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SUMMARY 
 
OpenFOAM is an open source CFD (Computational Fluid Dynamics) toolbox and recently attracts many researchers to 
develop codes based on it for their own applications. In order to numerically generate waves based on the wave-maker 
theory for a piston motion, numerical improvements have been done on the base of OpenFOAM by the author. In gen-
eral, the present new tool can be employed to simulate wave generation as long as the piston motion is given. This paper 
presents the related computational procedure and simulations for generating relatively long finite-amplitude waves ac-
cording to Madsen’s second-order wave-maker theory. The sensitivities of the computed incident wave profile to grid 
density and time step are investigated for the case of generating a wave with permanent form. The simulation accuracy is 
validated by comparison with the analytical solution and available experimental data. 
 
1. INTRODUCTION 
 
Havelock (1929) is most probably the first researcher who 
carried out the studies on wave-maker theory. He derived 
analytical solutions of linear wave generations for piston- 
and flap-type wave maker. Ursell et al. (1960) did an ex-
perimental study to verify the linear wave-maker theory 
for a piston motion. In 1970s, the second-order 
wave-maker theory received amount of attentions. It is 
generally recognized that if the displacement of a piston is 
prescribed to be sinusoidal, the resulting finite-amplitude 
wave will consist of a primary and one or more secondary 
waves, not showing a permanent form. The frequency of 
primary wave will be the same with that of the wave mak-
er, however, the frequencies of the secondary waves differ 
from that. Thereafter, Madsen (1971) came up with a 
theory of second-order wave maker. He expounded the 
components of the resulting wave induced by the sinusoi-
dal motion of a piston, and gave out their mathematic 
formulas of wave profile derived from potential theory. In 
particular, he discovered a wave-maker motion which 
eliminates the secondary harmonic free wave, conse-
quently resulting in that the generated wave was absolutely 
progressive and of permanent form. Sulisz and Hudspeth 
(1993) developed a complete second-order solution for a 
generic wave maker. Later on, the studies on the theory of 
nonlinear wave generations were more reported in publi-
cations. For example, Schäffer (1996) proposed a 
wave-maker theory for irregular waves. The theory was 
demonstrated for a piston-type wave maker in laboratory. 
Zhang and Schäffer (2007) did an experimental study on 
verifying their approximate stream function wave-maker 
theory for highly non-linear waves. More recently, Sulisz 
and Praprota (2008) performed a prediction study on the 
propagation and transformation of non-linear water waves. 
 
As the development of wave-maker theory, more natural 
waves can be generated in wave tank now. This is of 
significance for the studies on hydrodynamic perfor-
mance of offshore structures in waves. In the initial stage 
of design for a marine structure, we can obtain its dy-
namic response in its working environment simulated in 

a wave tank, and finally guide the design for safety. To 
date, most wave makers equipped in wave tank are either 
piston- or flap-type. How to artificially reproduce natural 
waves in laboratory remains a big challenge as yet. 
 
The concept of “numerical wave tank” has appeared in 
past decades. Wave generations can be numerically sim-
ulated by means of CFD methods and this concept is 
being increasingly used as an alternative to real wave 
tanks. Its evident advantages are that CFD technique 
reduces the period and cost of research, e.g., the study on 
ship seakeeping performance, and meanwhile offers 
more flow details which is helpful for better understand-
ing about related mechanisms. So far there are two main 
numerical approaches for simulating wave generations: 
one assumes the fluids to be inviscid and non-rotational, 
i.e. the so-called potential theory; the other deals with the 
viscous fluids. In the former approach, the Laplace equa-
tion together with boundary conditions is solved, usually 
using a boundary element method (Grilli et al., 2001), 
while in the latter method the governing equations are 
Navier-Stokes (NS) (Dong and Huang, 2001) or Reyn-
olds-Averaged Navier-Stokes (RANS) equations. In 
recent years, the latter method seems to be more prefera-
ble as reflected in literatures. Part of the reason may be 
that in many applications viscosity affects much the 
simulation accuracy and thus is non-ignorable. Another 
way to generate wave via NS or RANS simulations is to 
set internal flow velocity at an inlet boundary of the 
computational domain (Hafsia et al., 2009). The velocity 
on inlet must be prescribed according to the desired wave 
profile. This method for wave generation shows its ad-
vantages on computational efficiency in practical appli-
cations since it avoids the dynamic mesh involved in the 
simulations of physical wave maker. 
 
