1), assuming that they are the same as for forced 
oscillations in calm water with circular frequency equal 
to the encounter frequency Z( , given by the equation: 
 

Z(   |Z � kucosE |, (19) 
 
where Z is the circular frequency of regular wave, k { 
�S/O is the wave number, O is the wave length, u is the 
forward speed of the ship, and E is the heading angle 
between the ship speed and direction of wave propagation. 
And 2), predicting the hydrodynamic coefficients from 
the solution of equations of conservation for the viscous 
flow, including the boundary layer. As shown by 
Weymouth et al. (2005), such a problem is extremely 
complex. The thickness of the boundary layer varies in 
the course of motion, and outside the boundary layer – 
as shown earlier – flow is irrotational, i.e. potential. 
Hence, turbulence occurs solely inside the boundary layer, 
while outside it – the flow is potential. 
 
The first approach ignores simply the boundary layer. Here 
arises the question, if the hydrodynamic coefficients could 
be determined accounting for the boundary layer, but not 
in the so complicated way, as discussed by Weymouth 
et al. (2005). It seems there is such a possibility. Note that 
1) outside the boundary layer flow is potential, and 2) the 
boundary layer moves with the ship, as if being fixed to it. 
Hence, we can assume that the mass of the ship is 
augmented by the mass of the boundary layer, while the 
hydrodynamic forces are such, as if the wetted surface of 
the ship coincided with the outer surface of the 

boundary layer. Hence, the key meaning in this 
approach has the thickness G of the turbulent boundary 
layer. As first approximation, it could be taken the same 
as for a flat plate: 
 

x
ux

5/1

37.0 ¸
¹
·

¨
©
§ Q G , (20) 

 
where Q is the kinematic viscosity of water, u is the forward 
speed of the ship, and x is distance from the forward end of 
the ship below water. The fraction inside the parentheses is 
the inverse of the Reynolds number, related to x. Behind the 
separation point, the thickness of the boundary layer can be 
taken as G   �. Numerical values of G are shown in Table. 1 
for the coefficient of viscosity Q   ���� m�/s, and two 
vessel’s speeds u   � m/s and �� m/s. 
 
Table. 1. Thickness of turbulent boundary layer 

 u   � m/s u   �� m/s 
x [m] Re G [m] Re G [m]�

��� �������� ������ �������� ������

��� �������� ������ �������� ������

��� �������� ������ �������� ������

���� �������� ������ �������� ������
���� �������� ������ �������� ������

 
It is worth realising that accurate prediction of the 
hydrodynamic coefficients is not required for the 
satisfactory prediction of ship motion in a seaway. 
Coefficients of stiffness c��, c��, c�� are at least an order of 
magnitude larger (the first and third are usually more than 
two orders larger) than the added mass and damping 
coefficients. The overwhelming dominance of hydrostatic 
stiffness and highly linear wave excitation allow the strip 
theory to predict ship motions with reasonably high 
degree of accuracy. Things are improved further by the 
counteracting non-linear effects of hydrodynamic 
coefficients a�� and b�� (Figure. 1). 
 
 
5. CASE STUDIES 
 
To shed some light on the effect of viscosity in ship 
dynamics it is worth recalling four case studies, known in 
literature: 1) sliding oscillations of a flat surface, 2) 
angular oscillations of a cylinder, 3) sliding oscillations 
of a cylinder, and 4) oscillations of an arbitrary body. 
 
5.1 SLIDING OSCILLATIONS OF A FLAT  

SURFACE 
 
This is a classic problem, discussed in almost every 
textbook on fluid mechanics, solved by Stokes in 1851. 
Consider an infinite surface at the x-plane, performing 
harmonic oscillations in the z direction with the velocity u   
u�cosZt. By assuming that the field of velocity v   vk is of 
laminar type, i.e. it has one component only in the direction 
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of the z-axis, where v   v(x) is a function of x (distance from 
the plane), N–S equation (2) reduces to two scalar 
equations: p   const, and the equation of diffusion: 
 

x
v

t
v

2

2

w
w

Q 
w
w , (21) 

 
Its solution is as follows: 
 

v   u�e�kxcos(kx – Zt), (22) 
 
where k   (Z/�Q)��� is the wave number. The inverse of the 
wave number, denoted by G { 1/k   (�Q/Z)��� is the depth of 
penetration, known better as the skin depth. At a distance 
x   �G the velocity drops to e �� | �� of the value at the 
oscillating surface. And at a distance x   ���G it drops to 
����. We can assume then that the thickness of the 
boundary layer equals a�G� The depth of penetration 
increases with the kinematic viscosity Q and decreases 
with the circular frequency Z. For a finite plate, the depth 
of penetration is presumably much thinner. 
 
