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SUMMARY 
 
In this paper, we present an interval-valued Intuitionistic Fuzzy TOPSIS model, which is based on an improved score 
function for detecting failure in a marine diesel engine auxiliary system, using groups of experts’ opinions to detect the 
root cause of failure in the engine system and the area most affected by failures in the diesel engine. The improved score 
function has been used for the computation of the separation measures from the intuitionistic fuzzy positive ideal 
solution (IFPIS) and intuitionistic fuzzy negative ideal solution (IFNIS) of alternatives while the criteria weight have 
been determined using an intuitionistic fuzzy entropy. The study is aimed at providing an alternative method for the 
identification and analysis of failure modes in engine systems. The results from the study show that although detection 
of failures in Engines is quite difficult to identify due to the dependency of the engine systems on each other, however 
using intuitionistic fuzzy multi-criteria decision-making method the faults/failure can easily be diagnosed.   
 
ABBREVIATIONS  
 
FTA Fault Tree Analysis 
FMEA Failure Mode and Effect Analysis 
IVIFS Interval-valued Intuitionistic Fuzzy set 
IVIFSs Interval-valued Intuitionistic Fuzzy sets 
IFE Intuitionistic Fuzzy entropy 
TOPSIS Technique for Order Preference by Similarity to 

the Ideal Solution 
 
 
1. INTRODUCTION 
 
The main aim of every maintenance strategy is to prevent 
the high cost of productions and maintenance risks due to 
faults in rotating machines and systems (Zuber & Bajri 
2016). Since many of the modern machines and equipment 
are required to run under increased turbulent conditions and 
in some cases under high uncertainty (Kettunen 2006). It is 
important, therefore, that the health of the machines and 
systems are regularly monitored, checked and troubleshoot 
for failure. According to Zuber & Bajri (2016), the 
implementation of condition-based maintenance strategy for 
monitoring the health of machines and systems requires the 
acquisition and trending of the physical parameter that is 
found to be sensitive to the machine degradation and failure. 
 
In identifying the physical parameters and failure in 
machines systems, several different failure detection 
measures such as pressure, heating, and flow rate 
sensors, vibration analysis, noise measurement, motor 
current signature analysis, wear particle analysis, 
ultrasound measurements devices and infrared 
thermography are available and rottenly used to detect 
and monitor failure in machines and systems. However 
according to Balin et al. (2014), even if the values and 
warning indicators from the failure detection measures 
are taken into account, detection of the exact failed 
component(s) or system(s) in the machines is still quite 

difficult to determine, due to the dependency of the 
machine systems on each other. 
 
Other analytical methods for identifying and evaluating 
potential machine failure include the Fault Tree Analysis 
(FTA) method and the Failure Mode and Effect Analysis 
(FMEA) method. Also, in applying these methods, so many 
drawbacks have been reported in the literature which 
includes; the difficulty to precisely and accurately 
determines the probability of failure event when using the 
FMEA technique (Mohammadi and Tavakolan 2013; Xie 
2013). The fuzziness and hesitation of the experts’ 
subjective assessments which are not accounted for in the 
FMEA and FTA technique (Zhao et al. 2016) and the 
limitation of the methods when it comes to design errors, 
human factors implications, flawed requirements and 
component interaction accidents (Keizer et al. 2005; Liu et 
al. 2014; Martínez 2015).   
 
In handling these issues, several alternative methods and 
approaches have been presented by different authors in 
the literature. Among them we can mention, Sharma et 
al. (2005), who integrated fuzzy logic and expert 
database to evaluate hydraulic system safety and 
reliability while conducting failure mode and effect 
analysis (FMEA). Zuber & Bajri (2016), propose an 
artificial neural network and vibration analysis for 
automated roller element bearings faults identification, 
where the vibration features were used as the inputs for 
the controlled artificial neural network. Shaghaghi and 
Rezaie (2012) applied a generalized mixture operator to 
evaluate and aggregate risk priorities of failure modes in 
an LGS gas type circuit breaker. An expert failure 
detection system was employed by Cebi et al. (2009) to 
assist shipboard personnel in predicting and overcoming 
failures in operational ship auxiliary machinery via a 
PROLOG programming language. They developed 
corrective action tables to demonstrate what to do in the 
event of an emergency based on some identified failure 
types. Kangavari et al. (2015), uses the FMEA technique 
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to examine risks of systems in the petrochemical industry 
from the concept phase to the system disposal, detecting 
the failures in the design stage and determining the 
control measures and corrective actions to reduce their 
impacts of failures. 
 