The author has developed an own dynamic boundary 
condition and a solver for simulations of piston-type 
wave maker based on OpenFOAM. This study will focus 
on the verification and validation of the accuracy of the 
generated wave profiles. The cases of two dimensions are 
considered in the simulations according to the Madsen’s 
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second-order wave-maker theory. The computed wave 
profiles are compared with experimental data and ana-
lytical solutions. 
 
2. GOVERNING EQUATIONS AND INITIAL 

AND BOUNDARY CONDITIONS 
 
In this study, the generations of 2D waves are simulated. 
Figure 1 displays the sketch of a piston-type wave maker. 
In the figure, ℎ denotes the still water depth, 𝑥-axis is 
horizontal and locates in still water surface, 𝑧-axis is ver-
tical upwards and locates at the initial position of the pis-
ton. The piston moves periodically along the 𝑥-axis and 
its displacement 𝜉 is prescribed in advance for a desired 
wave according to a certain theory of wave generation. 
 

 
Figure 1 Sketch of a piston-type wave maker and coor-
dinate system 
 
In order to simulate the physical wave maker, the unsteady 
NS equations are solved. For incompressible fluids, the 
continuity equation in above Cartesian coordinate system is 
 
𝜕𝑢
𝜕𝑥

+
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𝜕𝑧

= 0                                                                         (1) 

 
and the NS equations are 
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where 𝑢 and 𝑤 are velocity components, 𝜈 is kin-
ematic viscosity, 𝑝 is pressure, 𝜌 is density of fluid, 
𝑡 is time, 𝑔 is gravitational acceleration and 𝑑(𝑥) is 
a damping function which is equal to zero except for 
the dissipation zone located in the end part of the vir-
tual wave tank. Here a linear damping law is assumed 
to be as 

𝑑(𝑥) = 𝛼(𝑥 − 𝑥𝑠)                                                           (4) 
 
with 𝑥𝑠 the starting position of damping zone and 𝛼 (> 0) 
an independent parameter which is adjusted to completely 
absorb the wave, avoiding wave reflection. Note that at 
𝑥 = 𝑥𝑠 𝑑(𝑥) is zero (minimum value) and at the end of the 
tank 𝑑(𝑥) reaches the maximum value 𝛼(𝑥𝑒 − 𝑥𝑠) where 
𝑥𝑒 is the end position of damping zone. 
 
The method of Volume of Fluids (VoF) offered by 
OpenFOAM is applied to capture wave surface. The VoF 
transport equation is 
 
𝜕𝐹
𝜕𝑡

+
𝜕(𝐹𝑢)

𝜕𝑥
+

𝜕(𝐹𝑤)
𝜕𝑧

= 0                                             (5) 

 
where 𝐹 is the fraction function and represents that a 
computational cell with 𝐹 = 0 is full of air, while if 
𝐹 = 1 it is full of water and when 0 < 𝐹 < 1 the cell 
locates at the interface between water and air. 
 
In present case, the initial condition considered at 𝑡 = 0 
is a still water with no waves. The boundary conditions 
are as follows when solving the transport equations: 
x For the piston boundary, a moving wall condition is set. 
x At water bottom and the end side of the tank, a fixed 

wall condition is imposed on. 
x At the atmosphere, a pressure-outlet condition is 

considered. 
 
