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SUMMARY 
 
The Northern Sea Route (NSR) links the Atlantic and Pacific oceans through the Arctic and it is critical for global trade 
as it provides a route between Asia and Europe that is significantly shorter than the alternatives. NSR is soon expected to 
open for intercontinental shipping due to global warming and thus presents tremendous opportunities for reductions in 
shipping time, cost, and environmental impacts. On the other hand, facilitating this route requires innovative approaches 
due to the navigation risks associated with its ice-covered waters. This study presents a graph-theoretical approach for 
optimal naval navigation in ice-covered sea routes with flexible turn angles based on the idea of large-adjacency grid 
graphs. Our model allows for asymmetric left and right turn radii as well as turn speeds that vary as a function of the 
turn angle and it offers natural-looking navigation paths. 
 
NOMENCLATURE 
 
R The navigation area 
Rx Length of the navigation area  
Ry Width of the navigation area 
P The set of obstacles indexed by p 
Bp Buffer zone associated with obstacle p 
fp Safety distance associated with obstacle p 
s Starting vertex 
t Termination vertex 
V Vertex set 
vc Current vertex 
vp Previous vertex 
vn Next vertex 
Ek Edge set for each k 
ar Vessel’s minimum right turn radius distance 
al Vessel’s minimum left turn radius distance 
h(α) Vessel’s speed as a function of turn angle α 
d(.,.) The Euclidean distance function 
mr(α) Length of a proper leg for right turn with angle 

α 
ml(α) Length of a proper leg for left turn with angle α 
Qm Control point m for a cubic Bézier curve 
λ Smoothing parameter for a cubic Bézier curve 
 
1. INTRODUCTION 
 
Sea ice in the Arctic region is decreasing at an 
accelerating rate due to global warming and feedback of 
the oceanic and atmospheric circulation changes (Shen & 
Shi, 2011). Northern Sea Route (NSR) links the Atlantic 
and Pacific oceans through the Arctic and it is critical for 
international trade as it provides a route between Europe 
and Asia that is 9000 km shorter than the Panama Canal 
route and 17000 km shorter than traveling around Cape 
Horn, South America (Wilson et al., 2004). With the 
rapid melting of the Arctic sea ice, NSR is soon expected 
to open for global trade. However, major challenges exist 
in utilizing NSR due to the region’s unusual 
characteristics including extreme weather conditions and 
ice-covered waters. These issues have transformed the 

problem of Arctic vessel navigation into a challenging 
notion that calls for innovative strategies (Sahin & Kum, 
2015). In fact, Ho (2010) states that ‘‘Before the Arctic 
routes can reliably be used on a large scale for transit by 
shipping along its passages, more investments are 
required on infrastructure and the provision of marine 
services to ensure the safe and secure transit of 
shipping’’. Thus, there is a need for new naval path 
planning approaches that specifically account for such 
challenges. 
 
A wide variety of path planning problems have been 
studied in the literature and various efficient algorithms 
have been developed for different problems, including 
the well-known Dijkstra's and the A* Algorithms for 
finding shortest paths. However, in real life applications, 
these algorithms fundamentally differ with respect to 
vehicles’ operational characteristics. From a path 
planning point of view, perhaps the most critical 
operational limits are the ones related to the vehicles' 
turning dynamics, which are, for instance, of utmost 
importance in vessel navigation. There also exists a 
significant amount of literature on deterministic shortest 
paths with turn constraints in continuous as well as 
discrete settings. Continuous-space studies typically 
involve calculus of variation with curvature constraints 
and complex differential equations. These types of 
approaches, on the other hand, are generally not very 
suitable for even modest generalizations such as 
asymmetric turn constraints or reduced turn speeds nor 
do they scale well with a large number of obstacles. 
Existing discrete-space studies, on the other hand, 
impose somewhat simplistic turn constraints. Current 
state-of-the-art in discrete-space turn-constrained path 
planning is the one introduced in (Ari et al., 2013). In 
that work, the authors study the ship navigation problem 
with the objective of finding the turn-constrained shortest 
path between two given points in the presence of 
obstacles with asymmetric turn radii and decreased 
turning speeds. Their methodology is based on an 8-
adjacency grid discretization of the navigation area and 
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on the idea of vertex replication where immediate 
navigation history is embedded in each vertex copy. A 
major limitation of the methodology presented therein is 
that the navigation is limited to 45-degree turns on the 
grid. Thus, even though the methodology presented 
therein is optimal with respect to the 8-adjacency grid 
discretization, it is likely to be sub-optimal in practice 
and lead to unrealistic trajectories. 
 
