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SUMMARY 
 
While simulator based maritime training is widely implemented under international maritime organization (IMO) 
convention and model courses, troublesome issues such as objective evaluation of training effectiveness remain 
unsolved. Physiological computing system (PhyCS) refers to an innovative bidirectional human computer interaction 
which is achieved by monitoring, analysing, and responding to operators’ psychophysiological activities in real-time. 
With the development of wearable devices, it becomes promising to apply PhyCS, which was considered as a laboratory 
technology, in real-world scenarios. In our experience utilizing view tracker, portable heart beat sensor, 
electroencephalogram device, and web-cameras in simulator based maritime training, PhyCS shows potential for 
advanced applications in operator performance assessment, usability tests, and adaptive training. However, ambulatory 
working environment, body movement artefact, and model verification are intricate obstacles that constrain its 
applications in the real world. By examining the advantages and obstacles, this paper aims to develop guidelines to apply 
PhyCS in the real-world. 
 
1. INTRODUCTION 
 
Human error has been identified as the most crucial 
contributor to accidents in many domains (Baker & 
McCafferty, 2005; Griffith & Mahadevan, 2011). 
Providing high quality training is a promising way to 
improve operator’s skills and to reduce human error (Wu 
et al. 2015). In professional training, including training 
of pilots, advanced seafarers, and surgery operators, high 
fidelity simulators are widely used to help trainees 
practice routine and emergency operation procedures 
with lower cost and shorter time. There are also cases 
when simulators can provide learning experience beyond 
that which can be learned in actual systems, for example, 
in teaching students systematic trouble shooting skills, a 
simulator that can malfunction any single component in a 
system may provide more effective training than a real 
system. In addition, training procedures and instructions 
can be carried out at a pace that ensure trainees can 
maintain engagement with training tasks, and keep their 
mental workload (MWL) at the optimal point, where the 
learner is neither overloaded nor under loaded. To 
improve the training regime, institutions need to adjust 
their pedagogics based on students’ mental capacity and 
engagement throughout the learning process. 
 
Along with the rapid development of virtual reality 
technologies, many innovative marine simulators have 
appeared. In the 12th (2015) international conference on 
engine room simulators, primary manufacturers exhibited 
prototypes of ship simulators, for instance, head mounted 
virtual reality devices, computer based 3-dimensional 
virtual roaming in engine rooms, and simulators with 
functions of energy saving operation practice. The 
biggest obstacle for training institutions to adopt these 
prototypes is proof as to the degree training effectiveness 
can be improved compared to that of traditional 
simulators. In other words, the usability of these newly 
developed products must be carefully studied. 

Physiological signals, such as neural brain activities 
extracted from electrical voltage fluctuations of scalp, 
eye fixation, pupil diameter, and blink frequency 
measured by view trackers, and heart rate, provide an 
unobtrusive and objective method to infer the operator’s 
mental (affective and cognitive) state as well as physical 
state, although these relationships are mostly implicit. 
Physiological computing systems (PhyCS) correlate 
explicit physiological information with implicit operator 
functional states (OFS). PhyCS is still in its infancy, but 
it has enormous potential to innovate human computer 
interaction by extending the communication bandwidth 
to enable the development of ‘smart’ technology 
(Fairclough, 2009). There are numerous types of 
physiological indices that can be measured in real-time 
by wearable devices or web cameras. These evaluation 
indices are often used for MWL (or cognitive workload) 
measurement (see Table 1) since MWL is considered as 
one of the core elements of human factor constructs. 
Exorbitant MWL results in stress, whereas an 
accumulation of lower workload contributes to task 
disengagement, boredom, and drowsiness.  In a study of 
BMW group research and technology, Hajek et al. 
(2013) developed a new generation driver assistance 
system. The system parameters (e.g. cruise speed) 
adapted to drivers’ MWL measured by heart rate, 
galvanic skin response and respiration, and the results 
estimated from this physiological data revealed an 
advantage of workload adaptive cruise control over 
traditional cruise control.   
 