3. NUMERICAL METHOD 
 
The present contributions to OpenFOAM lie in two 
aspects: implement a dynamic boundary condition and 
extend a solver by adding the damping term into the 
original one. The original solver extended here is 
named interDyMFoam. This solver is based on a finite 
volume method and can be used to simulate turbulence, 
while if the simulation type is turned to laminar mode 
the code is exactly to solve the equations (1), (2) and 
(3) without modelling turbulence. The damping term 
in equation (3) is added on the right side of the origi-
nal momentum equation by defining a field variable. A 
class or dynamic boundary condition which inherits 
the old one “fixedValuePointPatchField” is developed 
to realize the movement of a boundary. The new class 
incudes a function being able to read data from a file, 
thus in the process of simulating the value imposed on 
the boundary can vary over time. In this study, the 
time history of the piston displacement is stored in a 
file beforehand and the displacement is updated in 
each time step according to the stored data when sim-
ulating wave generations. 
 
OpenFOAM supplies a range of discretization schemes for 
the terms of time, convection and diffusion respectively and 
the solvers for system of linear equations as well. Here a 
second-order Central Difference Scheme (CDS) is chosen 
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for the diffusive terms. The convective terms are discretized 
by a second-order Upwind Difference Scheme (UDS). For 
time, the first-order Euler scheme is employed. The systems 
of linear equations resulting from the discretized equations 
are solved by using iterative solvers, here Gauss-Seidel 
relaxation for velocity and Generalized Geometric Mul-
ti-Grid (GAMG) for pressure. 
 
 
4. GENERATION OF FINITE-AMPLITUDE 

WAVES 
 
4.1 MADSEN’S SECOND-ORDER 

WAVE-MAKER THEORY 
 
According to Madsen’s theory (Madsen, 1971), when the 
displacement of a piston is prescribed as 
 

𝜉 = −𝜉0 cos(𝜔𝑡)                                            (6) 
 
the generated wave profile will be 
 
       𝜂 = 𝜂(1) + 𝜂𝑝
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+ cos(𝑘𝑥 − 2𝜔𝑡)                                (7) 
 
where 
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,                                                       (8) 
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with  

𝑛1 =
1
2

(1 +
2𝑘0ℎ

sinh(2𝑘0ℎ)) ,                                              (11) 

 

𝑛2 =
1
2

(1 +
2𝑘ℎ

sinh(2𝑘ℎ)) .                                               (12) 

 
The dispersion relationships are as follows. 
𝜔2 = 𝑘0𝑔 tanh(𝑘0ℎ) ,                                                      (13) 
4𝜔2 = 𝑘𝑔 tanh(𝑘ℎ)                                                         (14) 

In above equations, 𝜉0 is the magnitude of piston dis-
placement, 𝜔  is frequency, 𝑎  is the height of 
first-order wave, 𝑎𝑝

(2)  and 𝑎𝑙
(2)  are the second-order 

wave heights and 𝑘0, 𝑘 are wave numbers. The super-
scripts (2) refer to the order of magnitude of the terms. 
 
The solution of wave profile, i.e., equation (7), is derived 
from potential theory. The first term on the right-hand side 
represents the first-order wave component. The second term 
is the Stokes second-order wave which travels at the same 
speed as the first-order one. The third term is the free wave 
of second order with a lower speed than the speed of the 
first-order wave, which consequently results in that the 
wave profile is not of permanent form. 
 
The second harmonic free wave can be eliminated by 
adding a second-order piston motion. If the resultant 
displacement of piston is then give by 
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+
1
2

𝑎
ℎ

1
𝑛1

(
3
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2
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the generated wave is Stokes second-order wave with a 
permanent form. The solution of surface elevation is 
 
𝜂 = 𝑎 cos(𝑘0𝑥 − 𝜔𝑡)

+
𝜋
2

𝑎2

𝜆
cosh(𝑘0ℎ)
sinh3(𝑘0ℎ)

(2

+ cosh(2𝑘0ℎ)) cos2(𝑘0𝑥 − 𝜔𝑡) (16) 
 
where 𝜆 is wave length. 
 
