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SUMMARY 
 
This paper establishes a fast and accurate solution of the dynamic behaviours of subsea free-spanning pipelines under 
four different boundary conditions, based on GITT - the generalised integral transform technique. The fluid-structure 
interaction model is proposed by combining a linear structural equation and a non-linear distributed wake oscillator 
model, which simulates the effect of external current acting on the pipeline. The eigenvalue problems for the cross-flow 
vibration of the free-spanning submarine pipeline conveying internal fluid for four different boundary conditions are 
examined. The solution method of the natural frequency based on GITT is proposed. The explicit analytical formulae for 
the cross-flow displacement of the pipeline free span are derived, and the mode shapes and dynamic behaviours of the 
pipeline free span are discussed with different boundary conditions. The methodology and results in this paper can also 
expand to solving even more complicated boundary-value problems. 
 
1. INTRODUCTION 
 
Due to seabed unevenness, pipeline crossings, tie-in to 
subsea structures, sleepers, soil scouring, sand waves, etc., it 
is inevitable that the free span of subsea pipelines develops 
in offshore/underwater projects. When a free span forms, 
the structural behaviours of the free spanning part will be 
different from the shoulder parts which rest on the seabed 
(Ronold, 1995). Under the backdrop that the oil supplies 
onshore and even in shallow waters which are easily 
accessible are declining, the exploration of oil and gas is 
now targeting at deeper waters (Bouchonneau et al, 2010; 
Fyrileiv et al, 2013 and Sollund et al, 2015). The existence 
of subsea free-spanning pipelines brings rigorous challenges 
for offshore/underwater engineering. Sollund et al. (2015) 
summarised the three major categories of risks that the free 
span poses to pipeline integrity, i.e. extensive bending/local 
buckling due to static weight, free spans being hooked by 
anchors or trawling equipment, and vortex-induced 
vibrations (VIV). 
 
Vortex-induced vibrations (VIV) is defined as motions 
triggered on bluff bodies by interaction with an external 
flow. It determines, to a large extent, the dynamic 
characteristics of the subsea free-spanning pipeline, and 
the boundary conditions is one of the factors that affect 
the VIV behaviours of the free span. DNV-RP-F105 
(2006) suggested that the free-spanning pipeline can be 
simplified as a beam model with pinned-pinned or fixed-
fixed ends for VIV analysis. And there are a large 
number of theoretical, numerical and experimental 
studies that follow the above mentioned principle. For 
instance, Lou et al. (2005) conducted a finite element 
analysis of pinned-pinned subsea free-spanning 
pipelines; Kaewunrue et al. (2005) studied the nonlinear 
free vibration of marine pipes to determine the natural 
frequencies and mode shapes based on a pinned-pinned 
pipe model; Brushi and Vital (1991) carried out an 
experiment for the VIV behaviours of pipes with pinned-
pinned, and clamped-clamped boundary conditions; Gu 

et al. (Gu et al, 2013a and Gu et al, 2013b) studied the 
VIV of a pinned-pinned flexible cylinder by carrying out 
a towing tank experiment and adopted an integral 
transform technique to solve the dynamic characteristics 
of a clamped-clamped pipe. 
 
Due to the complexity of the harsh marine environment and 
the vibration behaviour of the pipeline system per se, 
proposing the appropriate boundary value problems to 
describe the boundary conditions for subsea free-spanning 
pipelines is not easy, not to mention solving the eigenvalue 
problems of structures with complicated boundary 
conditions. That said, attempts are done by researchers to 
study more complicated boundary condition problems. Choi 
(2001) proposed a calculation formula for the maximum 
allowable span length under fixed-fixed, pinned-pinned, 
fixed-pinned and fixed-free boundary conditions. Meng et 
al. (2017) studied the cross-flow vibration of a fixed-free 
pipe discharging fluid, and Cui and Tani (2008) studied the 
stability of a fixed-free pipe discharging and aspirating fluid. 
To make the boundary condition of the subsea free-
spanning pipeline more close to the reality, Ai et al. (2009) 
proposed a spring-supported model to simulate the pipe-soil 
interaction at the span shoulders, while the two ends of the 
free-spanning pipeline system remain simple-supported. 
 