As shown in Figure 1, the realization of PhyCS generally 
contains the following steps: a) collect physiological 
(bioelectrical, biomechanical or biochemical) data 
through wearable sensors, biomedical devices or image 
analysis techniques; b) conduct pre-processing and 
extract valuable features from physiological signals; c) 
correlate the features with operator’s affective/cognitive 
state based on regression models or machine learning 
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algorithms. The appearance of low cost physiological 
computing devices, including view tracker, heart beat 
sensor, and electroencephalogram (EEG) mapping 
devices are extending the methods of simulator based 
education and training. For instance, during training to 
operate an engine control room console, view trackers 
are used to record the operator’s gaze fixation, and from 
this the instructor can monitor which part of the console 
the operator pays most attention to. However, actual 
maritime environment has specific characteristics that we 
have to consider if we are to apply PhyCS in seafarer 
training. We have already introduced view tracker, 
portable heart beat sensors, EEG devices, and web-
cameras in the marine engine plant simulator (MEPS) at 
Kobe University for training and research. This paper 
aims to report the lessons we have learned from applying 
PhyCS in simulator based maritime training and to 
develop guidelines for PhyCS applications in real  
world scenarios. 
 
 

 
 
Figure 1: Flow chart of physiological computing 
 
 
2. PHYSIOLOGICAL INDICES 
 
Lean and Shan (2012) briefly reviewed the physiological 
and biochemical evaluations of human cognitive states 
and categorized physiological metrics into three main 
categories based on neurophysiological taxonomy. 
However, they did not report on the varied validity of 
these metrics when applied in real or quasi-real 
environments. In this section, in order to consider 
practical application, three types of physiological signals 
and their main features are reported according to the 
sensors used.  
 
 
2.1 HEART RATE RELATED INDICES 
 
Heart rate and heart rate variability (HRV) analyses are 
used for evaluating autonomic nervous system activities 
and are defined as peripheral physiological indices. Heart 
beat sensors are generally low-cost, simple and user 
friendly, and inobtrusive. Applications of heart rate 

related indices are becoming more and more a part of 
standard physiological monitoring. In addition to 
absolute heart rate, time domain, frequency domain, and 
nonlinear indices are also used as physiological 
computing inputs (Tarvainen et al. 2014). Typical heart 
rate related features include average heart beat interval, 
standard deviation of heart beat interval, LF/HF ration 
based on Discrete Fast Fourier Transformation (DFFT), 
where low frequency (LF) is defined as 0.04-0.15Hz and 
high frequency (HF) is defined as 0.15-0.4Hz. 
 
 
2.2 BRAIN WAVE INDICES 
 
Functional brain imaging methods including EEG, 
functional magnetic resonance imaging (fMRI), 
magnetoencephalography (MEG), and positron emission 
tomography (PET), enable the study of cognitive and 
sensorimotor functions of the human brain across a wide 
range of behaviours (Kerick et al. 2009). EEG is used to 
map brain electrical activity. By attaching a set of 
electrodes to specific areas of the scalp, EEG measures 
voltage fluctuations resulting from ionic current within 
the neurons of the respective brain area. EEG signal 
features fall into two categories: short term time domain 
and power spectrum. Event related potentials (ERP) 
measures brain response fluctuations that are related to a 
specific sensory, cognitive or motor event after a 
particular time delay. Prinzel et al. (2003) used the P300 
component of ERP to assess participants’ task 
engagement and performance in an adaptive automation 
situation. EEG waveforms are usually estimated by 
wavelet transformation or DFFT. Power spectral of EEG 
are divided into several bands: delta (1-4 Hz), theta (4-7 
Hz), alpha (8-15 Hz), beta (16-31 Hz), and gamma (32+), 
which sometimes can be slightly disparate. The power of 
these bands or their relative percentage of total power 
bands are often used as physiological indices (Borghini 
et al. 2014). 
 