 
4.2 SIMULATION OF WAVE MAKER 
 
Madsen did some experiments to verify his theory, which 
offered a good source for present validation. In this study, 
the piston motions prescribed by both equations (6) and 
(15) are considered. According to the experiments by 
Madsen, for present simulations a virtual 2-D wave tank 
is set up with the long of 50 meters and 0.76-meter 
height, where the water depth is 0.38 meter. The zone of 
the virtual tank 30 𝑚 ≤ 𝑥 ≤ 50 𝑚 is imposed for wave 
absorption and for all simulations the damping parameter 
𝛼 in equation (4) is specified to 3 which can ensure an 
absolute absorption of wave based on a few 
pre-computations. Since the temperature or properties of 
water and air was not mentioned by Madsen in his ex-
periment, the density and viscosity coefficient of water 
and air are set to the values at 20°C in the simulations. 
The temperature is usually expected to have ignorable 
impacts on the general conclusions. 
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Figure 2 A structured grid 
 

 

𝑡 = 10 s 

 

𝑡 = 20 s 
 
Figure 3 Computed wave profiles from the grid dependency study 
 
 
Structured grids are generated for the simulations by 
using the mesh tool “blockMesh” included in Open-
FOAM. The computational domain is divided equally in 
𝑥 and 𝑧 directions respectively, i.e., the edge length of 
cell is same in each direction. Figure. 2 shows an exam-
ple of a very coarse grid (just a partial view), for which 
the water and air are labelled with different colours (the 
orange is water) in still water. 
 
 
4.2.1 Grid dependency study 
 
The sensitivities of wave profile to grid density and time 
step are firstly investigated for the piston motion given 
by equation (15). Four grids are generated by systemati-
cally doubling the number of grid points in 𝑥 and 𝑧 
directions. Table 1 lists the gird information. The cell 
number increases with the growth rate of 4 times. The 
case 𝜉0 = 6.1 cm and 𝑇 = 2.75 s  is taken, consistent 
with Madsen’s experimental condition, where 𝑇 is wave 
period and equal to 2𝜋 𝜔⁄ . The computational time step 
∆𝑡 is same for all grids and set to be 0.001 s. 
 
 
Table 1 Grid information 

Grid Dimensions 
Coarse 200 × 10 
Medium 400 × 20 
Fine 800 × 40 
Finer 1600 × 80 

 

Figure 3 presents the computed wave profiles at 
𝑡 = 10 s and 𝑡 = 20 s. The wave has not yet propagated 
to the end of the tank at 𝑡 = 20 s. We note from the 
figure that when refining the grid, the difference of pro-
file becomes smaller gradually and the profiles based on 
the fine and finer grids are nearly identical. An evident 
phase lag is observed for the profile from the coarse grid 
compared with the profiles based on other grids. A more 
non-linear characteristic of the wave trough is found at a 
close distance from the piton, e.g., in the range of 0 to 15 
meters. Generally, a finer grid captures better the charac-
teristic. It seems that the density of the fine grid is 
enough for highly accurate results via the comparison. 
 
 
4.2.2 Time-step dependency study 
 
Time-step dependency study is carried out for the same 
case, i.e., 𝜉0 = 6.1 cm , 𝑇 = 2.75 s  and displacement 
by equation (15), using the above gird with dimensions 
800 × 40. Another three time steps of 0.002 s, 0.005 s 
and 0.025 s are further considered. The computed wave 
profiles at 𝑡 = 10 s and 𝑡 = 20 s are shown in Figure 
4. The largest difference among the profiles is displayed 
by the wave amplitude. As reducing the time step, the 
change of wave amplitude becomes smaller. The wave 
phases are same. For ∆𝑡 = 0.025 𝑠, the wave decays 
more quickly than others. At small time steps, the wave 
trough also shows a non-linear characteristic in the range 
of 0 to 15 meters, while when ∆𝑡 is equal to 0.025 𝑠 
the characteristic vanishes. 
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𝑡 = 10 s 