However, free-spanning pipeline analyses typically 
involve a significant amount of parametric studies due to 
variations in span lengths, axial forces, flow and current 
velocities, boundary conditions, etc. (Tang et al, 2015, 
and Yang et al, 2017). Methods such as numerical 
simulation or large-scale experiments are quite time-
consuming. It is highly desirable to establish a method 
based on analytical approaches, which can radically 
reduce the calculation time. The present paper is aimed at 
exploring a fast and accurate method for solving 
complicated boundary value problems. Firstly, a fluid-
structure interaction model which combines a linear 
structural equation and non-linear distributed wake 
oscillator model simulating the effect of external current 
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acting on the free-spanning pipeline is proposed, and the 
eigenvalue problems of the cross-flow vibration of the 
free-spanning pipeline under four different boundary 
conditions are solved. Secondly, the governing equation 
system is solved by GITT - the generalised integral 
transform technique, and the explicit analytical formulae 
for the cross-flow displacement of the pipeline free span 
are derived. Thirdly, the natural frequency of the free 
span system is solved based on GITT, which is validated 
against the theoretical results. In addition, the mode 
shapes and the dynamic behaviours are discussed. 
 
2. PROBLEM DEFINITION 
 
2.1 MODEL DESCRIPTION 
 
Consider an elastic free-spanning submarine pipeline 
conveying internal fluid as shown in Figure 1. A 
Cartesian coordinate with its origin at the left end of the 
free span is set up, where the x-axis is the initial axis of a 
static pipeline, the y-axis is parallel to the direction of the 
current flow, and the z-axis is in the direction opposing 
gravity, along which the free-spanning pipeline vibrates. 
The Bernoulli-Euler beam equation is adopted to 
describe the transverse vibration of the pipeline. The 
governing equation system of the cross-flow vibration of 
the free-spanning submarine pipeline is given as (Lou et 
al, 2005 and Li et al, 2016): 
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The pipeline is assumed to be cylindrical with both 
constant outer and inner diameters, respectively 
symbolised as D and Di; its inner cross section area is 
symbolised as Ai; the free-spanning pipeline is subject to 
steady internal flow, with a constant velocity of U, and to 
uniform current, with a constant velocity of V; the axial 
tension is Ta; the internal pressure is P; the spanlength is 
L. mp, mi and me is the mass per unit length of the 
pipeline, the internal fluid and the added mass due to 
external fluid, and m is the summation of the three; me 

can be calculated by 
2

M e
e 4

DCm SU
 , where CM is the 

added mass coefficient, and ρe is the density of the 
external fluid; EI is the flexural stiffness; St is the 
Strouhal number; rs is the structural damping; rf is the 
fluid added damping, equalling to 2

f eDU:γ , where γ is 
a coefficient related to the mean sectional drag 
coefficient of the pipe - CD, expressed as D / (4 )C StS ; 
the term on the right side of the first equation 

2
e L0

4
V CD qU  denotes the lift force exerted on the pipeline 

by the current; L L02 ( , ) /q x tC C  is the reduced 
fluctuating lift coefficient, where CL0 is the reference lift 
coefficient that can be obtained through the observation 
of a fixed structure subject to vortex shedding, and CL is 
the lift coefficient. 
 
The second equation in the governing equation system 
Equation 1 is a wake oscillator model (Facchinetti et al, 
2004). It is to simulate the fluid force acting on the free 
span. 

f 2 /StU DS:   denotes the vortex-shedding 

frequency; 
2

2

z
D t
D w

w
 describes the effect of the pipe motion 

on the near wake. It can be seen that the coupling is 
through acceleration. The values of the van der Pol 
parameter ε and scaling parameter α can be derived from 
the experimental results from Facchinetti et al. (2004). 
Under the acceleration coupling model the value of ε is 
0.3, and α 12. The values of other fluid parameters in the 
mathematical model are as follows: CD = 1.2, CM = 1, St 
= 0.2. 
 