For example, for water the kinematic coefficient of 
viscosity Q | ���� m�/s, and for air Q | ������� m�/s. 
Assuming the circular frequency of oscillations Z   1 
rad/s, the depth of penetration for water equals G   1.4 
mm, and for air G   ��� mm. At a distance �G, i.e. 7 mm 
for water, and �� mm for air, the fluid is practically at 
rest, despite the oscillations. These quantities are 
inversely proportional to �Z. Real frequencies occurring 
in seakeeping are from the range Z � ¢���� �² rad/s. 
Hence, the skin depth is small. Note that this quantity 
value is at least two orders of magnitude smaller than the 
values for a stationary boundary layer (Table. 1). 
 
Knowing the velocity field, the tangential stress on the 
surface can be found by the equation W   Pwv/wx. 
Substituting x   �, the following is obtained for the 
stresses: 
 

W   �Pku�(cosZt � sinZt), 
 
where Pk   (½UPZ)���. Hence, a phase shift exists between 
stress and speed. Since the acceleration of the surface 
ux   �Zu�sinZt, the above can be written as: 
 
W   �(Pk/Z) ux � Pku   ��½UP�Z����  ux � �½UPZ����u { 
�mux  � Nu, 

(23) 

 
where m   �½UP�Z���� is the added mass per unit area, 
while N   �½UPZ���� is the coefficient of damping per 
unit area. If the fluid is on both sides of the surface, the 
expressions for m and N should be doubled. Both 
components of the stress, which are the same as the 
frictional resistance per unit area, are directed against the 
appropriate parameters of motion. 
 
Friction is associated with dissipation of energy. The said 
quantity can be obtained as work of friction forces. 

Dissipation of energy per unit time and unit area is equal 
to mean value of the product of the tangential stress and 
the speed of the surface: 
 

¢Wu²   ��/T ³�
T (muxu � Nu�)dt, 

 
where T is the period of oscillations. Since uxudt   d½u�, 
the first term provides no contribution due to the 
oscillations of velocity. A contribution provides the other 
term, equal to: ¢Wu²   �½Nu�

�. 
 
As can be seen, the coefficient of damping N   �½UPZ���� 
is responsible for dissipation, not the added mass. This can 
be taken as a general rule. 
 
 
5.2 ANGULAR OSCILLATIONS OF A  

CYLINDER 
 
Consider now the velocity field around an infinitely long 
cylinder of radius r�, performing angular oscillations around 
its axis in infinite fluid with a circular frequency Z. The 
z-axis coincides with the axis of the cylinder (Figure. 2).  
 

z

Z

 
Figure. 2 
 
 
It is assumed again that the velocity field is of laminar 
type, i.e. it has only a circumferential component v   veT, 
a value of which depends on the co-ordinate r (distance 
from the axis of the cylinder) and on time t, i.e. v   v(r, t). 
This component is constant for a given r at a fixed time 
instant, which results from the equation of continuity. 
Similarly, the pressure field p   p(r, t). Note that the 
problem is 2-D, therefore no quantity can depend on the 
variable z. 
 
With these assumptions gradp has only a radial 
component. Similarly, the convective acceleration (v ��)v 
has solely a radial component, equal to the centrifugal 
acceleration. The two remaining terms in equation of 
motion (2), i.e. the local acceleration and Laplacian of 
velocity have only circumferential components, as '(veT) 
  (v'' � v'/r � v/r�)eT, where ' means differentiation with 
respect to r. Equation (2) yields then two scalar equations, 
one for the pressure field dp/dr   Uv�/r, and the other for 
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the velocity field, which has a form of the equation of 
diffusion: 
 

wv/wt   Q(v'' � v'/r � v/r�). (24) 
 
As can be seen, the pressure field p   p(r, t) is obtained by 
integrating the centrifugal accelerations, dependent on the 
instantaneous velocity field. On the other hand, the velocity 
field v   v(r, t) is determined by decoupled equation (24). 
 
