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SUMMARY 
 
The approach developed in this paper applies to vibration analysis of rectangular stiffened plate coupled with fluid. It is 
obvious that the natural frequencies of a submerged structure are less than those of in vacuum and these are due to the 
effect of added mass of water to the structure. This paper focuses on the experimental, analytical and numerical solution 
of natural frequencies of submerged stiffened plate. The analytical solution based on the deflection equation of 
submerged orthotropic plate, Laplace’s equation and Rayleigh's method in vibration analysis. By used the FEM software 
the numerical results for natural frequencies are derived. The natural frequencies of the stiffened plate are obtained 
practically by using Fast Fourier Transformation functions (FFT) in experimental analysis. Experimental results 
demonstrate the validity of analytical and numerical solution and results. 
 
NOMENCLATURE 
 
E Young's modulus (N m-2 ) 
G Shear Young's modulus (N m-2 ) 
U Density of plate (kg m-3) 

fU  Fluid Density (kg m-3) 

),,,( tzyxI  Velocity Potential 
P  Plane Wave Number 

*m  Added Mass (kg) 
m  Plate Mass (kg) 

fluidZ  Wet Natural Frequency (Hz) 
P Dynamic Pressures (N m-2) 
[K] Stiffness Matrix 
[M] Mass Matrix 
 
 
 
1. INTRODUCTION 
 
The plates are used in a wide range of engineering 
applications such as modern construction engineering, 
aerospace and aeronautical industries, aircraft 
construction, shipbuilding, and the components of 
nuclear power plants. The effect of the surrounding 
medium on the vibration of plates and shells is of 
primary interest to scientists and engineers working in 
aerospace, marine and reactor technology (Kerboua et al, 
2008). It is therefore very important that the static and 
dynamic behavior of plates be clearly understood when 
subjected to different loading conditions so that they may 
be safely used in these industrial applications.  
 
It is well known that the natural frequencies of structures 
in contact with fluid are different from those in vacuum. 
In general, the effect of the fluid force on the structure is 
represented as added mass, which lowers the natural 
frequency of the structure compared to what that would 
be measured in vacuum. This decrease in the natural 
frequency of the fluid-structure system is caused by 
increasing the kinetic energy of the coupled system 
without corresponding increase in strain energy (Kerboua 

et al, 2008). Many numerical methods have been used in 
fluid–structure interaction problems, including added 
mass formulation, finite element method (FEM), doubly 
asymptotic approximation (DAA), mixed boundary 
element and finite element method (BEM/FEM), and 
arbitrary Lagrangian–Eulerian formulation (ALE). The 
above numerical methods have also been developed into 
commercial codes, such as NASTRAN, ABAQUS, 
ANSYS, and USA (Kundu, 1990).  
 
An enormous amount of effort has been carried out on 
problems involving dynamic interaction between an elastic 
structure and a surrounding fluid medium. Fluid–structure 
interaction problems have received extensive attention since 
1965 (Kundu, 1990). An analytical solution studied for 
dynamic behavior of a rectangular reservoir partially filled 
with fluid using the Rayleigh–Ritz method (Kim et al, 
1996). Hydro-elastic analysis investigated on a rectangular 
tank completely filled with liquid using a NASTRAN 
program and compared results with analytical solutions 
(Kim and Lee, 1997). Vibration modes numerically 
computed of an elastic thin structure in contact with a 
compressible fluid (Hernandez, 2006). Methods for 
modeling fluid effects are also available in some 
commercial finite element analysis (FEA) codes (Herting, 
1997 and Hibbitt et al, 2001). Some aspects discussed of 
incorporating heavy fluid loading effects into SEA 
(Creighton, 1989). Based on Kwak’s approach the problem 
of the axe symmetric vibration of circular and annular plates 
in contact with fluid studied (Liang et al, 1999). The natural 
frequencies were calculated for clamped, simply supported 
and free plates. Moreover, the results were compared with 
the experimental data. An energy finite element analysis 
(EFEA) formulation for computing the high frequency 
behavior of plate structures in contact with a dense fluid 
derived (Zhang et al, 2003).  
 