He et al. (2015) presented a Fuzzy TOPSIS and Rough set 
based approach for identifying the most critical product 
infant failures which are a step towards improving the 
product quality. Liu et al. (2011) applied the fuzzy 
evidential reasoning (FER) approach with grey theory as an 
alternative method to the FMEA method and for solving the 
diversity and expertise issues in the FMEA team 
assessment. While Alarcin et al. (2014) presented an 
integrated Fuzzy AHP and TOPSIS methods, for failure 
detection in an auxiliary system and marine diesel engine 
using a group of expert’s opinions. By assessing the expert’s 
group’s opinions, the system most influenced by failures 
was determined.  
 
As a follow up, in this study, we are proposing a hybrid 
model by integrating an Interval-valued Intuitionistic Fuzzy 
TOPSIS model (IVIF-TOPSIS), which is based on an 
Improved Score Function with Intuitionistic Fuzzy entropy 
(IFE) method for detecting failure in a marine diesel engine 
auxiliary system, using group of experts’ opinions to detect 
the root cause of failure in the system and to identify the 
most affected system in the marine engine. In this regard, 
the failure in the engine is identified and prioritized, 
according to the systems in which the failures primarily 
arise. In this approach, the IFE method is employed to 
determine the influential weights for the criteria while the 
Intuitionistic Fuzzy TOPSIS model is used to detect the root 
cause of the failure. 
 
The choice of using intuitionistic fuzzy set in this study 
is based on the fact that, it is more capable than the 
traditional fuzzy sets at handling vagueness and uncertain 
information in practice (Datta et al. 2013) as well as its 
ability to model fuzziness and hesitation of the experts’ 
subjective assessments. Also, integrating the IFE method 
with the IVIF-TOPSIS model which is based on an 
improved score function based separation method, 
provides a whole new approach to solving multi-criteria 
decision-making problem.  
 
The intuitionistic fuzzy set (IFS) which was introduced by 
Atanassov (1983) is characterized by a membership 
function and a non-membership function. The benefits of its 
applications have been addressed in (Xu and Liao 2015; Xu 
et al. 2013).  
 
The rest of this paper is organized as follows. In section 2 
we introduce the Interval-valued Intuitionistic Fuzzy set 
(IVIFS), the Improved Score Function and the concepts of 
the IFE method. The IVIF-TOPSIS algorithm which is 
based on the Improved Score Function is presented in 
section 3. In Section 4 a numerical case is presented to 
illustrate the proposed methodology. Finally, the conclusion 
is presented in section 5. 

2. PRELIMINARIES 
 
In this section, we present the fundamental definitions 
and concepts of the IVIFS as described by Ye (2009), the 
improved score function by Bai (2013) and the IFE 
method presented by Ye (2010).  
 
2.1 INTERVAL-VALUED INTUITIONISTIC 

FUZZY SET (IVIFS) 
 
Definition 1: Let D[0, 1]  be the set of all closed 
subintervals of the interval [0, 1] and let X(≠ ∅) be a given 
set. An IVIFS A in X is expressed as (Ye 2009);    
 
 𝐴 = {⟨𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)⟩ |𝑥 ∈  𝑋},                                  (1) 
 
where 𝜇𝐴: 𝑋 → D[0, 1], 𝑣𝐴: 𝑋 → D[0, 1] with the 
condition 0 ≤ 𝑠𝑢𝑝 𝜇𝐴(𝑥) + 𝑠𝑢𝑝 𝑣𝐴(𝑥) ≤ 1, ∀𝑥 ∈  𝑋.  
 
The intervals 𝜇𝐴(𝑥) and 𝑣𝐴(𝑥) denote, respectively, the 
degree of membership and non-membership of the 
element x to the set A. Thus, for each 𝑥 ∈  𝑋 the intervals 
𝜇𝐴(𝑥) and 𝑣𝐴(𝑥) are closed and their lower and upper 
end points are denoted by 𝜇𝐴𝐿(𝑥), 𝜇𝐴𝑈(𝑥), 𝑣𝐴𝐿(𝑥) 
and 𝑣𝐴𝑢(𝑥)respectively. We can denote the set as;  
 
𝐴 = {⟨𝑥, [𝜇𝐴𝐿(𝑥), 𝜇𝐴𝑈(𝑥)], [𝑣𝐴𝐿(𝑥), 𝑣𝐴𝑈(𝑥)]⟩ |𝑥 ∈  𝑋}, 
                                                                                       (2) 
 
Where, 0 ≤ 𝜇𝐴𝑈(𝑥) + 𝑣𝐴𝑈(𝑥)  ≤ 1,  𝜇𝐴𝐿(𝑥) ≥  0,
𝑣𝐴𝐿(𝑥) ≥ 0   
 
For each element x, we can compute the unknown degree 
(hesitancy degree) of an intuitionistic fuzzy interval of 
𝑥 ∈  𝑋 in A which is defined as follows: 
 
 𝜋𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝑣𝐴(𝑥) = [1 − 𝜇𝐴𝐿(𝑥) −
 𝜇𝐴𝑈(𝑥), 1 −  𝜇𝐴𝐿(𝑥) − 𝑣𝐴𝐿(𝑥)]                                    (3) 
 
However, if 𝜇𝐴(𝑥) = 𝜇𝐴𝐿(𝑥) = 𝜇𝐴𝑈(𝑥) and 𝑣𝐴(𝑥) =
𝑣𝐴𝐿(𝑥) = 𝑣𝐴𝑈(𝑥), then the given IVIFS A is reduced to 
an ordinary IFS. For convenience, the IVIFS is expressed 
as 𝐴 = ([𝑎, 𝑏], [𝑐, 𝑑]).   
 