 

𝑡 = 20 s 
Figure 4 Computed wave profiles from the time-step dependency study 
 
 
 
 
 
4.2.3 Comparison with measured data and analytical 

solution 
 
Figure 5 shows comparisons of the numerical wave pro-
files at 𝑥 = 4.9 m and 𝑥 = 8.7 m with measured data 
and analytical solution determined by equation (16). We 
note that both computed results and analytical solution 
are consistent to those recorded in laboratory. Satisfac-
tory agreements are also observed in Figure. 6 for the 
other case with 𝜉0 = 6.1 cm , 𝑇 = 2.75 s  and piston 
displacement prescribed by equation (6). In this case, the 
profiles at the stations 𝑥 = 4.9 m and 𝑥 = 8.7 m are 
more largely different, shown by simulations, experiment 
and analytical solution as well. This is quite understand-
able since the profile includes the component of sec-
ond-order free wave whose speed is lower than the main 
first-order wave, thus the resulting wave is not of per-
manent form as stated previously. In contrast, the distinc-
tion of profiles shown in Figure. 5 at 𝑥 = 4.9 m and 
𝑥 = 8.7 m are not so large, because the free wave has 
been eliminated by the added second-order displacement 
in equation (6). On the whole, we can conclude via the 
comparisons that the present simulations succeed in gen-
erating the second-order waves. The computed wave 
profiles are of certain accuracy. 
 
It should be noted that the wave profiles based on ex-
periments were obtained from a 3D wave tank with 46 
cm width. The width might be enough to get the accuracy 
profiles of 2D waves, i.e., the effects of side walls could 
be ignored. 
 

 
 
Figure 5 Comparison of the predicted wave height at two 
stations in one period with measured data and analytical 
solution for the case 𝜉0 = 6.1 cm, 𝑇 = 2.75 s and pis-
ton displacement given by equation (15) 
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Figure 6 Comparison of the predicted wave height at two 
stations in one period with measured data and analytical 
solution for the case 𝜉0 = 6.1 cm, 𝑇 = 2.75 s and pis-
ton displacement given by equation (6) 
 
In order to clarify the effects of the harmonic free wave 
on the wave surface, Figure. 7 compares the computed 
wave profiles obtained by prescribing the piston dis-
placements by equations (6) and (15). The comparisons 
are at 𝑡 = 10 s and 𝑡 = 20 s respectively. It is shown 
that the difference between the profiles depends on the 
distance from the piston. At a position closer to the pis-
ton, the difference is larger, whereas at a further distance 
the difference becomes smaller. This phenomenon may

be explained by that the harmonic free wave travels more 
slowly than other wave components, and therefore the 
free wave does not yet propagate to a far distance. 
 
5. CONCLUSIONS 
 
This work has presented a study on generating waves using 
the own developed code based on OpenFOAM. First of all, 
the theoretical backgrounds are described. Then the Mad-
sen’s second-order waves in a 2D virtual tank were simu-
lated. Convergence study showed that the ‘fine mesh’ with 
time interval of 0.001 s was satisfactory in the calculations. 
The computed results were discussed and validated by 
comparisons with measured data and analytical solutions. A 
good match was achieved for the considered case. However, 
the present solver is only applied for generating long fi-
nite-amplitude waves. A wide range of validation can be 
further done for more practical cases, e.g., wave steepness 
for which viscous effect will be obvious. 
 
The present work is of great practical significance. Gen-
erally speaking, the desired wave with a permanent form 
in two or three dimensions can be generated numerically 
by using the present solver with the relevant input of the 
piston displacement, which can be applied for the study 
on the dynamic response of marine structures in waves, 
for example ship seakeeping performance. In future work, 
the researches on the wave and structure interaction are 
going to be focused on. 
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𝑡 = 10 s 

 

𝑡 = 20 s 
Figure 7 Comparisons between the computed profiles based on the piston displacements given by equations (6) and (15)
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