Determination of the velocity field around an oscillating 
cylinder is not as easy as for an oscillating plane. Equation 
(24) suggests that we can seek its solution by a separation of 
variables. Namely, we can postulate that v   u�e�iZtR, 
where R   R(r) is a function of variable r only, whereas 
v   u�e�iZt is the velocity on the surface of the cylinder 
at r   r�. 
 
Substituting v to equation (24) yields a characteristic 
equation for the function R: 
 

�iZR   Q(R'' � R'/r � R/r�), 
Q(R'' � R'/r � R/r�) � iZR   �, 
R'' � R'/r � R/r� � (iZ/Q)R   �. 

 
Introducing notation K � { iZ/Q, the above equation will 
take the form: 
 
 R'' �  R'/r � (K � � �/r�)R   �. 
 
This is a Bessel equation of the first order [the Bessel 
equation of the n-th order is defined as: R'' �  R'/r � (K � � 
n�/r�)R   �]. Multiplying it by r� yields the characteristic 
equation in an equivalent form:  
 

r�R'' � rR' � (K �r� � �)R   �. 
 
Introducing a nondimensional radius U   Kr, the function 
R becomes a function R   R(U). The characteristic equation 
will become a normalised Bessel equation of the first order: 
 

R'' � R'/U � (� � �/U�)R   �, (25) 
 
defining the function R(U), where ' means now 
differentiation with respect to U. Its solution are 
cylindrical functions of the first and second kind J�(U) and 
N�(U). The asymptotic form of the two functions for large 
arguments U   Kr is as follows (Abramowitz & Stegun, 
1970): 
 

J�   (�/SU)���sin(U � ¼S), 
   N�   �(�/SU)���cos(U � ¼S). (26) 

 
Graphs of the functions J� and N� for a real argument U 
are shown in Figure. 3. For U ! a� they can be replaced 
the asymptotic approximations. 
 
The parameter K is given by the equation: K � { iZ�Q. 
Hence, K   k' �i, where k'   (Z�Q)���. Thus, the 

nondimensional variable U { Kr   k'r�i { U' �i is a 
complex number, where U'  { k'r   |U | is the module of 
the variable U. Considering that � i   r(� � i)/��, the 
variable U can be presented in the equivalent form: 
 

U   r(� � i)k'r/��   r(kr � ikr), (27) 
 
where k   k'/��   (Z/�Q)���.The choice of the sign depends 
on the condition in infinity. We will see later that the sign 
should be negative, i.e. corresponding to the phase �¾S. 
 
Real and imaginary parts of the cylindrical functions can 
be obtained by substituting U   U' �i in the polynomial 
expansions; they are functions of the amplitude U'  { k'r   
��kr and are called the Kelvin (Thomson) functions. 
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Figure. 3. Runs of cylindrical functions J�, N� and the 
amplitude (J�� � N�

�)��� for real U 
 
 
The number �i has two phases �¾S and ¼S. In electrical 
engineering, for analysing the so-called skin effect, the 
variable U   U'�(�i) is of importance, which has two phases: 
¾S and �¼S. Skin effect is the tendency of an alternating 
electric current to become distributed within a conductor 
in such a way that the current density is largest near the 
surface of the conductor, and decreases towards its centre. 
The electric current flows mainly at the conductor "skin", 
between the outer surface and a level called the skin depth 
G. This effect increases effective resistance of the conductor 
at higher frequencies where the skin depth is smaller, thus 
reducing the effective cross-section of the conductor. Hence, 
the determination of current density in the conductor is an 
inner problem, contrary to the determination of the velocity 
field outside an oscillating cylinder. The inner problem in 
fluid mechanics means determination of the velocity field 
inside the cylinder. 
 
The Kelvin functions solely concern the variable U   
U'er¾Si, with phases r¾S. They are denoted as follows: 
 

J�(U'er¾Si) { ber�U' r ibei�U', 
N�(U'er¾Si) { yer�U' r iyei�U'. 