In the following will make comparisons between two 
Interval-Valued Intuitionistic sets (IVIFSs), by 
introducing the improve score function.  
 
2.2  THE IMPROVED SCORE FUNCTION 
 
In order to make comparisons between two IVIFSs, 
metric methods have been introduced by several 
researchers including Ye (2009) and Li (2010), however, 
in this study, we will be concerned only with the 
improved score function originally proposed by Bai 
(2013), for the ranking, and the representation of the 
aggregated effect of positive and negative evaluations in 
the performance ratings of the alternatives based on 
IVIFS data. The computation formula for the improved 
score function is given as; 
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𝐼(𝐴) = 𝑎+𝑎(1−𝑎−𝑐)+𝑏+𝑏(1−𝑏−𝑑)
2 , where 𝐼(𝐴) ∈ [0,1]   

(4) 
 
When a = b and c = d, the IVIFS will degenerate to the 
IFS while the improved score function of IVIFS will 
degenerate to the score function of IFS proposed by 
Ye (2009).  
 
2.3 THE INTUITIONISTIC FUZZY ENTROPY 
 
Following the operations of the IFS, let us consider an 
intuitionistic fuzzy set A in the universe of discourse 
𝑋 = {𝑥1, 𝑥2 , 𝑥3 , … , 𝑥𝑛 }.The intuitionistic fuzzy set A is 
transformed into a fuzzy set to structure an entropy 
measure of the intuitionistic fuzzy set by means 
of 𝜇�̅�(𝑥𝑖) = (𝜇𝐴(𝑥𝑖) + 1 − 𝑣𝐴(𝑥𝑖))/2. Based on the 
definition of fuzzy information entropy Ye (2010) 
proposes the intuitionistic fuzzy entropy as follows;  
 
𝐸(𝐴) =
1
𝑛 ∑ {{𝑆𝑖𝑛 𝜋∗[1+𝜇𝐴(𝑥𝑖)−𝑣𝐴(𝑥𝑖)]

4
𝑛
𝑖=1 + 𝑆𝑖𝑛 𝜋∗[1−𝜇𝐴(𝑥𝑖)+𝑣𝐴(𝑥𝑖)]

4 −
1} ∗ 1

√2−1}      (5) 
 
When the criteria weights are completely unknown, we 
can use the intuitionistic fuzzy entropy to determine the 
weights. The criteria weight is given as; 
 
𝑊𝑗 = 1−𝐻𝑗

𝑛−∑ 𝐻𝑗𝑛
𝑗=0

       (6) 

where 𝑊𝑗 ∈ [0,1], ∑ 𝑊𝑗 = 1𝑛
𝑗=1 , 𝐻𝑗 = 1

𝑚 𝐸(𝐴𝑗)  and 
 
0 ≤ 𝐻𝑗 ≤ 1 for  (𝑗 = 1, 2, 3, … , 𝑛).     
 
It is important to note here that, in using the intuitionistic 
fuzzy entropy for the interval-valued intuitionistic fuzzy 
values which is in the form ([𝑎, 𝑏], [𝑐, 𝑑]). The second part 
of the interval-valued intuitionistic fuzzy values [𝑐, 𝑑] is 
assume to be equal to zero, (i.e. c = 0 and d = 0). Hence, 
only the first part is applied for the evaluation. This 
proposed new approach has been tested and proven to rank 
correctly as shown in the hypothetical example below. 
 
3. ALGORITHM FOR THE IVIF-TOPSIS 

MODEL AND THE IFE METHOD  
 
TOPSIS which was originally proposed by Hwang and 
Yoon (1981), has remained one of the most widely used 
MCDM methods with so many papers published on its 
applications (Tan 2011; Park et al. 2011; Behzadian et al. 
2012; Bulgurcu 2012; Jadidi, Hong, and Firouzi 2008; 
Pakpour et al. 2013; Soufi et al. 2015; Yang and Wu 
2008; Ghazanfari, Rouhani, and Jafari 2014; Zhu et al. 
2012; Chou et al. 2012).   
 