 
2.3 EYE TRACKING TECHNOLOGY 
 
View trackers are used to record operators’ pupil 
diameter, blink interval, and gaze fixation. For a typical 
eye tracking device, a high resolution infrared camera is 
set to record a video of an eye or face. After image 
binarization processing, threshold values are chosen to 
recognize the centre of the pupil based on pixel 
differences. Thus, both pupil diameter variation and 
eyeball movement can be continuously recorded. 
Furthermore, by calibrating the subject’s eye fixation 
point before normal recording, his or her view path can 
also be recorded. One popular pupil metric that relates to 
cognition function is saccade, which is the fast 
unconscious movement of the pupil. Siegenthaler et al. 
(2014) found that task difficulty in mental arithmetic 
affects micro saccadic rates and magnitudes. Wanyan et 
al. (2014) found that pupil diameter and blink interval 
are effective to infer human MWL.  

Raw physiological data 

Pre-processing 
Noise/outlier reduction 

Feature extraction 

Classification algorithms 

Dimensionality reduction 
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Table 1: Studies that use physiological indices to infer cognitive states in transportation domain

Study Subjective 
measure 

Tasks Difficulty setting Samples 
Analysis 
Method 

Statistical results  

Durantin 
et al. 
(2014) 

NASA 
TLX 

Computer 
simulated air 
piloting; n-back 
sub task and 
auditory alarm 
task  

With/without Cross 
wind during 
piloting; 
1/2-back spatial 
task; (2*2) 4 
sessions 

12;  
ANOVAs; 
regression 

fNIRs 
Piloting difficulty to Oxygenation 
F(1,11)=5.82 
Interaction to Oxygenation 
F(1,11)=5.11 
Oxygenation to Performance 
R2=0.52 
Inverted u-shape of oxygenation 

Stuiver 
et al. 
(2014) 

RSME 6*1.5h 
Driving 
simulator 
 

Fog/no fog 
Low/high traffic 
density 

15; 
Repeated 
MANOVA 
15*6=90 

Interaction to High Frequency 
spectral HRV F(1,89)=4.98 
Interaction to Blood pressure 
F(1,89)=13.42  
Ceiling effects of extremely high 
workload 

Ayaz et 
al. 
(2012) 

NASA-
TLX 

n-back (28 
sessions) 
Air traffic 
control by 
simulator  
(6 sessions) 

n-back 
voice/data;  
number of 
aircrafts(6,12,18) 

24; 
ANOVA 

fNIRs 
“n-back” to Oxygenation 
F(3,69)=4.37, p<0.05; 
Vehicle number to Oxygenation  
F(2,42)=4.52 

Wanyan 
et al. 
(2014) 

NASA-
TLX 

Three phases  
of flight 
simulation, 
monitoring 
flight indicator 

Number of 
indicators 
monitored. Four 
levels 

12; 
One-way 
repeated 
ANOVA 

Main effect 
HR to MW, p=0.252. RRCV to 
MW, p=0.019  
Main effect  
Pupil diameter p=0.076 
ERP P3 peak amplitude p=0.049 

Lee and 
Liu 
(2003) 

NASA-
TLX 

Four stages of 
flight simulator. 
Difficulty by 
TLX 

Take-off, climb and 
cruise, descent and 
approach, 
Landing 

10;  
One-way 
ANOVA 

_R RRMS   
p<0.0001 

 
 
 
 
 
We reviewed recent MWL evaluation literature, to 
find effective physiological indices for the 
transportation domain (Table 1). However, the results 
are ambiguous because of the disparate experiment 
setting. Flight simulator and driving simulator are 
frequently used to simulate the operating environment 
in research but different physiological metrics are 
reported as valid and sensitive to infer operators’ 
MWL. The sensitivity of these metrics are tested 
either by the significance of Analysis of Variance 
(ANOVA) or regression models in distinctive levels of 
task difficulty. HRV features and cerebral cortex 
activity measured by fNIRs or EEG are widely used 
because the equipment is relatively economical and 
requires little medical expertise. Compared to that of 
civil aviation, MWL evaluation research in merchant 
shipping seems quite inactive (Young et al. 2015 
Table 2). One of the reasons is that there are 
considerable obstacles in applying PhyCS in a ship 
environment, and in Section 4 we will provide 
recommendations to deal with some of them. 