 
When a complex argument U tends to infinity, cylindrical 
functions become unbounded. For a real variable, they 
present damped oscillations, as in Figure. 3. 
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A general solution of equation (25) is a linear combination 
of the fundamental solutions, i.e. R(U)   DJ�(U) � EN�(U), 
where D and E are arbitrary constants. We have to find 
a combination where the function R(U) decays with growth 
of the complex argument U. To ease the answer to this 
question, consider the asymptotic form of the two 
functions, given by equation (26). Substituting U   x � iy, 
the following is obtained: 
 
J�   (�/SU)���[coshysin(x � ¼S) � isinhycos(x � ¼S)], 
N�   �(�/SU)���[coshycos(x � ¼S) � isinhysin(x � ¼S)], 
 
where x   y   kr. When the imaginary part y tends to rf, 
both functions grow to infinity. Create then a new 
cylindrical function called the Hankel function: H� { J� � 
iN�, denoted in literature by H�

���. After simplifications, 
the following is obtained:  
 

H�   (�/SU)���ey[sin(x � ¼S) � icos(x � ¼S)]. 
 
The Hankel function vanishes in infinity in the lower 
half-domain, when y � �. This happens, when the 
nondimensional variable U, given by equation (27), is 
taken with the minus sign: U   �(kr � ikr)   ���kreiS��   
�U'eiS��   U'e�¾Si, which gives the phase �¾S. Considering 
that x   y   �kr, after simplifications we get an 
asymptotic form of the Hankel function: 
 
H�(kr)   �����(Skr)����e�krei(kr � ⅛S)   M�ei(kr � ⅛S), (28) 

 
where M�   �����(Skr)���� is the amplitude of the function 
H�(kr). We will see that the sign is unimportant. For a 
finite argument U the expression for the Hankel function 
H�(kr) is far more complicated. It can be obtained from 
the polynomial expansions of the cylindrical functions. 
For a variable U   U'er¾Si, the real and imaginary parts are 
denoted, as below: 
 

H�(U'er¾Si) { her�(U') �� ihei�(U'). 
 
These functions are related in a simple way to modified 
Bessel functions: ker�U' { �½Shei�U' and kei�U' { ½Sher�U'. 
And the modified Bessel functions are related in turn to 
the first derivatives of the functions kerU' and keiU' of the 
zero order: 
 

ker�U'   (ker'U' � kei'U')/��, 
kei�U'   (ker'U' � kei'U')/��. 

 
Hence, to calculate the real and imaginary parts of the 
Hankel function H�(U) it is sufficient to know the derivatives 
of the Hankel functions of the zero order ker'U' and kei'U'. 
They are given by effective polynomial approximations 
(Abramowitz & Stegun, 1970). Their graphs are shown in 
Figure. 4. For large values of U' { k'r   ��kr, both functions 
oscillate, passing through the same zeros. 
 
With the increase of the module of the nondimensional 
radius U'   _ U_, decrement of damping of the amplitude of 

the Hankel function H� increases monotonically from 
�f to an asymptotic value ����� | ������ (Figure. 5). 
It means that for large enough U' ! a � the velocity field 
vanishes as (U'/��)����e�U' /��. In other words, the variable U' 
becomes the variable U'/��   kr. The solution must be 
then expressed in terms of the variable kr, as seen in 
equation (28). 
 
Now, a general solution of equation (25) is a function R(U) 
  DH�(U). It fulfils the condition in infinity, as it vanishes 
to zero. The constant D is chosen from the kinematic 
condition on the surface of cylinder U   U� to be equal 
to �. Hence, D   �/H�(U�). The velocity field is given 
then by the equation: v   u�e�iZtH�(U)/H�(U�). Taking the 
real part, the following is obtained: 
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Figure. 4.  Run of real and imaginary parts of Hankel  
function H� and their amplitude 
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Figure. 5.  Decrement of amplitude damping of Hankel 
function H� and H�  
 

v   u�[(AA� � BB�)cosZt � (AB� � A�B)sinZt]/ 
(A�

� � B�
�), 

(29) 

             
where A { her�(U') and B { hei�(U') are the real and 
imaginary parts of the Hankel function H�(U), A� and B� 
are the values on the cylinder surface. On the surface of 
cylinder r   r�, the above equation yields v   u�cosZt. As 
can be seen from Figure. 4, for U' � a� the functions A 
and B are not of oscillatory character, therefore the 
solution has the character of a standing wave. 
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Equation (29) can be largely simplified for arguments U' 
{ k'r ! a�, which happens, when the radius r ! rmin { 
a�/k'   ����k   ���/k   ���G | ���G. For water, for 
circular frequency Z   � rad/s, rmin   a� mm, and for air 
rmin   a�� mm. The quantity rmin is inversely proportional 
to �Z; it is then generally small. Resorting to equation 
(28), it is easy to find the real part of the velocity v   
u�e�iZtH�(U)/H�(U�): 
 

v   u�(r�/r)���e�k(r – r�)cos[k(r – r�) � Zt]   
  u�(r�/r)���e�khcos(kh � Zt), 

 
valid for r ! rmin, where h { r � r� is the distance from the 
cylinder surface, and k   (Z/�Q)���. Expressing the ratio of 
radii in terms of h, we get eventually: 
 