Our goal in this study is to tackle the optimal maritime path 
planning problem in the presence of ice blocks with respect 
to safety distance and flexible turn-radius constraints in 
order to find the shortest feasible naval path between given 
two coordinates. In particular, we improve upon 
methodology of Ari et al. (2013) and overcome the stated 
limitation by allowing for flexible turn angles using the idea 
of large-adjacency grids (LAGs). Such grids are 
generalization of the 8-adjacency grids to 8k-adjacency 
grids where k is a positive integer, such as 16-, 24-, or 32-
adjacency grids for k=2,3,4 respectively. Due to their 
adjacency structure, LAGs allow for higher degrees of 
flexibility in modelling of turn constraints. In particular, 
larger k values allow for even more flexibility, though at the 
cost of increased computational burden. Our approach is 
specifically designed for resolution-independent 
discretization of the navigation area and it is optimal with 
respect to the underlying LAG discretization. Our 
methodology also allows for asymmetric minimum left and 
right turn radii as well as turn speeds that vary as a function 
of the turn angle. 
 
Implementation of our methodology requires non-trivial 
changes to the underlying LAG in order to preserve 
optimality. Specifically, our approach entails construction of 
a turn-constrained LAG (TC-LAG) graph where a TC-LAG 
vertex is defined as a three-tuple of the following: (1) a 
LAG vertex denoting the physical location of the TC-LAG 
vertex, (2) the LAG vertex at which the most recent turn 
was made, and (3) the angle of this turn. During the TC-
LAG construction, we deploy a first-in first-out vertex 
queue, inserting the starting vertex first. For each de-queued 
vertex, we define all appropriate adjacency structures that 
do not violate turn constraints and then add encountered 
vertices to the queue. This process of queuing/ de-queuing is 
continued until the vertex queue is empty. Once the TC-
LAG is constructed, we simply execute Dijkstra's Algorithm 
on it to find the shortest path between the given starting and 
termination vertices. Our final step is to smoothen the 
resulting path via Bézier splines composed of cubic Bézier 
curves for a more natural looking navigation path (Bartels et 
al., 1998). We demonstrate our methodology on a ship 
navigation example where we compare turn-constrained and 
unconstrained paths for different k values. We also present a 
proof-of-concept in a full-mission ship-handling simulator 
where we compare the smoothened optimal path against the 
actual ship path inside the simulator. 
 
The rest of this manuscript is organized as follows: 
Section 2 presents a literature review and Section 3 
formally defines the turn-constrained path planning 

problem. Section 4 describes our navigation 
methodology in detail including the LAG discretization, 
construction of TC-LAGs, and smoothening of the 
optimal path. Section 5 presents our vessel navigation 
example and Section 6 provides the full-mission ship 
handling simulator application. Our summary and 
conclusions are presented in Section 7. 
 
 
2. LITERATURE REVIEW 
 
Numerous studies exist in the literature on shortest path 
problems with turn constraints. Even though vehicle 
navigation is inherently a continuous-space problem in 
general, previous studies on this topic have focused on 
discretization of the navigation area due to the difficulty of 
incorporating realistic operational constraints in the 
continuous setting (Fagerholt et al. 2000; Lee et al. 2002). 
Incorporation of turn constraints in a continuous 
environment typically requires nonlinear manoeuvring 
equations and it is difficult in general (Hilten and 
Wolkenfelt, 2000). For the most part, turn radius constraints 
in discrete settings are limited to symmetric one-edge ahead 
constraints in the literature.  Such a limitation requires that 
resolution of the navigation area be determined by the turn-
radius, which is clearly not very practical. These symmetric 
one-edge ahead turn constraints were modelled in several 
different ways including (1) vertex replication (Albiach et 
al., 2008), (2) modification of the Dijkstra’s Algorithm 
(Solka et al., 1995; Gutierrez & Medaglia, 2008), and (3) 
transformation of the original graph (Mico & Soler, 2011; 
Pugliese and Guerriero, 2012). 
 
Another closely related research area is turn-constrained 
path planning for military aircraft and unmanned aerial 
vehicles (Zabarankin et al., 2006; Edison & Shima, 2011; 
Oz et al., 2013). Such path planning studies, however, 
are not readily adaptable to general path planning 
problems due to the fact that aerial mission planners 
often take into account fuel storage constraints, which 
fundamentally changes the structure of the underlying 
problem and makes it computationally intractable 
(Royset et al., 2009). 
 