In this study, the TOPSIS model has been introduced in 
the intuitionistic fuzzy environment and the improved 
score function discussed above applied as an 
intuitionistic aggregation operator and for the calculation 

of the intuitionistic fuzzy positive ideal solutions (IFPIS) 
and the intuitionistic fuzzy negative ideal solutions 
(IFNIS). The application of the integrated IVIF-TOPSIS 
model and the IFE method has been expressed concisely 
in the following steps: 
 
Step 1. Suppose the cross-functional team responsible for 
the assessment of the failure modes in the machine system 
has equal weight and of equal status (Professors). With their 
opinion construct the intuitionistic fuzzy decision matrix 
𝐴𝑛𝑥𝑚(𝑎𝑖𝑗) of the alternatives (𝐴𝑖) with respect to the 
criteria (𝐶𝑖) using the Intuitionistic Fuzzy Numbers for 
approximating linguistic variable as shown in Table 1. 
 
𝑫𝒎𝒙𝒏(𝒙𝒊𝒋) =

 

[
 
 
 
 ([𝒂𝟏𝟏 , 𝒃𝟏𝟏 ], [𝒄𝟏𝟏 , 𝒅𝟏𝟏 ]) … … ([𝒂𝟏𝒏 , 𝒃𝟏𝒏 ], [𝒄𝟏𝒏 , 𝒅𝟏𝒏 ])

([𝒂𝟐𝟏 , 𝒃𝟐𝟏 ], [𝒄𝟐𝟏 , 𝒅𝟐𝟏 ]) … ⋯ ([𝒂𝟐𝒏 , 𝒃𝟐𝒏 ], [𝒄𝟐𝒏 , 𝒅𝟐𝒏 ])
⋮
⋮                    

⋮
⋮  

⋱
⋱                     ⋮⋮

([𝒂𝒎𝟏 , 𝒃𝒎𝟏 ], [𝒄𝒎𝟏 , 𝒅𝒎𝟏 ]) … ⋯ ([𝒂𝒎𝒏 , 𝒃𝒎𝒏 ], [𝒄𝒎𝒏 , 𝒅𝒎𝒏 ])]
 
 
 
 
  (7)   

 
 
Table 1. Intuitionistic Fuzzy Numbers for approximating 
the linguistic variable 

Linguistic 
terms 

Interval-valued intuitionistic fuzzy 
Number 

Very low (VL) ([0.1, 0.3], [0.25, 0.4]) 
Low (L) ([0.2, 0.55], [0.3, 0.55]) 

Medium (M) ([0.3, 0.6], [0.45, 0.65]) 
High (H) ([0.5, 0.7], [0.6, 0.7]) 

Excellent (EX) ([0.6, 0.9], [0.75, 1.0]) 
 
 
Step 2. Convert the intuitionistic fuzzy decision matrix 
𝐴𝑛𝑥𝑚(𝑎𝑖𝑗) to the improved score function 
matrix 𝐼(𝑎𝑖𝑗)𝑛𝑥𝑚 to aggregate the intuitionistic fuzzy 
decision of the cross-functional team (Professors). 
 
𝐼(𝑎𝑖𝑗)𝑛𝑥𝑚 =

 

[
 
 
 
 𝑰𝟏𝟏 (𝒙𝟏𝟏 ) 𝑰𝟏𝟐 (𝒙𝟏𝟐 ) … 𝑰𝟏𝒏 (𝒙𝟏𝒏 )

𝑰𝟐𝟐 (𝒙𝟐𝟐 ) 𝑰𝟐𝟐 (𝒙𝟐𝟐 ) ⋯ 𝑰𝟐𝒏 (𝒙𝟐𝒏 )
⋮
⋮               

⋮
⋮           

⋱
⋱          ⋮⋮

𝑰𝒎𝟏 (𝒙𝒎𝟏 ) 𝑰𝒎𝟐 (𝒙𝒎𝟐 ) ⋯ 𝑰𝒎𝒏 (𝒙𝒎𝒏 )]
 
 
 
 
               (8) 

 
 
Step 3. Determine the weight of each of the evaluating 
criteria 𝑤𝑗  using the concept of the IFE method described 
in section 2.3.  
 
Step 4. Define the IFPIS (A +) and IFNIS (A-) for the 
score function-based matrix; 
 
 𝐴+ = (𝜇𝑗, 𝑣𝑗),  𝐴− = (𝜇𝑗, 𝑣𝑗), in this study the IFPIS 
(A +) and IFNIS (A-) is given as; 
 
𝐴+ = (1, 1),     𝑗 = 1, … , 𝑛                  (9) 
 
𝐴− = (0,0),     𝑗 = 1, … , 𝑛                 (10) 
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Step 5. Compute the improved score function-based 
separation measures (𝑑+

𝑖(𝐴+, 𝐴𝑖) and (𝑑−
𝑖(𝐴−, 𝐴𝑖) for 

each alternative from the IFPIS and IFNIS using the 
equation (11) and (12);    
 