3. ADVANTAGES AND APPLICATIONS  
 
3.1 PERFORMANCE ASSESSMENT 
 
There are two general categories of operator performance 
assessment: subjective rating scales and objective measures. 
Subjective rating scales can be collected based on either 
operator’s autognosis or evaluators’ judgement. Their low 
cost and ease of administration, as well as adaptability, make 
subjective measures widely used in a variety of safety-critical 
domains. However, the weakness of a subjective rating scale 
as a performance assessment method, is its dependence on the 
operator and their time and ability to record their feelings. 
Shortcomings such as individual bias, serious intrusiveness 
and discrete sampling, limit its applicability. Therefore, some 
other methods have been developed to evaluate operator 
performance. For instance, in order to avoid drowsiness of 
officers on watch, the international convention of Safety of 
Life at Sea (SOLAS) currently requires all ships above 150 
tonnes to install a Bridge Navigation Watch Alarm System 
(BNWAS), to which the officer on watch has to respond by 
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either directly pressing specific buttons or having their 
movement be detected within a pre-set time interval, say, 12 
minutes. However, the high intrusiveness caused by BNWAS 
and the usability of BNWAS are problematic from the view 
of ergonomics. 
 
Contrarily, operator’s physiological signals can provide an 
objective, continuous and unobtrusive method to conduct 
performance assessment of key operators’ non-technical 
skills that are crucial for system safety, such as leadership 
and communication skills. Different types of physiological 
information have been used to infer human affective states 
as well as cognitive states (Mehta & Parasuraman, 2013; 
Touryan et al. 2016; Wei et al. 2016). In the transportation 
domain, researchers successfully used neurophysiological 
signals to evaluate aircraft pilots’ and car drivers’ mental 
workload, fatigue and drowsiness (Borghini et al. 2014). In 
a marine engine room, engineers’ cognitive states are crucial 
because they have to monitor a large number of system 
parameters and cope with abnormal situations. PhyCS 
provides insight into operator’s cognitive states, and offers a 
method to objectively evaluate their performance and skills 
in dynamic human interactive computer system. 
 
3.2 USABILITY TEST 
 
With the emphasis on human centred design in many 
industries, human-oriented systems have also emerged in 
modern ship design. For a ship, favourable usability means 
that operators can accomplish required tasks with efficiency, 
effectiveness, and self-satisfaction by using the limited on-
board resources. In developing innovative maritime systems 
such as the modern ship bridge shown in Figure 2, designers 
and shipbuilders need to avoid creating distributed 
interfaces that become technology “barriers” (Lützhöft 
2004). Here there are 18 interfaces in total that enable 
operators to track the status of variables’ online through 
indicators located at different positions on the ship’s bridge.  
However, these screens and indicators may be inadequately 
placed on the bridge considering the necessity of operator 
movement and timely information acquisition. One of the 
most important goals of a usability test is to discover major 
problems in the user interface that could result in human 
error, terminate the interaction, and/or lead to user 
frustration (Papachristos et al. 2012). Papachristos et al. 
(2012) also argued for the necessity of a mixed approach, 
combining questionnaires, gaze tracking and speech 
recording for a usability evaluation of the ship’s bridge. Eye 
tracking technology has also been used to study pilot 
scanning across a high fidelity automated 747 cockpit, and a 
model was developed to predict the distribution of attention 
so that the design of alerts is noticed (Wickens et al. 2009).  
 
In the maritime domain, Gould et al. (2009) used HRV 
and skin conductance as MWL measurements and 
examined the effects of two different navigation 
methods, the conventional system using paper charts and 
an electronic chart display and information system 
(ECDIS), on workload and performance in simulated 
high-speed ship navigation. Their results indicated higher 

workload in conventional navigation, although the 
difference between the groups was not significant. For 
bridge and engine room simulators, as higher fidelity 
does not necessarily mean higher efficiency in training, 
designers should pay attention to maintain an optimal 
point of fidelity considering the balance of cost and 
training improvement. For instance, in whether to choose 
a simulator with or without vibration and sound 
feedback, usability should be tested by using PhyCS or 
some other method so that the conclusion is persuasive. 
 