A recent study by Babel & Zimmermann (2015) 
considered computation of feasible short paths for ships 
in the presence of disk-shaped mines where ship 
movement is modelled via curves whose curvature 
change linearly with the curves length. Their 
methodology is based on random generation of 
waypoints along with associated random directions and 
random paths combining them, after which a feasibility 
check is conducted and the shortest feasible path with 
respect to this graph is computed. The closest work to 
ours is that of Ari et al. (2013) where the authors 
proposed a novel vertex replication based optimal 
method on an 8-adjacency grid representation of the 
navigation area for turn-constrained ship navigation. A 
significant limitation of their approach, however, is that 
it only allows for 45-degree turns. In our application, we 
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overcome this limitation via utilization of appropriately 
defined turn-constrained large-adjacency grid graphs. We 
are not aware of any previous studies using large-
adjacency grid graphs in turn-constrained path planning. 
 
 
3. THE TURN-CONSTRAINED PATH 

PLANNING PROBLEM 
 
This section formally defines the turn-constrained path 
planning problem in the presence of obstacles, or the TC-
PP Problem in short. Without loss of generality, we 
assume a rectangular navigation area and polygon-
shaped obstacles. It should be noted that any geometric 
shape can be represented by a polygon approximation at 
any level of accuracy (Wu & Leou, 1993). Thus, these 
two terms, i.e., polygons and obstacles, shall be used 
interchangeably in this work. We assume the existence of 
buffer zones around each polygon due to safety 
considerations since the risk factors outside the vessels 
which, to a great extent, are attributable to floating 
obstacles, atmospheric effects and ice, are of outmost 
importance among the risk factors associated with arctic 
navigation (Sahin & Kum, 2015). We compute the buffer 
zones using the buffer zone calculation algorithm in Ari 
et al. (2013). 
 
For any obstacle p ∈ P, we define its buffer zone Bp as the 
region whose boundary consists of points that are fp units 
away from the closest point on the boundary of p. The 
vessel is not allowed to enter the buffer zone of any obstacle 
at any time. Observe that the vessel's turning angle at any 
point (with respect to its present direction) is upper bounded 
by the curvature of the circle with respective left and right 
turn radii. We assume that the vessel's speed depends on the 
turn angle α where h(0) denotes the vessel's straight 
navigation speed. The turn speed function concept is 
explained in detail in Section 4.3. 
 
The TC-PP Problem is then defined as follows: Given a 
set of obstacles P inside the navigation area R and the 
associated obstacle buffer zones Bp, a starting vertex s 
and a termination vertex t, find the shortest s,t path for an 
vessel with speed function h(α), minimum left-turn 
radius al, and minimum right-turn radius ar. 
 
 
4. METHODOLOGY 
 
In this section, we first define large-adjacency grids (LAGs), 
then we describe construction of turn-constrained LAGs and 
we conclude this section by illustrating how an optimal path 
can be smoothed in order to emulate the actual navigation of 
the vessel using Bézier splines.  
 
 
4.1 LARGE-ADJACENCY GRIDS 
 
Due to the previously-mentioned challenges associated 
with continuous-space environments, we consider a 

discrete approximation of the navigation area that is a 
generalization of the regular 8-adjacency grids as LAGs. 
In particular, all LAGs are directed graphs in the form of 
LAGk=(V,Ek) for k=1,2,3,… such that V consists of all 
pairs of integers i,j with 1 ≤ i ≤ Rx and 1 ≤ j ≤ Ry. Here, 
Rx and Ry are positive integers denoting the length and 
width of the navigation area respectively. 
Parameterization of LAGs is achieved by expansion of 
their adjacency structures via a generalization parameter 
denoted by k, which we call the “connectedness degree”. 
We call an 8k-adjacency grid as “k-connected LAG” 
which is defined as the directed graph with vertex set V 
and edge set Ek such that, for each vertex v ∈ V, there are 
directed edges between v and all other vertices that are 
exactly √(i2 + 1) units away from v for i=0,1,2,…. Figure 
1 illustrates the adjacency structure for a vertex in 1,2,3, 
and 4-connected LAGs respectively.  
 
As an example, a 1-connected LAG is the 8-adjacency 
grid LAG1=(V,E1) where there are directed edges 
between all pairs of the following four types of vertices:  
 

x (i,j) and (i+1,j) with unit length, 
x (i,j) and (i,j+1) with unit length, 
x (i,j) and (i+1,j+1) with length √2 units, and  
x (i+1,j) and (i,j+1) with length √2 units. 