 𝑑−𝑖(𝐴−, 𝐴𝑖)= √∑ [𝑤𝑗 (1 − ( 𝐼(𝑎𝑖𝑗)𝑛𝑥𝑚)]
2𝑛

𝑖=1       (11) 
 
Similarly,  
 

𝑑−𝑖(𝐴−, 𝐴𝑖) = √∑ [𝑤𝑗  𝐼(𝑎𝑖𝑗)𝑛𝑥𝑚]
2𝑛

𝑖=1           (12) 
 
Step 7. Compute the relative closeness coefficient, (𝐶𝐶𝑖), 
which is defined to rank all possible alternatives with 
respect to the positive ideal solution A+. The general 
formula is given as; 
 

𝐶𝐶𝑖 = 𝑑−𝑖(𝐴−,𝐴𝑖) 
𝑑−𝑖(𝐴−,𝐴𝑖) +𝑑+𝑖(𝐴+,𝐴𝑖)                 (13) 

 
where 𝐶𝐶𝑖 (𝑖 = 1,2, . . 𝑛) is the relative closeness 
coefficient of 𝐴𝑖 with respect to the positive ideal 
solution A+ and 0 ≤ 𝐶𝐶𝑖 ≤ 1.  Hence, the alternatives are 
ranked according to the descending order. 
 
4. APPLICATION OF THE IFE METHOD 

AND IVIF-TOPSIS MODEL  
 
In this section, we demonstrate the computational 
process of the IFE method and IVIF-TOPSIS algorithm 
proposed herein for detecting a failure in a marine diesel 
engine auxiliary system for case 1 and for the 
hypothetical example in case 2. 
 
4.1 IMPLEMENTATION  
 
Case 1. Failure in the machine can results in severe 
damage and significant loss of resources when not 
detected on time (Demirel et al. 2015). The severity of 
faults and failure in machines are mostly different. Some 
of the failures can be so severe that if not detected and 
repaired or adjusted on time, it can cause more serious 
accidents as in the case of component failure during 
operational conditions. Failures in machines are 
frequently precursors of further breakdown which are 
mostly discovered only during the machine operation. 
Criteria to evaluate such probable breakdown/failure, in 
this case, a marine diesel engine auxiliary system have 
been investigated and obtained through extended 
consultation from a group of experts (Three Professors in 
the department of Manufacturing Engineering). They 
were asked to rate the relevance, accuracy, and adequacy 
of the criteria and sub-criteria and to confirm ‘content 
validity’ with regards to the operation of the marine 
diesel engine assessment. 
 
Five probable failures (criteria) in the engine systems 
(MTU 2012; Alarcin, Balin, and Demirel 2014; Demirel 
et al. 2015) have been identified and they are 

consolidated with the experience and opinions of the 
experts, these criteria and their subs-criteria include;  
 
x Engine turns but does not fire (C1). This criterion 

includes the following sub-criteria, Engine cabling 
(C11), Starter (C12), Engine governor (C13), Fuel 
system (C14). 

x Engine speed not steady (C2). This criterion 
includes the following sub-criteria, Engine governor 
(C21), Fuel system (C22), Fuel injection equipment 
(C23), and Speed sensor (C24). 

x Sudden shut down of the engine during normal 
operation (C3). Low-level day tank (C31), Low Oil 
pressure (C32), and High-Pressure Fuel pump 
failures (C33) 

x Black exhaust gas (C4) Air supply (C41), Fuel 
injection equipment (C42), 

x Increase of the oil level during engine operation 
(C5) Cooling water leakage (C51), and Fuel oil 
leakage (C52) 

 
These failures are recognized to have a relationship with 
different systems in the engine. Hence, the root cause of 
these failures is determined based on these systems and 
they categorized as;  
 
x Engine Governor System (A1),  
x Fuel System (A2),  
x Air supply System (A3),  
x Engine Coolant System (A4).  

 
Using the assessment report from the group of experts on 
the marine diesel engine, we implement the proposed IFE 
method and Intuitionistic Fuzzy TOPSIS model. 
Summary of the implementation is given below.  
 
Step 1: The intuitionistic fuzzy decision matrix is 
constructed using the intuitionistic fuzzy number in Table 1 
to express the ratings of the four systems with respect to 
each of the criteria and sub-criteria to form the intuitionistic 
fuzzy decision matrix 𝐴𝑛𝑥𝑚(𝑎𝑖𝑗) as shown in Table 2.  
 
Step 2: Using the improved score function, the 
intuitionistic fuzzy decision matrix 𝐴𝑛𝑥𝑚(𝑎𝑖𝑗) is 
converted to form the improved score function 
matrix 𝐼(𝑎𝑖𝑗)𝑛𝑥𝑚as show in the Table 3. Also, by 
following the implementation procedure for the IFE 
method, the weights of the criteria and sub-criteria is 
calculated, the results of the criteria and sub-criteria 
weights are shown in Table 3.  
 