By introducing the following dimensionless variables: 
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the governing equation system Equation 1 is then turned 
to (omitting the asterisks for simplicity): 
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Figure 1: Schematic diagram of a fluid-conveying free-spanning submarine pipeline. 
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2.2 EIGENVALUE PROBLEMS 
 
The eigenvalue problems of the transverse displacement 
of the free span and the wake variable can be written 
respectively as: 
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where iX  and iI  are the eigenfunction and the 

eigenvalue of problem Equation 4a; likewise kY  and kM  
are the eigenfunction and the eigenvalue of problem 
Equation 4b. The eigenfunctions both satisfy the 
following orthogonality, 
 

1

0
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1

0
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where ijG  and klG  is the Kronecker delta. For i jz , 

0ijG  ; and for i jz , 1ijG  . Likewise, for k lz , 

0klG  ; for k l ,  1klG  . 
 
The normalised integrals are 
 

1 2

0
( )di iN X x x ³                                                           (6a) 

1 2

0
( )dk kN Y x x ³                                                          (6b) 

 
Hence, the general solution for the eigenfunctions are 
given by 
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The unknowns (C1, C2, C3, C4, I  and C1, C2, C3, C4, M ) 
are determined by the boundary conditions. The four 
different boundary conditions discussed in the present 
paper are expressed as: 
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x fixed-pinned boundary condition: 
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x fixed-free boundary condition: 
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x pinned-pinned boundary condition: 
 

2 2

2 2

d (0) d (1)(0) 0   0   (1) 0   0
d d

i i
i i

X XX X
x x

    , , ,           (11a) 

2 2

2 2

d (0) d (1)(0) 0   0   (1) 0   0
d d

k k
k k

Y YY Y
x x

    , , ,         (11b) 

 
 
The eigenvalue problems (4a) and (4b) are now solved 
for four different conditions: 
 
x fixed-fixed boundary condition: 
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where 
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x fixed-pinned boundary condition: 
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x fixed-free boundary condition: 
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where 
 
cosh cos 1 ( 1,  2,  3,  )i i iI I  �  }                                (17a) 
 
and 
 
cosh cos 1 ( 1,  2,  3,  )k k kM M  �  }                                (17b) 
 
 
x pinned-pinned boundary condition: 
 

( ) sin( )i iX x xI                                                          (18a) 
 

( ) sin( )k kY x xM                                                         (18b) 
 
where 
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and 
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3. INTEGRAL TRANSFORM SOLUTION 
 
When the eigenvalue problems are solved, one can 
proceed with using GITT to solve the governing equation 
system Equation 3. Following the principle of GITT, the 
integral transform pair - the integral transform itself and 
the inversion formula is put forward. 
 

For the transverse displacement of the free span: 
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For the wake variable: 
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  are the 

normalised eigenfunctions. 
 
 
The next step is to use GITT to transform the governing 
equation system in order that it is in the appropriate form 
that the results can be calculated. Multiplied by operators 

1

0
( )diX x x³  and 1

0
( )dkY x x³  respectively, the partial 

differential equation system (3) is transferred to the 
following set of ordinary differential equation system, 
where the spatial coordinate x is eliminated: 
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where the coefficients are determined by the following 
integrals: 
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For calculation, the expansions for ( , )z x t  and ( , )q x t  are 

truncated to N orders. When ( )iz t  and ( )kq t  are 
numerically evaluated with N orders, the inversion 
formulas Equations 20b and 21b are than applied to 
obtain the semi-analytical expressions for the non-
dimensional ( , )z x t  and ( , )q x t . 
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4. RESULTS AND DISCUSSION 
 