  
A 2-connected LAG, on the other hand, is the 16-
adjacency grid LAG2=(V,E2) where E2 is equal to E1 
augmented by directed edges between all pairs of the 
following four types of vertices with lengths of √5 units:  
 

x (i,j) and (i+2,j+1), 
x (i,j) and (i+1,j+2), 
x (i,j+1) and (i+2,j), and  
x (i,j+2) and (i+1,j). 

 

Note that the permissible turn angles in a LAG are 
determined by its connectedness degree. For instance, 1-
connected LAGs only allow for 45q turns. Permissible 
angles for other LAGs can be found using simple 
geometry. For instance, 2-connected LAGs allow for 
arctan(1/2) ≈ 26.6q turns (with respect to straight 
navigation path) in addition to 45q. Likewise, 3-
connected LAGs allow for arctan(1/3) ≈ 18.4q turns (in 
addition to 26.6q and 45q), whereas 4-connected LAGs 
additionally allow for arctan(1/4) ≈ 14q turns. Observe 
that each increase in k will roughly allow for an 
additional (45/k)q turn. As an example, assuming that the 
vessel is traversing on a straight navigation path, a 6-
connected LAG allows for 9.5q, 11.3q, 14q, 18.4q, 26.6q 
and 45q turns. For other incoming directions, the vessel 
can turn with an angle that is any pairwise difference of 
these 6 angles. For instance, if the vessel is traversing an 
edge with a 9.5q angle, it can make a 11.3-9.5 = 1.8q 
turn. For computational efficiency, we do not explicitly 
consider turns larger than 45q as such turns can be 
expressed as a sequence of smaller angle turns. 
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(a) 1-connected LAG 
 

                                            

 
  

(b) 2-connected LAG 

 
 

(c) 3-connected LAG 

 
 

(d) 4-connected LAG 
 

Figure 1: Illustration of the adjacency structure in 1, 2, 3, and 4-connected LAGs respectively 
 

 
Clearly, higher values of k will allow for even more 
flexible turns, but this will also result in many more 
edges being defined, and consequently increase 
computational time requirements. Once a k value is 
decided and the navigation area is discretized via a k-
connected LAG, one vertex in the graph LAGk is 
designated as the starting vertex s and another is 
designated as the termination vertex t. The vessel is to 
traverse from s to t in LAGk while avoiding any edges 
intersecting with buffer zones subject to minimum turn 
radius constraints. 
 
4.2 CONSTRUCTION OF TURN-

CONSTRAINED LAGS 
 
Our implementation of turn constraints entails 
construction of what we call a turn-constrained LAG 
(TC-LAG), which is essentially another graph 
constructed from the underlying LAG that only allows 
for feasible course alterations with respect to the turn 
constraints. Once the TC-LAG is constructed, we execute 
Dijkstra's Algorithm to find the shortest s,t path. During 
the TC-LAG construction process, we pay particular 
attention to define adjacency structures in a manner that 

all feasible traversals are embedded and no unfeasible 
moves are permitted. Thus, our methodology is 
guaranteed to find the turn-constrained optimal path with 
respect to the underlying LAG discretization. 
 
The idea in construction of TC-LAG is that vertices of 
this new graph embed the immediate navigation history 
so that the next feasible moves can be determined. The 
reason for this idea is that where the vessel can feasibly 
traverse next depends on where the vessel is coming 
from. Specifically, the immediate navigation history we 
track is the vertex corresponding to the most recent turn 
and the angle of that turn. Given the graph LAGk, we 
denote the corresponding turn-constrained graph as 
LAG'k=(V',E'k). The vertices v' ∈ V' are defined as three-
tuples in the form of <vc,vp,α> where vc,vp ∈ V and α ∈ 
[0q,45q] is the angle of the most recent turn. The 
subscripts “c” and “p” stand for “current” and 
“previous” respectively. In particular, the first vertex vc 
in the tuple denotes the physical location of the TC-
LAG vertex. The second vertex vp denotes the physical 
location of the most recent turn prior to the vessel's 
arrival at vc. The vertex vp is used to keep track of how 
far the vessel has travelled since the last turn. Note that 
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the LAG vertices vc and vp are not necessarily adjacent 
in the underlying LAG graph. As described below, the 
distance between vc and vp and the turn angle α are used 
to identify which moves are feasible from vc with 
respect to the turn constraints. 
 