By using equation (11) and (12), we compute the 
improved score function-based separation measures 
(𝑑+

𝑖(𝐴+, 𝐴𝑖) and (𝑑−
𝑖(𝐴−, 𝐴𝑖) (𝑖 = 1,2,3,4), the 

results are as follows; 
(𝑑+

1(𝐴+, 𝐴1) =  0.128,  (𝑑−
1(𝐴−, 𝐴1) = 0.099   

(𝑑+
2(𝐴+, 𝐴2) = 0.132,  (𝑑−

2(𝐴−, 𝐴2) = 0.095,  
(𝑑+

3(𝐴+, 𝐴3) = 0.130,    (𝑑−3(𝐴−, 𝐴3) = 0.096,  
(𝑑+4(𝐴+, 𝐴4) = 0.131,     (𝑑−4(𝐴−, 𝐴4) = 0.095. 
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Finally, the relative closeness coefficient 𝐶𝐶𝑖 , (𝑖 =
1,2,3,4) to the ideal solution are calculated using 
equation (13), the results is given as;  
 
𝐶𝐶1 = 0.436,  𝐶𝐶2 = 0.418,  𝐶𝐶3 = 0.425  and 𝐶𝐶4 =
0.420,  
 
Therefore, the ranking orders for the four systems are in 
the form (descending order)  𝐴1  > 𝐴3 > 𝐴4 > 𝐴2, 

obviously, from the evaluation, the Engine Governor 
System  𝐴1 is the most affected area in engine 
considering the assessment given by the experts.  
 
The significant of the ranking result as it relates to the 
different failure modes is that it would help and give the 
Chief Engineer more information on how to make a more 
efficient decision about the engine.  
 

 
Table 2. Intuitionistic fuzzy decision matrix 
 Governor System 

 (A1) 
Fuel System 

(A2) 
Air supply System 

 (A3) 
Coolant System  

(A4) 

C1 ([0.20, 0.48], [0.33, 0.53]) ([0.40, 0.65], [0.50, 0.65]) ([0.30, 0.53], [0.43, 0.58]) ([0.20, 0.48], [0.33, 0.53]) 
C11 ([0.37, 0.57], [0.48, 0.6]) ([0.47, 0.80], [0.65, 0.88]) ([0.43, 0.72], [0.55, 0.70]) ([0.20, 0.48], [0.33, 0.53]) 
C12 ([0.43, 0.67], [0.55, 0.85]) ([0.27, 0.58], [0.4, 0.60]) ([0.17, 0.47]. [0.28, 0.75])  ([0.20, 0.48], [0.33, 0.63]) 
C13 ([0.33, 0.62],[0.45, 0.68]) ([0.37, 0.63], [0.50, 0.62]) ([0.33, 0.62], [0.45, 0.78]) ([0.23, 0.57], [0.35, 0.53]) 
C14 ([0.30, 0.53], [0.43, 0.63]) ([0.53, 0.77], [0.65, 0.68]) ([0.30, 0.58], [0.43, 0.50]) ([0.37, 0.63], [0.50, 0.58]) 
C2 ([0.27, 0.52], [0.38, 0.58]) ([0.53, 0.77], [0.65, 0.90]) ([0.23, 0.57], [0.63, 0.35]) ([0.43, 0.67], [0.55, 0.67]) 
C21 ([0.43, 0.72], [0.55, 0.55]) ([0.43, 0.70], [0.58, 0.65]) ([0.37, 0.63], [0.58, 0.50]) ([0.33, 0.62], [0.45, 0.67]) 
C22 ([0.37, 0.57], [0.48, 0.78) ([0.37, 0.57], [0.48, 0.88]) ([0.17, 0.40], [0.32, 0.67]) ([0.23, 0.50], [0.38, 0.63]) 
C23 ([0.30, 0.58], [0.43, 0.6]) ([0.47, 0.78], [0.60, 0.60]) ([0.20, 0.55], [0.30, 0.48]) ([0.40, 0.65], [0.50, 0.57]) 
C24 ([0.33, 0.62], [0.45, 0.65]) ([0.37, 0.57], [0.48, 0.85]) ([0.30, 0.60], [0.45, 0.55]) ([0.47, 0.73], [0.60, 0.65]) 
C3 (0.30, 0.58], [0.43, 0.63]) ([0.10, 0.30], [0.25, 0.60]) ([0.23, 0.43], [0.37, 0.65]) ([0.43, 0.67], [0.55, 0.78]) 
C31 (0.40, 0.65], [0.50, 0.58]) ([0.27, 0.58], [0.40, 0.68]) ([0.33, 0.62], [0.45, 0.60]) ([0.37, 0.68], [0.50, 0.73]) 
C32 ([0.43, 0.72], [0.55, 0.55]) ([0.43, 0.67], [0.55, 0.67]) ([0.37, 0.57], [0.48, 0.78]) ([0.30, 0.53], [0.43, 0.63]) 
C33 ([0.37, 0.57], [0.48, 0.78]) ([0.40, 0.65], [0.50, 0.58]) ([0.33, 0.62], [0.45, 0.60]) ([0.37, 0.63], [0.50, 0.62]) 
C4 ([0.20, 0.48], [0.33, 0.53]) ([0.43, 0.67], [0.55, 0.67]) ([0.40, 0.65], [0.50, 0.58]) ([0.20, 0.48], [0.33, 0.53]) 
C41 ([0.33, 0.62], [0.45, 0.60]) ([0.43, 0.72], [0.55, 0.55]) ([0.43, 0.67], [0.55, 0.67]) ([0.40, 0.65], [0.50, 0.58]) 
C42 ([0.43, 0.67], [0.55, 0.67]) ([0.30, 0.53], [0.43, 0.63]) ([0.37, 0.63], [0.50, 0.62]) ([0.37, 0.57], [0.48, 0.78]) 
C5 ([0.43, 0.72], [0.55, 0.55]) ([0.20, 0.48], [0.33, 0.53]) ([0.33, 0.62], [0.45, 0.60]) ([0.30, 0.53], [0.43, 0.63]) 
C51 ([0.30, 0.53], [0.43, 0.63])  ([0.37, 0.57], [0.48, 0.78]) ([0.20, 0.48], [0.33, 0.53]) (0.30, 0.53], [0.43, 0.63]) 
C52 ([0.65, 0.50], [0.65, 0.30]) ([0.72, 0.55], [0.70, 0.20]) ([0.37, 0.60], [0.50, 0.58]) ([0.20, 0.48], [0.33, 0.53]) 