 
Figure 2: Modern Ship Bridge with 18 interaction 
screens (Pan et al. 2015) 
 
3.3 ADAPTIVE TRAINING 
 
While simulator based training has been widely used in 
maritime education institutions, we hope to further 
improve the effectiveness of training by providing 
individualized instruction. Wiltshire & Fiore (2014) 
argued for the advantages of training where the trainee’s 
social and affective cognition state can be handled 
timely. As learning is most efficient when working 
memory resources are managed effectively, efficient 
instruction presents training materials at a pace and in a 
format that keeps a trainee engaged and motivated 
without overloading his or her limited working memory 
resources (Baldwin & Penaranda, 2012). A trainee’s 
functional state can be continuously assessed based on 
physiological signals. Thus, instructors are able to 
implement instructions at an adaptive pace according to 
the trainee’s functional state (e.g. mental arousal, 
boredom) throughout the training process. In a simulated 
environment, one of the most significant challenges 
imposed by implementing PhyCS based adaptive 
training, is that all the data processing and computing 
must be accomplished in real time, which relies on 
efficient integration of software and hardware design. 
 
 
4. OBSTACLES 
 
With the development of more user-friendly wearable 
devices, PhyCS shows particular advantages in 
reducing human error and improving simulator based 
training. However, the characteristics of a maritime 
operation posed inevitable obstacles to the application 
of this technology in real-world environment where 
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work is accomplished dynamically. Several of these 
obstacles and recommendations to avoid them are 
discussed in this section. 
 
4.1 REQUIRING AMBULATORY DEVICES 
 
Compared to the work environment of aviation pilots and 
vehicle drivers, where operators sit in relatively fixed 
positions and focus mainly on cognitive tasks, a marine 
engineer has to move around as part of their routine, 
either in an engine room or engine control room, and 
their work includes a number of physical tasks. Figure 3 
shows MEPS in Kobe University. It consists of an engine 
room, a centralized control console, and an instructor’s 
space. In both training courses and research experiments, 
subjects have to complete required tasks in an 
ambulatory situation. Therefore, wearable devices that 
reliably collect and wirelessly transform physiological 
data are necessary for applications in a ship environment. 
Kerick et al. (2009) argued that some neurophysiological 
measurement technologies, e.g. fMRI, MEG and PET 
can be generally ruled out due to their machinery size. 
Furthermore, while cognitive ergonomics studies can be 
conducted in immobile participants, research on 
embodied cognition has shown that cognitive processing 
when moving and interacting in the physical world may 
have unique characteristics that can only be captured 
with mobile physiological sensors (Mehta & 
Parasuraman, 2013). 
 

 
(b)         (c) 

Figure 3: MEPS (a) outline of MEPS; (b) real picture of 
simulated engine room; (c) control console 
 
To date, various ambulatory sensors, including chest type 
heart beat sensor (Polar Electro, Finland), glasses like eye 
trackers (Tobii Technology, Sweden) and integrated cap 
EEG device (Emotive Systems, Australia), have been 
manufactured and reported valid in academic publications 
(Cheng and Vertegaal, 2004; Kingsley et al. 2005; Gamelin 
et al. 2006; Ramirez and Vamvakousis, 2012). 