4.1 NATURAL FREQUENCIES BY GITT 
 
The main parameters for the pipeline free span and the 
fluid are shown in Table 1. The internal flow velocity is 
set as zero. And for the initial conditions, a random noise 
with an amplitude of order O(10-3) is applied to ( ,0)z x : 
 
 

3 ( ,0) ( ,0)( ,0) (10 ) ,  0 ,  ( ,0) 0 ,  0z x q xz x O q x
t t

� w w
    

w w
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Table 1 Geometric and physical properties of submarine 
pipeline, internal flow and external current. 
Symbol Value Unit 
Submarine pipeline   
L 40 m 
D 0.35 m 
Di 0.325 m 
ρp 8200 kg/m3 
[  0.005  
E 2.0×1011 Pa 
Internal fluid   
ρi 908.2 kg/m3 
External fluid   
ρe 1025 kg/m3 
CD 1.2  
CM 1  
CL0 0.3  
α 12  
ε 0.3  
St 0.2  
 
 
Table 2 Fundamental natural frequency of the pipeline 
free span under different boundary conditions 
Boundary 
condition 

Results 
by GITT 

Fundamental natural 
frequency fs,1 (Hz) 

Fixed-fixed 2.20 0.81 
Fixed-pinned 1.53 0.56 
Fixed-free 0.35 0.13 
Pinned-pinned 0.98 0.36 
 
 
Figure 2 presents the free vibration time history and 
frequency analysis of the free span midpoint for four 
different boundary conditions. The spectrogram for each 
boundary condition is obtained by the Fast Fourier 
Transform of the time histories. Since the governing 
equation system is non-dimensional, results calculated by 
GITT is also non-dimensional. The dominant frequency 
in the spectrogram for each boundary condition is the 
fundamental natural frequency of the free span. By 

conversion, the fundamental structural natural frequency 
in Hz is summarised in Table 2. 
 
In order to validate the correctness of GITT solutions, the 
results in Table 2 is verified against the theoretical result, 
calculated by Equation 24. 
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The first solution of the eigenvalue 1I , obtained through 
Equations 13a, 15a, 17a, 19a, respectively are 4.730041, 
3.926602, 1.875104, π。 And by introducing the values 
of 1I  to Equation 24, the corresponding natural 
frequency of the free spanning pipeline conveying 
internal flow with zero velocity are 0.81 Hz, 0.56 Hz, 
0.13 Hz, 0.36 Hz, respectively for boundary conditions 
of the fixed-fixed, the fixed-pinned, the fixed-free and 
the pinned-pinned. By comparison, the results calculated 
by GITT is consistent with the theoretical results. This 
also proves the validity of the GITT solution. 
 
 
4.2 MODE SHAPE ANALYSIS 
 
When the structural natural frequency is determined, the 
structural damping can then be evaluated by relating to 
the natural frequency with ss 4 fr mS [ , where [  is the 
damping ratio, the value of which, in this case, is taken 
as 0.005. Figure 3 depicts the mode shapes of the 
pipeline free span under different boundary conditions, at 
U = 0.5 and Vr = 6, where Vr is a normalised current 
velocity (reduced velocity) calculated by sVr V Df . 
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Figure 3: Mode shapes of the free span under different 
boundary conditions 
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Figure 2: Free vibration time history and frequency analysis of the free span midpoint under different boundary 
conditions 
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The internal flow velocity ignored, the structural natural 
frequencies of the first three modes are calculated and 
presented in Table 3. For the free span under the fixed-
fixed boundary condition, the vortex-shedding 
frequencies coincides with the first three structural 
natural frequencies when the external current velocities 
respectively are 1.42 m/s, 3.93 m/s, 7.70 m/s, according 
to Strouhal principle. In a similar manner, for the free 
span under the fixed-pinned boundary condition, the 
vortex-shedding frequencies coincides with the first three 
structural natural frequencies when the external current 
velocities respectively are 0.98 m/s, 3.18 m/s, 6.64 m/s. 
For the free span under the fixed-free boundary 
condition, the vortex-shedding frequencies coincides 
with the first three structural natural frequencies when 
the external current velocities respectively are 0.22 m/s, 
1.40 m/s, 3.93 m/s. And for the free span under the 
pinned-pinned boundary condition, the vortex-shedding 
frequencies coincides with the first three structural 
natural frequencies when the external current velocities 
respectively are 0.63 m/s, 2.51 m/s, 5.65 m/s. Since the 
boundary conditions determines the natural frequency of 
the pipeline free span, the current velocity range that 
makes the lock-in occur varies when the boundary 
conditions changes. The results mentioned above are also 
summarised in Table 4. 
 