 
Table 3. Improved score function matrix and criteria weights 

 Governor System 
 (A1) 

Fuel System 
(A2) 

Air supply System 
 (A3) 

Coolant System 
(A4) 

Weight 

C1 (0.385) (0.448) (0.426) (0.385) 0.044 
C11 (0.449) (0.335) (0.428) (0.385) 0.057 
C12 (0.380) (0.417) (0.315) (0.361) 0.048 
C13 (0.418) (0.445) (0.387) (0.420) 0.055 
C14 (0.413) (0.429) (0.457) (0.455) 0.050 
C2 (0.416) (0.344) (0.439) (0.440) 0.054 
C21 (0.482) (0.440) (0.468) (0.421) 0.059 
C22 (0.398) (0.370) (0.314) (0.377) 0.038 
C23 (0.428) (0.460) (0.417) (0.474) 0.058 
C24 (0.428) (0.378) (0.443) (0.445) 0.054 
C3 (0.420) (0.248) (0.359) (0.404) 0.038 
C31 (0.470) (0.394) (0.443) (0.410) 0.057 
C32 (0.482) (0.440) (0.398) (0.413) 0.050 
C33 (0.398) (0.470) (0.443) (0.445) 0.051 
C4 (0.385) (0.440) (0.470) (0.385) 0.047 
C41 (0.443) (0.482) (0.440) (0.470) 0.058 
C42 (0.440) (0.413) (0.445) (0.398) 0.047 
C5 (0.482) (0.385) (0.443) (0.413) 0.051 
C51 (0.413) (0.398) (0.385) (0.413) 0.041 
C52 (0.528) (0.553) (0.455) (0.385) 0.043 
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Case 2. Let us consider a practical problem originally 
presented by Ye (2009), to make a new example for 
failure detection in marine vessel engine. A marine 
vessel engine has four systems Ai (i = 1,2, 3,4) and the 
four systems are evaluated by a team of experts with 
respect to the following criteria; (1) Severity C1, (2) 
Occurrence C2 and (3) Detection C3. The intuitionistic 
fuzzy decision matrix given by the team of experts is 
shown in Table 4. 
 
Table 4: The intuitionistic fuzzy decision matrix 
 C1 C2 C3 

A1 
([0.4, 0.5], 
[0.3, 0.4]) 

([0.4, 0.6], 
[0.2, 04]) 

([0.1, 0.3], 
[0.5, 0.6]) 

A2 
([0.6, 0.7], 
[0.2, 0.3]) 

([0.6, 0.7], 
[0.2, 0.3]) 

([0.4, 0.7], 
[0.1, 0.2]) 

A3 
([0.3, 0.6], 
[0.3, 0.4]) 

([0.5, 0.6], 
[0.3, 0.4]) 

([0.5, 0.6], 
[0.1, 0.3]) 

A4 
([0.7, 0.8], 
[0.1, 0.2]) 

([0.6, 0.7], 
[0.1, 0.3]) 

([0.3, 0.4], 
[0.1, 0.2]) 

 
Using the improved score function just as in case 1, the 
intuitionistic fuzzy decision matrix 𝐴𝑛𝑥𝑚(𝑎𝑖𝑗) is 
converted to form the improved score function 
matrix 𝐼(𝑎𝑖𝑗)𝑛𝑥𝑚. Also, following the implementation 
procedure for the IFE method, the weight of the criteria 
is calculated. The result is given 
as  𝑊𝑗 = {0.35, 0.21, 0.44}, which appear to be in total 
agreement with ranking of the criteria in (Ye 2009).  
 