The heavy fluid loading effect is incorporated in the 
derivation of the EFEA governing differential equations 
and in the computation of the power transfer coefficients 
between plate members. An energy finite element 
analysis (EFEA) formulation for high frequency 
vibration analysis of stiffened plates under heavy fluid 
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loading derived (Zhang et al, 2005). G. Aksu used from a 
method based on the variational principles in conjunction 
with the finite difference technique to determine the 
dynamic characteristic of eccentrically stiffened plates 
(Aksu, 1982). Ömer Civalek developed  the discrete 
singular convolution (DSC) method, for static analysis of 
thick symmetric cross-ply laminated composite plates 
based on the first-order shear deformation theory of 
Whitney and Pagano (Civalek, 2008). T. Holopainen, 
proposed a new finite element model for free vibration 
analysis of eccentrically stiffened plates (Holopainen, 
1995). Murat Gürses, Ömer Civalek et al (Gürses, 2009) 
investigated discrete singular convolution (DSC) method 
for numerical solution of vibration problems. To 
overcome the complexities in the modal analysis of the 
fluid–structure interaction, the Mindlin plate theory and 
the potential flow theory are applied; the velocity 
potential is also expressed using double finite Fourier 
transforms (Li et al, 2011). In the paper, experimental, 
analytical and numerical analyses for submerged 
stiffened plate are studied. The numerical and analytical 
results are verified comparing to experimental results.  
 
2. THEORETICAL ANALYSIS 
 
In this section, theoretical analysis of stiffened plate is 
studied in the vacuum and fluid. In the analytical study, a 
stiffened plate undergoing a flexural bending vibration in 
a body of homogeneous, uncompressible and invisid 
fluid whose motion is irrotational, is considered. The 
governing equation for the surface displacement of the 
plate- fluid system is derived. The boundary conditions 
for the plate are considered as fixed on all sides. All of 
geometrical and physical properties of the stiffened plate 
as shown in Figure 1 are summarized in Table 1. 
 
Table 1: Geometrical and Physical Properties of 
Stiffened Plate   

 
 

 

 
Figure 1: Stiffened plate schematics underwater 

Where E is Young's modulus and G is shear Young's 
modulus. Consider a stiffened plate in which its both 
sides are exposed to still fluid as shown in Figure 1. The 
plate undergoes small amplitude free bending vibration. 
The fluid motion due to the vibration of the plate 
produces dynamic pressures PL(x,y,t) and PU(x,y,t) on the 
lower and upper fluid-plate interfaces SL and SU 
respectively. Governing equation of submerged 
deflection of stiffened plate is (Ventsel, 2001) 
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Where, ),,( tyxW  is the upward displacement of the 
plate measured from its static equilibrium position and U  

is density of the plate. 
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  are the flexural rigidities of an 

orthotropic plate. I is the moment of inertia of an inverse 
T-shaped section corresponding to one spacing of the rib 

location. Where sxy DDH 2�  ,
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torsional rigidities and for stiffener with rectangular cross 
section is zero (Ventsel, 2001). The density of fluid fU , 
is assumed to be homogeneous, incompressible, in viscid 
and its motion irrotational. Therefore, the velocity 
potential ),,,( tzyxI  satisfies Laplace’s equation given 
by (Esmailzadeh, 2007): 
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Since the fluid motion is irrotational, the unsteady 
Bernoulli equation  
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for small amplitude waves, equation (3) can be replaced 
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Can be applied on SF, whereZ  is the angular frequency 
of the wave motion caused by the vibration of the plate. 
On the bottom of the tank, the normal component of 
velocity is zero, i.e. 
 

0)( 21
 

w
w

��� hhhzz
I

 (6) 

 
The kinematics boundary conditions at plate-fluid 
interfaces SL and SU are given by 
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Using equation (4) we have: 
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Substitution of equation (8) and (9) in to equation (3) 
gives the following governing equation 
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Based on separation variable method, the displacement 
of the small amplitude bending vibration of the plate can 
be assumed as 
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Let’s also assume that the velocity potential  ),,,( tzyxI  
can be considered in the form of 
 

)()(),(),,,( tSzFyxGtzyx  I  (12) 
 
 
Substituting Equation (12) into Equation (2) gives 
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),( yxG , is a function of x and y, and F(z) is a function 
of z, so the following equation holds, viz. 
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This can be written as 
 

022  �� GG P  (15) 
 

02
2

2
 � F

dz
Fd P  (16) 

 
Where 2P  is a real constant, and P is the plane wave 
number, which is determined by the vibrating frequency 
of the submerged plate and fluid boundary conditions in 
the x-y plane. Substituting Equation (11) and (12) in to 
Equation (7) gives 
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The combination of Equations (11), (18), (19) and 
Equation (10) gives 
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Applying Equations (22), (23) and (24) to Equation (10) 
gives 
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Where the term ghfU  is a static load. It has effect only 
on the equilibrium position, but not on the dynamical 
response. So Equation (25) can be solved without 
considering this static term. Consider the equation 
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The combination of Equation 11, 18, 19 and Equation 10 
gives 
 

02  �cc TT fluidZ  (28) 
 

044  �� WW E  (29) 
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Where, fluidZ is the natural frequency of the plate 
underwater; E  is a constant determined by the plate 
boundary conditions. If the plate vibrates in air, the 
response equations corresponding to Equations 28, 29 
can be obtained 
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Here 
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The constant E c  is determined by plate boundary 
conditions, which are the same whenever the plate is 
submerged in fluid or in air. Thus one has 
 

EE c  (34) 
 
In this case we have the following basic equation 
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Equation (35) displays the relationship between natural 
frequency of the plate in fluid and that in air. 
 