Table 3 Fundamental natural frequency of the pipeline 
free span under different boundary conditions. 

Boundary 
condition 

1st mode 
natural 
frequency 
fs,1 (Hz) 

2nd mode 
natural 
frequency 
fs,2 (Hz) 

3rd mode 
natural 
frequency 
fs,3 (Hz) 

fixed-
fixed 0.81 2.24 4.40 

fixed-
pinned 0.56 1.82 3.79 

fixed-free 0.13 0.80 2.24 

pinned-
pinned 0.36 1.44 3.23 

 
 
 
Table 4 Current velocity for vortex-shedding frequency 
equal to the structural natural frequency of the first three 
modes. 

Boundary 
condition 

Current 
velocity 
(m/s) 
Ωf =fs,1 

Current 
velocity 
(m/s) 
Ωf =fs,2 

Current 
velocity 
(m/s) 
Ωf =fs,3 

fixed-
fixed 1.42 3.93 7.70 

fixed-
pinned 0.98 3.18 6.64 

fixed-free 0.22 1.40 3.93 

pinned-
pinned 0.63 2.51 5.65 

 

The mode shapes of the free span under four different 
boundary conditions at their corresponding three current 
velocities provided in Table 4 are shown in Figures 4-7. 
The boundary conditions determine the natural 
frequencies of the free-spanning pipeline system, thereby 
changing the lock-in region of the system. Results show 
that the lock-in happens at the lowest current velocity 
ranges with the fixed-free boundary condition, and at the 
highest current velocity ranges with the fixed-fixed 
boundary condition. 
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(a) 1.42 m/s          (b) 3.93 m/s          (c) 7.70 m/s 

Figure 4: Mode shapes of the free span under the fixed-
fixed boundary condition. 
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Figure 5: Mode shapes of the free span under the fixed-
pinned boundary condition. 
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Figure 6: Mode shapes of the free span under the fixed-
free boundary condition. 
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Figure 7: Mode shapes of the free span under the pinned-
pinned boundary condition. 
 
 
4.3 DYNAMIC ANALYSIS 
 
Figure 8 presents how the reduced velocity Vr affects 
maximum RMS displacement-to-diameter ratio RMS, Maxz  
of the free-spanning pipeline within the lock-in region. 
Results show that the lock-in occurs within the same 
reduced velocity region for the four boundary conditions 
discussed, i.e., Vr�  [4, 8] and the tendency of RMS, Maxz  
with the change of Vr is similar for the four boundary 
conditions. However, there is a distinct disparity for the 
value of RMS, Maxz  between different boundary conditions, 
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with the fixed-free pipeline having the minimum RMS, Maxz , 
followed by the fixed-fixed, the fixed-pinned, and the 
pinned-pinned which has the maximum RMS, Maxz . 
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Figure 8: Effect of the reduced velocity on the maximum 
RMS displacement-to-diameter ratio. 
 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

R
M

S 
D

is
pl

ac
em

en
t-

to
-d

ia
m

et
er

 ra
tio

 z
R

M
S

Dimensionless x
(Vr = 5)

 U = 0
 U = 0.8
 U = 1.6

    
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

R
M

S 
D

is
pl

ac
em

en
t-

to
-d

ia
m

et
er

 ra
tio

 z
R

M
S

Dimensionless x
(Vr = 7)