4.2 BODY MOVEMENT ARTEFACT 
 
Unlike medical electrocardiographic (ECG) devices, 
portable heart rate monitors such as POLAR RS800 
(POLAR, Finland) generally provide extracted heart beat 
interval (HBI) data rather than raw ECG data. Even a 
single ectopic beat caused by body movement and/or 
poor sensor contact can have a serious impact on the 
interpretation of the results, especially for short-term 
cognitive state classification. Peltola (2012) argued for 
the necessity of editing raw HBI data, and appropriate 
artefact correction methods must be chosen according to 
different study settings. Although there is still no 
evidence that one HBI correction method is obviously 
better than another, three basic principles for HBI editing 
in PhyCS should be followed. Firstly, automatic 
algorithms should be performed since manual correction 
is less accurate and more time-consuming. Secondly, 
interpolate ectopic beats instead of deletion, since 
deletion of data points could introduce errors to power 
spectrum features such as LF/HF. Thirdly, avoid output 
delays resulting from artefact correction methods that use 
latter beats to interpolate former beats. Therefore, we 
recommend using mean value interpolation to correct 
ectopic beats. The detection and correction of ectopic 
beats is conducted as follows:  
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Where 1t and 2t are threshold values that control the 
intensity of artefact discrimination and correction. The 
second recognition condition is that the difference to 
mean is bigger than three times standard deviation of raw 
data. It is relatively conservative as the raw data also 
contains artefacts that cause high values of standard 
deviation. The red line in Figure 4 shows points that are 
detected as ectopic beats and the green line is the result 
after artefact correction. 
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Figure 4: Example of HBI interpolation 

(a) 

  



Trans RINA, Vol 159, Part A2, Intl J Maritime Eng, Apr-Jun 2017 

A-154                      ©2017: The Royal Institution of Naval Architects 

An EEG device generally uses silver electrodes to 
measure the extremely weak signal (µv) of voltage 
fluctuations along the scalp, and the signal is almost 
always contaminated by artefacts resulting from 
different sources. These sources include biological 
activities (muscle, eyeball, cardiac etc.), baseline 
artefact, powerline noise, and body movement 
artefact. In the real working environment, body 
movement artefact is the sum of electrode-scalp 
interface impedance fluctuations caused by walking, 
loud talking, irregular ship motions, and head 
movement. EEG wave bands of up to 40 Hz have been 
found useful in evaluating human cognitive states 
(Borghini et al. 2014). It is still difficult to know to 
what degree and in what power band EEG data is 
contaminated by body movement artefact. Ferris and 
colleagues used advanced hardware settings and 
algorithms (e.g. independent component analysis) to 
remove gait related movement artefact in experiments 
of subjects walking and running on a treadmill (Gwin 
et al. 2010; Kline et al. 2015). Although their work 
showed some promising results, regular gait events do 
not fully represent the complex nature of a working 
environment on a ship. 
 
We used a portable EEG device (Degital electronic, 
Japan) with two channels. Channel 1 is for scalp 
voltage measurement (EEG electrodes), and channel 2 
is an accelerometer attached directly to the electrodes 
to measure electrodes vibration. EEG epochs that are 
contaminated by movement artefact can be detected 
based on the power of channel 2. Figure 5 shows the 
signal measured by EEG electrodes and accelerometer 
in three body movement conditions: motionless, 
speaking, and walking around. The respective 
frequency domain of each condition is estimated from 
the epochs and marked by the dotted rectangle, of 
which the standard deviation of time series of channel 
2 is relatively large. Compared to the stable signal in 
motionless condition, the amplitude fluctuations in 
speaking condition is acute and even more acute when 
walking around. Accordingly, while EEG wave bands 
in motionless condition are rarely affected by body 
movement artefact, speaking may affect EEG wave 
bands of about <15Hz. Possible harmonic oscillations 
occur around 5Hz, 9Hz, and 12Hz, which are 
components of theta wave (4-7Hz) or beta wave (8-
15Hz). The influence of body movement artefacts on 
EEG signal is much more obvious in the walking 
around situation. EEG signal is almost fully 
contaminated through all effective wave bands during 
continuous fast walking, and when turning inside a 
room. Although it is definitely true that some other 
EEG devices with more sophisticated circuits might be 
less vulnerable to body movement artefact, we cannot 
ignore this problem in research and development 
(R&D) of applying PhyCS in a practical working 
environment. 
 