� �tkheuv kh

r
h

Z�
�

 � cos
1

0

0 . (30) 

 
For h ! a�G, v | �. If r� grows indefinitely, the velocity 
field tends to the field of a flat surface, given by equation 
(22), with x { h. The velocity field in the case of a cylinder 
vanishes somewhat faster than for a flat surface. However, 
the depth of penetration G   �/k is the same in both cases. 
When r � rmin, i.e. for cylinders with small radii, the 
velocity field has to be found using equation (29), 
which requires the knowledge of the Hankel function 
H�(U). 
 
It can be shown that the error, with which the Hankel 
function H�(kr), given by equation (28), fulfils Bessel 
equation (25), very quickly decreases with a growth of 
the nondimensional radius kr. The absolute value of the 
error equals ¾�����(Skr)����e�kr. For kr   �, ���� the error 
equals merely ����, ����, and ����. 
 
When the cylinder rotates in one direction with a 
constant angular velocity Z, it induces a stationary 
velocity field, as for a rectilinear vortex, given by the 
equation: 
 
v   u�r�/r   u�/(� � h/r�), (31) 
 
where u� is the velocity on the surface of the cylinder at r   
r�. As can be seen, the velocity field has now a completely 
different character than in the case of an oscillating 
cylinder. 1°, despite viscosity, the velocity field is 
potential and independent of viscosity. 2°, if r� grows 
indefinitely, it tends to a uniform flow v   u�, with an 
infinitely thick boundary layer. 3°, it decays much 
slower than for an oscillating cylinder. The velocity 
drops to 1/n of the value u� at the surface at a distance h 
  (n – �)r�, independent of viscosity. For instance, it drops 
to ����   �����, at a distance h   ���r�, extremely large in 
comparison to an oscillating cylinder. By the sheer fact 
that the body oscillates, the boundary layer reduces to 
amazingly small dimensions. 
 

 
5.3 SLIDING OSCILLATIONS OF A CYLINDER 
 
Consider now an infinitely long cylinder of radius r�, 
performing sliding oscillations along its axis in infinite 
fluid with a circular frequency Z (Figure. 6). It is 
assumed again that the velocity field has only a 
longitudinal component v   vez, which can be solely a 
function of the co-ordinate r (distance from the axis of 
the cylinder) and on time t, i.e. v   v(r, t). This results 
from the equation of continuity, symmetry of the 
problem and its 2-D character. 
 

z

Z

 
Figure. 6. 
 
 
With these assumptions, the convective acceleration 
(v��)v vanishes, and equation (2) reduces to two scalar 
equations: i.e. p   const, and the diffusion equation: wv/wt 
  Q'v, where the Laplacian 'v   (rv')'/r   v'' � v'/r (the 
sign ' means differentiation with respect to r). Hence: 
 

wv/wt   Q(v'' � v'/r). (32) 
 
We can postulate, as before, that the solution of equation 
(32) is of the form: v   u�e�iZtR, where R   R(r) is a 
function of the variable r only, whereas v   u�e�iZt is the 
velocity of the cylinder. Substituting v in equation (32) 
yields a characteristic equation for the function R: 
 

�iZR   Q(R'' � R'/r),�
R'' � R'/r � (iZ/Q)R   �. 

 
Introducing the notation K� { iZ/Q, the above will take 
the form: R'' � R'/r � K�R   �. Introducing the 
nondimensional radius U   Kr, the function R becomes a 
function R   R(U), for which the characteristic equation is 
as follows: 
 

R'' �  R'/U � R   �, (33) 
 
where ' means now differentiation with respect to U. This 
is a Bessel equation of the zero order, defining the function 
R   R(U). Its solution are cylindrical functions of the first 
and second kind J�(U) and N�(U). At zero these functions 
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have values as follows: J�(�)   �, N�(�)   �f. The asymp-
totic form of the two functions for large arguments U   Kr 
is as follows (Abramowitz, Stegun, 1970): 
 

J�   (�/SU)���cos(U � ¼S), 
 N�   �(�/SU)���sin(U � ¼S). 