 
2.1 THE NATURAL FREQUENCY FOR DRY 

STIFFENED PLATE 
 
In this section, Rayleigh's method is used to compute the 
natural frequencies in vacuum environment. The 
Rayleigh's method is based on following relation 
(Ventsel, 2001). 
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Where n is the number of stiffeners. By satisfying the 
boundary conditions of fixed four sides (Equation(37)), 
the deflection of plate can be obtained as follow and this 
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leads to achieving natural frequency as shown in 
Equation (38).  
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By using differential equation (14) and applying the 
Rayleigh's method, the natural frequency of submerged 
reinforced plate is obtained. When Rayleigh's method is 
written to find natural frequency under the water, the 
frequency is proportional to the ratio of the maximum 
potential energy to the sum of kinetic energy of 
reinforced plate *

pT  and fluid *
FT . The values of pV and

*
pT  in fluid and vacuum are constant, so the natural 

frequency of reinforced plate in vacuum and fluid are 
related to each other as shown in Equation(35). Using 
Rayleigh's method for submerged stiffened plate leads to 
the following natural frequency. 
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There are different ways to calculate the added mass (ma) 
for example Strip or Greenspon method (Goninan 2001 
and Liu 1995). 
 
 
3. NUMERICAL SIMULATIONS 
 
In order to validate the present formulation, the natural 
frequency obtained by the present method under clamped 
boundary conditions is compared with finite element whose 
results was validated through natural frequency of the modal 
testing under free boundary conditions in section 4. The 
reason for using this method validation, is that clamped 
boundary conditions applied in practice and experimental 
setup is very difficult and inaccurate, therefore, FEM 
software is used as an intermediary to compare the results of 
the analytical and experimental procedure. In the modeling 
of the submerged plate, the shell elements are used to design 
the plate and stiffeners. To achieve the natural frequencies 
of the model, free vibration analysis is used without any 
external excitations. For the free vibration analysis the 
numerical solution is reduced to solving the problem (X.H. 
Wang, 2006). 
 
> @ > @ )()( uMuK uu u Z  (40) 
 
 
Where [K] and [M] are, respectively, the stiffness and 
mass matrix while (u) andZ are the modal vector and the 
frequency parameter. Numerical results of first two mode 
shapes of the dry stiffened plate are shown in Figure 2. 
As shown in Figure 2 (c), first mode shape of the dry 

stiffened plate is in twisted form but in it can be seen in 
Figure 2 (d) the second mode shape is in bended form. It 
is expected that the same mode shapes could be seen in 
the fluid with different frequency values. 
 
 

  

  
 
Figure 2: dry stiffened plate frequency; (a), (b) first and 
second natural frequency (1147 and 1295.6 Hz) in 
clamped boundary conditions; (c), (d) first and second 
natural frequency (83.5 and 139.2 Hz) in free boundary 
conditions 
 
 
It should be noted that in the submerged case in order to 
improve the mode shape view, the fluid of upper side of 
the plate is hidden in the software results. Numerical 
results of mode shapes of the wet stiffened plate are 
shown in Figure 3. 
 
 

 
 

  
 
Figure 3:wet stiffened plate frequency; (a) first natural 
frequency (618.8 Hz) in clamped boundary conditions; 
(b) , (c) first and second natural frequency (45.95 and 
91.6 Hz) in free boundary conditions 
 
 
As shown in Figure 3 (b), first mode shape of the plate in 
the water environment is in twisted form but in Figure 3 
(c) it can be seen that the second mode shape is in 

a b 

c d 

a 

b c 
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bended form. As expected previously, the obtained mode 
shapes in the vacuum and fluid are the same. Obviously, 
as mentioned in the literature the natural frequencies of 
structures in the fluid are less than of in the vacuum. This 
is due to the added mass of the fluid in the structure. 
Numerical results of the study verified the above claim. 
In all of simulations the density of water and its bulk 
modulus are considered as 1000 (𝑘𝑔 𝑚3⁄ ) and 2.7 ×
109(pa) respectively. 
 
 
4. EXPERIMENTAL ANALYSIS 
 
The natural frequencies of the stiffened plate are 
obtained using modal analysis of frequency response 
functions (FRF) practically. The dynamic response of a 
mechanical structure while either in a development phase 
or an actual use environment can readily be determined 
by impulse force testing. These tests are performed by 
B&K modal testing equipment. Using an FFT (Fast 
Fourier Transformation) analyzer, the transfer function of 
the structure can be determined from a force pulse 
generated by the impact of a hammer and the response 
signal measured with an accelerometer. The impact force 
yields extensive information about the frequency and 
attenuation behavior of the system under test. By using 
FFT and phase analysis the natural frequencies can be 
easily obtained. The boundary conditions of stiffened 
plate are considered free on all sides. Thickness of 
stiffeners and plate are considered 4mm. The test vessel, 
stiffened plate and Portable Vibration Analysis Toolbox 
(PVAT) system are shown in Figures 4. 
 