 

4.3 OFS MODELLING AND ITS VERIFICATION 
 
Fairclough (2009) in reviewing the fundamentals of 
PhyCS explicated the complex relationships between 
physiological indices and psychological states: one to 
one, many to one, one to many, and many to many. This 
requires researchers to focus on functional states that 
relevant to operator performance and avoid confounding 
factors affecting the interpretation of physiological 
signals. In R&D of PhyCS, designing standard tasks and 
real-world tasks should comply with two basic 
principles. Firstly, since accuracy of cross-task 
classification was reported obviously lower than within-
task classification (Baldwin & Penaranda, 2012), 
standard tasks that provide training data should consume 
cognitive resources of similar quantity and dimension 
(e.g. visual, auditory) in comparison with those of real-
world tasks. Secondly, to obtain ground truth of OFS, 
task complexity should be manipulated, and verified by 
other measures such as subjective rating scale and task 
reaction accuracy.  Take the example of MWL 
assessment, while the complexity of standard tasks can 
be orderly designed within experimental psychology 
software tools such as E-prime (Psychology Software 
Tools, Inc.), task complexity of maritime operations is 
perhaps the most multifaceted performance shaping 
factor. There are a wide range of factors, such as a lack 
of necessary training and experience and poor interaction 
interface, which can make a task subjectively complex or 
difficult. Since the research purpose is to elicit different 
levels of MWL for each subject, we suggest focusing on 
task analysis when considering complexity. For example, 
we use the number of operation steps, the number of 
subsystems involved, and their interactions to 
quantitatively manipulate the complexity of maritime 
operation tasks.  
 
Another obstacle to apply PhyCS in maritime 
ergonomics is the requirement of expertise knowledge 
in two aspects. Firstly, estimating cognitive states 
from physiological signals and designing applications 
based on these models, requires multidiscipline 
expertise ranging from neurophysiology, statistics, 
machine learning, experimental psychology, to 
engineering. It is a significant challenge for 
researchers to have expertise in all these areas and 
they are faced with problems designing research 
protocol, data processing, analysing experiment 
results, and drawing warranted conclusions. For 
instance, non-experts, especially those with 
engineering backgrounds tend to regard 
neurophysiological data as conveying an objective 
truth even though other evidence indicates otherwise 
(Brouwer et al. 2015). Secondly, a large number of 
marine engineers or cadets are essential as subjects for 
behavioural experiments, however numbers are rarely 
available even for simulator environments. 
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Figure 5: Time domain and frequency domain analysis of 
EEG in three situations (Top to bottom): a. motionless; b. 
speaking; c. walking around. Frequency domain is 
estimated from the epochs marked by dotted rectangle. 
Red line is EEG electrodes signal, black line is 
accelerometer signal. 
 
 
5. CONCLUSIONS 
 
With the rapid development of wearable devices and 
online computing capacity, physiological monitoring is 
becoming cheaper, more user-friendly, and more reliable. 

Meanwhile, although human factors have long been 
found to be the primary cause of maritime accidents, 
there are few practical proposals to effectively control 
human error and to improve maritime training. Studying 
and improving the key operator’s functional state is an 
encouraging way to increase the reliability of complex 
human computer systems. For instance, some airline 
companies, seeing the advantages of PhyCS, are now 
monitoring pilot’s physiological signals continuously, 
but only focus on simple features such as heart rate. One 
constraint is that there are inevitable obstacles in 
applying PhyCS in real-world environments compared to 
neuroscience or psychophysiology that study human 
cognitive states in strict controlled laboratory settings. 
Furthermore, the working environment of a ship’s crew 
is even more complicated, leading to more obstacles. To 
introduce this promising new technology to the maritime 
domain, this paper proposed advantages of applying 
PhyCS in three aspects: increase the objectivity of human 
performance evaluation, improve usability tests, and 
develop adaptive training systems. Furthermore, 
according to our research experience and lessons learned 
from utilizing PhyCS in an engine room simulator 
environment, several obstacles were discussed:  the 
requirement for ambulatory and wireless devices, the 
requirement of robust body movement artefact reduction, 
the modelling and verification, and the requirement of 
expertise knowledge. Additionally, suggestions to deal 
with these obstacles were given. For example, 
interpolation method is suggested to be superior to 
deletion in handling contaminated time series of heart 
beat intervals. We believe that this paper offers valuable 
information for researchers which will help them avoid 
common pitfalls in this domain and physiological 
computing systems will ultimately advance toward more 
sophisticated and nuanced techniques that will be even 
more effective in solving human factor issues.  
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