 (34) 

 
Graphs of the functions J� and N� for a real argument U 
are shown in Figure. 7. For U ! a� they can be replaced 
the asymptotic approximations. 
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Figure. 7. Runs of cylindrical functions J�, N� and the 
amplitude (J�� � N�

�)��� for real U 
 
The non-dimensional radius U is a complex quantity, given 
by equation (27). Substituting to the Bessel functions U   
U'er¾Si, where U'  { ��kr, we get 
 

J�(U'er¾Si) { berU' r ibeiU', 
N�(U'er¾Si) { yerU' r iyeiU'. 

 
When the complex argument U tends to infinity, both 
functions become unbounded. For a real variable, they 
present damped oscillations, as in Figure. 7. As before, 
the Hankel function H� { J� � iN�, denoted in literature by 
H�

��� (note the change of the sign), vanishes in infinity in 
the lower half-domain, when y � �. Its asymptotic 
expansion for large U is as follows: 
 

H�   (�/SU)���ey[cos(x � ¼S) � isin(x � ¼S)]. 
 
This happens, when the nondimensional variable U   
U'er¾Si is taken with the phase �¾S. Considering that x   
y   �kr, the asymptotic form of the Hankel function is as 
follows: 
 

H�(kr)   ����(Skr)����e�krei(kr � ⅝S)   M�ei(kr � ⅝S), (35) 
 
where M�   ����(Skr)���� is the amplitude of the function 
H�(kr). For a finite argument U the expression for the 
Hankel function H�(kr) can be obtained from the 
polynomial expansions of the cylindrical functions. For a 
variable U   U'er¾Si, the real and imaginary parts are 
denoted, as: 
 

H�(U'er¾Si) { her(U') r ihei(U'), 
 

where the real and imaginary parts of the function 
H�(U'er¾Si), i.e. her(U') and hei(U'), shown in Figure. 8, are 
calculated with the help of the function kerU' { 
�½Shei(U') and keiU' { ½SherU'; the functions kerU' and 
keiU' are given by effective polynomial approximations 
(Abramowitz & Stegun, 1970). For large values of U' { 
k'r   ��kr, both functions oscillate, passing through the 
same zeros. 
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Figure. 8. Runs of real and imaginary parts of Hankel 
function H� and their amplitude 
 
As before, with the increase of the nondimensional radius 
U'   _U_, decrement of damping of the amplitude of the 
Hankel function H� decreases monotonically from �f to 
an asymptotic value ����� | ������ (Figure. 5). It means 
that for large U' ! a � the velocity field vanishes as 
(U'/��)����e�U'/��. In other words, the variable U' becomes the 
variable U'/��   kr. The solution must be then expressed in 
terms of the variable kr, as seen in equation (35). 
 
A general solution of equation (33) is a function R(U)   
DH�(U). It fulfils the condition in infinity, as it vanishes 
to zero. The velocity field is given by the equation: v   
u�e�iZtH�(U)/H�(U�). Taking the real part, we get: 
 

v   u�[(AA� � BB�)cosZt � (AB� � A�B)sinZt]/ 
(A�

� � B�
�), 

(36) 

 
where A { her�(U') and B { hei�(U') are the real and 
imaginary parts of the Hankel function H�(U), A� and B� 
are the values on the cylinder. As can be immediately 
checked, on the surface of cylinder r   r�, the above 
equation yields v   u�cosZt. For U' � a� the functions A 
and B have no oscillatory character (see Figure. 8), 
therefore the solution has the character of a standing wave. 
 
Equation (36) can be largely simplified for arguments U' 
{ k'r ! a�, which happens, when the radius r ! rmin { a�/k' 
  �/��k | ���G. Resorting to equation (35), it is easy to 
find the real part of the velocity v   u�e�iZtH�(U)/H�(U�), 
reducing to equation (30), the same as for angular 
oscillations, valid for r ! rmin | ���G. For h ! a�G, v | �.  
 
It is interesting that in the three case studies the boundary 
layer is the same and at least two orders of magnitude 
smaller than the values for a stationary boundary layer 
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(Table. 1). Further, the velocity field is found from 
equation of diffusion (6), without resorting to the idea of 
vorticity. This feature of the field is a resultant quantity, 
having no impact on the calculations. 
 