 U = 0
 U = 0.8
 U = 1.6

 
(a) the fixed-fixed 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

R
M

S 
D

is
pl

ac
em

en
t-

to
-d

ia
m

et
er

 ra
tio

 z
R

M
S

Dimensionless x
(Vr = 5)

 U = 0
 U = 0.8
 U = 1.6

    
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

R
M

S 
D

is
pl

ac
em

en
t-

to
-d

ia
m

et
er

 r
at

io
 z

R
M

S

Dimensionless x
(Vr = 7)

 U = 0
 U = 0.8
 U = 1.6

 
(b) the fixed-pinned 
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(d) the pinned-pinned 

Figure 9: Distribution of RMS displacement-to-diameter 
ratio of the free-spanning pipeline. 

Figure 9 demonstrates how the internal flow velocity U 
affects RMS displacement-to-diameter ratio RMSz  of the 
free-spanning pipeline under different boundary conditions. 
Results are calculated with Vr = 5, 7 and U = 0, 0.8, 1.6. 
Results show that the internal flow velocity will alter the 

RMSz  along the pipeline free span. When the internal flow 

velocity varies, there is a sharp change in the spanwise RMSz  
for the free span with the fixed-free boundary condition. For 
the pinned-pinned free span, the change of the spanwise 

RMSz  is also remarkable. 
 
Figure 10 exhibits the influence of internal flow velocity 
change on the natural frequency of the pipeline free span. 
For the free span with fixed-fixed, fixed-pinned or 
pinned-pinned boundary condition, the structural natural 
frequency declines with the increase of internal flow 
velocity. When the velocity of the internal flow surpasses 
a critical value, i.e. the dimensionless U = 7.56, 5.40, 
3.78, respectively for the fixed-fixed, fixed-pinned or 
pinned-pinned ended free span, the pipeline system will 
lose its stability through first mode buckling due to the 
centrifugal force acting on the structure by the internal 
flow. However, the results in Figure 10 does not include 
the pipeline system with fixed-free boundary condition, 
since the vibration becomes non-conservative because 
the system can exchange energy with the environment as 
the free end discharges fluid (Meng, 2017). 
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Figure 10: Effect of boundary conditions on the critical 
internal velocity 
 
 
5. CONCLUSION 
 
In the present paper, the eigenvalue problems for the 
cross-flow vibration of the free-spanning submarine 
pipeline conveying internal fluid are studied for four 
different boundary conditions, and the solution of natural 
frequency based on GITT is put forward and validated. 
Besides, the mode shapes and dynamic behaviours of the 
pipeline free span are discussed with different boundary 
conditions, and internal and external flow velocities are 
discussed. The methodology and results in this paper can 



Trans RINA, Vol 160, Part A2, Intl J Maritime Eng, Apr-Jun 2018 

©2018: The Royal Institution of Naval Architects                   A-163 

also expand to solving even more complicated boundary-
value problems. Findings are summarised as follows. 
x Based on GITT, the structural natural frequencies of 

the free-spanning submarine pipeline constrained by 
four different boundary conditions are calculated and 
verified against the theoretical results. 

x Since the boundary conditions determines the natural 
frequency of the pipeline free span, the current 
velocity range that makes the lock-in occur varies 
when the boundary condition changes. Under the 
fixed-fixed boundary condition, the lock-in happens 
at the highest current velocity range. 

x The lock-in region is Vr� [4, 8] for all the boundary 
conditions, since the reduced velocity Vr is calculated 
based on the structural natural frequency, which 
changes according to the boundary conditions. The 
tendency of RMS, Maxz  with the change of Vr is similar 
for the four boundary conditions discussed in the 
present paper. However, there is a distinct disparity for 
the value of RMS, Maxz  between different boundary 
conditions. 

x The boundary condition influences the natural frequency 
of the free-spanning pipeline system, and also the critical 
internal flow velocity for structural instability. 
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