The improved score function-based separation measures 
for the four systems are calculated using equation (11) 
and (12), while the relative closeness coefficient 
𝐶𝐶𝑖 , (𝑖 = 1,2,3,4) for the systems are calculated with 
equation (13). The results of the evaluations are shown in 
Table 5.  
 
Table 5: The results of the evaluations  

 C1 C2 C3 𝑑+𝑖 𝑑−𝑖 𝐶𝐶𝑖 
A1 0.54 0.58 0.24 0.38 0.25 0.39 
A2 0.71 0.71 0.69 0.18 0.42 0.70 
A3 0.51 0.60 0.68 0.24 0.37 0.61 
A4 0.82 0.74 0.52 0.23 0.40 0.64 

 
Therefore, the ranking orders for the four systems are in 
the form (descending order)  𝐴2  > 𝐴4 > 𝐴3 > 𝐴1, and 
the system  𝐴1, is concluded as the most affected area of 
engine considering the assessment given by the experts 
and the result is in total agreement with ranking result in 
(Ye 2009). 
 
4.2. DISCUSSION  
 
To further demonstrate the feasibility of the proposed 
method for failure detection, we have compared the ranking 
result of hypothetical example with some similar 
computational approaches including, the entropy weights-
based correlation coefficients method by Ye (2010a), the 
novel accuracy function-based MCDM method by Ye 

(2009), and finally with the conventional TOPSIS model. 
The comparison result is shown in Table 6. 
 
Table 6: Comparison of results 

𝐴𝑖 

Proposed 
m

ethod 

R
ank 

TO
PSIS 

R
ank 

( Y
e 2010a) 

R
ank 

(Y
e 2009) 

R
ank 

𝐴1 0.39 4 0.41 4 0.66 4 0.16 4 
𝐴2 0.70 1 0.70 1 0.93 1 0.43 1 
𝐴3 0.61 3 0.60 3 0.84 3 0.31 3 

 𝐴4 0.64 2 0.65 2 0.92 2 0.37 2 
 
 
The advantages of using the proposed intuitionistic fuzzy 
multi-criteria decision-making method which is based on 
IVIF-TOPSIS and IFE method over the traditional FMEA 
methods and the other failure warming devices is that;  
 
x The results from the proposed model for failure 

detection are more objective and reliable due to the 
fact that the fuzziness and hesitation of the experts’ 
subjective assessments are well reflected and 
modeled, unlike the traditional FMEA and other 
MCDM methods.  

x The implementation procedures of the proposed 
model and approach are quite easy and 
straightforward as compared to the other Multi-
criteria decision-making methods.  

x The criteria weights were calculated using an 
objective weight approach, which makes the overall 
result more reliable, as compared to the subjective 
approach in the reviewed literature.   

 
 
5. CONCLUSIONS 
 
In this paper, we investigated the application of an interval-
valued intuitionistic fuzzy TOPSIS model, which is based 
on an improved score function for detecting failure in a 
marine diesel engine, in relation to component interaction 
accidents and failure, using groups of experts’ opinions to 
detect the root cause of failure in the engine, and the area 
most affected by the failures in the engine systems. The 
failure in the engine have been determined and prioritized, 
according to the systems in which the failures primarily 
arise. In this approach, an intuitionistic fuzzy entropy 
method has applied to determine the influential weights for 
the criteria.  
 
To further demonstrate the efficacy of the proposed approach 
in failure detection, the method has been applied to a 
hypothetical example in literature where the ranking of the 
criteria weights and the marine vessel systems (alternatives) 
appears to be in total agreement with the case example. This 
goes to show that intuitionistic fuzzy entropy can be applied 
to determine criteria weight even when an interval-valued 
intuitionistic fuzzy number is used for the decision matrix.  
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Finally, we can conclude that this study has been able to 
provide a better alternative method for the identification and 
analysis of failures in marine systems (engines).  
 
In the future, we will continue working on the 
application of the proposed method, specifically for 
building reliability-related knowledge during the design 
of complex products and systems, also attempt will be 
made to quantitatively estimate the weight of the experts 
which is a weakness in this paper.  
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