5.4 OSCILLATIONS OF AN ARBITRARY 

BODY 
 
As we could see in the foregoing three case studies, 
contrary to stationary flows the boundary layer is thin on 
oscillating bodies. It can be shown that the same holds for 
an arbitrary oscillating body. A proof is provided below. 
 
In the case of sliding oscillations of a flat surface or a 
cylinder the convective acceleration (v ��)v vanishes 
everywhere. In the case of an arbitrary surface, this no 
longer holds. In linear problems, non-linear terms are 
ignored by definition, irrespective of their size. We are 
entitled to do it, if they are small in relation to the 
remaining terms in the governing equations. 
 
The convective acceleration (v��)v is the only non-linear 
term in N–S equation (2). It is relatively easy to assess its 
magnitude (Landau & Lifszic, 2009). The operator (v��) 
means differentiation along the direction of velocity. In 
close vicinity of the body the velocity is basically parallel 
to its surface. Therefore (v��)v ~ v�/l, where l is a 
characteristic dimension of the body. In an oscillatory 
motion the velocity v ~ ZA, where A is the amplitude of 
oscillations. Hence,  
 

(v ��)v ~ (ZA)�/l. 
 
On the other hand, the following holds for the local 
acceleration: 
 

wv/wt ~ Zv ~ Z�A. 
 
Comparing the two expressions, we get (v��)v �� wv/wt, if 
A �� l, i.e. if the amplitude of oscillations is small in 
relation to the size of the body. In addition, it is easy to 
show that the terms wv/wt and Q'v are of the same 
magnitude. 
 
The Reynolds number is normally defined for stationary 
flows, when a body moves at constant speed. For 
oscillatory motion this number is defined as Re   ZAl/Q. 
In linear problems amplitudes of motion are assumed to 
be small, as we say – infinitely small. The Reynolds 
numbers are, therefore, small by definition, leaving little 
room for turbulence, if at all. 
 
With the help of the above considerations, some properties 
of motion can be deduced from the linearised equation (5). 
The operator of rotation (curl) can be applied to both its 
sides. As the rotation of the gradient vanishes, and 
introducing notation : { rotv for the vorticity, we get: 
 

w/wt:��  Q':, (37) 
 

i.e. : fulfils the equation of diffusion (6). It follows from the 
foregoing that such an equation leads to exponential decay 
of the quantity described by it, in this case the vorticity. In 
other words, the motion of the fluid induced by oscillating 
body is rotational in some layer around the body. Vorticity 
decays rapidly with a distance from the body, turning at 
some distance to a potential flow, despite viscosity. The 
depth of penetration of the vorticity is identical, as for the 
velocity, equal to G   �/k   (�Q�Z)���. 
 
The quantity G can be large or small in relation to the 
body. The case of G !! l occurs, if Zl � �� Q, i.e. when 
oscillations are extremely slow, far below the range of 
interest. In such cases changes of velocity are very slow. 
The motion of the fluid is therefore quasi-stationary. That 
is to say, at each time instant fluid motion is the same as 
for a uniform motion of the body with the speed at given 
time instant. The boundary layer as such stretches 
practically over the entire domain. 

The opposite case G �� l, i.e. of thin boundary layer occurs, 
when Zl� !! Q. As Q is small, this occurs practically at the 
entire range of frequency of oscillations Z that are of 
interest. In seakeeping, it is from the range Z � ¢���� �² rad/s. 
As the boundary layer is thin the effect of viscosity on the 
hydrodynamic coefficients is generally minimal. 
 
 
6. CONCLUSIONS 
 
Based on the results and arguments presented in this work 
the following conclusions can be drawn: 
x it is possible to account for viscosity in the 

hydrodynamic coefficients (added mass and damping 
coefficient) but this should not be done by the RANS 
equations employing turbulence models, as in linear 
problems there is no room for turbulence 

x hydrodynamic coefficients for roll can include the 
effect of viscosity through the linearised Navier–
Stokes equations that do not need any turbulence 
models. For other degrees of freedom the effect of 
viscosity is vestigial 

x contrary to stationary flows, the boundary layer on 
oscillating ships is thin; therefore its effect on the 
hydrodynamic coefficients can only be of secondary 
meaning 

x viscosity opens room for memory effects even in an 
unbounded domain 

x commercial RANS software can be used in 
seakeeping for solving the Navier–Stokes equations 
provided no turbulence stresses are assumed 

x advanced turbulence models should be based on 
modelling Reynolds stresses  
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