 
 

  

 
Figure 4: Modal test equipment 

4.1 MODAL TEST RESULTS 
 
Test specimens flouted in the air and submerged in the 
water are shown in Figures 5 (a) and 5 (b) respectively 
(The stiffeners could not be seen in the pictures because 
that was welded on the lower side of stiffened plate). 
 
 
 

     
 
 

     
 
Figure 5: stiffened plate in air (a) and underwater (b). 
 
 
 
In order to analyze stiffened plate in the air, each of 
accelerometers is connected to separate channels of 
the PVAT system analyzer. Some tests were done 
under different conditions. For example, two 
accelerometers are attached to plate can be seen in 
Figure 5. Hammer impacts are applied to specified 
points on the plate. The locations of attachment of 
accelerometers and points of hammer exciting impact 
are shown in Figure 6. 
 
All points of the plate attached to the accelerometers 
are selected according to the obtained results from 
mode shapes in numerical simulations. Indeed, the 
accelerometer has to be attached to the point showing 
the maximum displacement in the particular mode. 
FFT responds are then obtained based on velocity and 
acceleration criterion. The FFT graphs in air are 
shown in Figure 6 (X values show the frequency). 
 
The submerged sensors in the water, are isolated using 
water proof adhesive. Height of water on the upper 
side of stiffened plate in the vessel is 25cm. All of the 
tests in the air environment are the same as in the 
fluid. The FFT graphs of underwater case are shown in 
Figure 7. 
 
 

a 

b 
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Figure 6: the FFT graphs of dry stiffened plate 
 

  

  

  
Figure 7: the FFT graphs of wet stiffened plate 
 
 
5. RESULTS 
 
To evaluate the coupled acoustic analysis in numerical 
solution the final solution was compared to the 
experimental results. The results and the relative error of 

both finite element solutions to the experiment are shown 
in Table 2 with free boundary conditions on all sides. 
 
 
Table 2 Comparison of test and the numerical results for 
first two modes shapes frequency 

 Numerical 
result Test result Error % 

Wet 
frequency 

(Hz) 

45.957 49.2 6.5 

91.670 93.7 2 

Dry frequency 
(Hz) 

83.526 78 7 
139.24 155 10.1 

 
The previous calculations show that it was possible to 
simulate the vibration of the stiffened plate in the water 
tank. In building three models with an increasing number 
of elements, it was ensured that the solution be 
converged. It is therefore justified to use the numerical 
solution in the design process of vessels that should be 
used underwater which are subject to vibration. 
Comparison of the analytical and the numerical results 
for first mode shapes frequency are shown in Table 3. 
 
 
Table 3 Comparison of the analytical and the numerical 
results for first mode shapes frequency 

 Numerical 
result 

Analytical 
result Error % 

Wet frequency 
(Hz) 618.88 649.026 4.6 

Dry frequency 
(Hz) 1147.5 1295 11.3 

 
Table 2 and 3 show the accuracy of numerical and 
analytical result. Strings as free boundary conditions for 
all sides of plate, make error in results. Also improper 
hammer impact produces an error. 
 
 
6. CONCLUSIONS 
 
In this study, the free vibration of a stiffened plate in 
contact with bounded water is investigated both 
theoretically and experimentally. The kinetic and 
potential energy for stiffened plate with the kinetic 
energy of the bounded water are obtained and used in 
Rayleigh's method to extract the natural frequency. The 
effect of contact with water on the vibration of stiffened 
plate is therefore appeared as an added mass in vertical 
displacement of the plate. Free-free boundary conditions 
are arranged for the stiffened plate in a hammer-
accelerometer modal testing. The shape of the Fast 
Fourier Transform function versus frequency graph for 
the dry and wet stiffened plates are observed to be 
similar but shifted along the frequency axis with a factor 
of about 0.5 for frequency.  
 
FEM is used as an intermediary to verify the present 
analytical results for a clamped stiffened plate. However, 
since the application of clamped boundary conditions is 
difficult in practice, free-free boundary conditions are set 
up for the plate experimentally. The results of FEM are 
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on the other hand verified by the modal testing for free-
free boundary conditions. Finally, the natural frequency 
obtained by the present method is compared and 
validated with FEM under clamped boundary conditions. 
So, with a good approximation, the Equation (39) can be 
used to calculate the natural frequency of stiffened plates 
in contact with any fluid. 
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