When constructing the TC-LAG graph LAG'k, we deploy 
a first-in first out TC-LAG vertex queue and use a 
regular LAG graph LAGk as a guide graph. The 
construction algorithm starts with an empty queue and 
inserts the TC-LAG vertex <s,null,0> into this queue 
where s is the starting LAG vertex. At each iteration of 
the algorithm, a vertex v' = <vc,vp,α> is pulled from the 
queue and processed as follows:  
 
Step 1. Using the guide LAG graph, all feasible LAG 
neighbours of the physical location vertex vc are 
identified based on the immediate traversal history as 
specified by vp and α, and new TC-LAG vertices 
corresponding to these neighbors are created.  
 
Step 2. These newly created TC-LAG vertices are added 
to the queue.  
 
Step 3. These vertices as well as the corresponding TC-
LAG edges with appropriate time lengths are added to V'k 
and E'k respectively. 
 
The algorithm continues with the queuing/ dequeuing 
process described above until the vertex queue is empty. 
This process specifically ensures that all possible feasible 
paths from start to termination are embedded in the TC-
LAG and no illegal moves are allowed.  
 
In Step 1 above where new TC-LAG vertices v'=<vc,vp, 
α> are created, suppose that a candidate LAG neighbor 
of vc is denoted by vn and the turn angle at vc in the 
direction of vn is denoted by αn. Here, the subscript “n” 
stands for “next”. Provided that vn is a feasible neighbor, 

the TC-LAG vertex v'n := <vn,vc,αn> is created and the 
edge (v',v'n) is added to E'.  
 
There are three possibilities for a feasible move: a 
straight traversal and turns in the same and opposite 
directions as the previous turn respectively. Figure 2 
illustrates these three possibilities. In Figure 2(a), the 
neighbor vn represents a straight traversal from vc and 
therefore no feasibility check is necessary.  
 
In Figure 2(b), vn represents a turn in the opposite 
direction as the previous turn. The feasibility check in 
this case is carried out as follows: we first observe that 
the edge (vp,vc) is the second leg of a turn with angle α. 
The minimum distance that needs to be travelled so that 
vn becomes a feasible move can be calculated using 
simple geometry as shown in Figure 3. In this particular 
case where the previous turn was a right turn, we define 
the minimum right-turn distance function as follows:  
 

� � :
armr 180-tan( )

2

D D              (eq.1) 

 
 
Similarly, for left turns, ml (α) is defined as: 
 

� � :
alml 180-tan( )

2

D D              (eq.2) 

 
 
Thus, vn is a feasible neighbor of vc only if:  
 
𝑑(𝑣𝑝, 𝑣𝑐) ≥ 𝑚𝑟(𝛼) + 𝑚𝑙(𝛼𝑛)            (eq.3) 
 
where d denotes the Euclidean distance function.  
 
 

 
 
 

 
 
Figure 2: Illustration of the three feasible moves following a right turn. 
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Figure 3: Calculation of the minimum right-turn distance. 
 
Next, in Figure 2(c), vn denotes a right turn in the same 
direction as the previous one. In order to check for 
feasibility, we first note that the edge (vp,vc) is the second 
leg of a turn with angle α, and it is also the first leg of a 
turn with angle αn. The vertex vn is a feasible neighbour 
only if the distance between vp and vc is at least the sum 
of the respective minimum leg lengths. Hence, the 
feasibility condition is given by:  
 
𝑑(𝑣𝑝, 𝑣𝑐) ≥ 𝑚𝑟(𝛼) + 𝑚𝑟(𝛼𝑛)            (eq.4) 
 
Feasibility conditions involving left turns can be defined 
in a similar manner using ml() instead of mr() above. 
 
4.3 CALCULATION OF TC-LAG EDGE TIME 

LENGTHS 
 
In general, a vessel’s speed decreases during course 
alterations. We therefore consider a general case where 
the vessel's speed is a function of the vessel's turn angle. 
The speed function shall be denoted by h(α) where α is 
the angle of the vessel's turn. Here, h(0) is the speed for 
straight (non-turn) traversal. In case the vessel's speed is 
constant during the entire traversal, h(α) := h(0) for  α ≥ 
0q. For decreased turn speeds, h(α) specifically denotes 
the vessel's minimum instantaneous turn speed in 
between the turn legs as described below. 
 
For a given turn angle α, we first note that the turn is 
achieved in two legs on the LAG graph. We call a leg 
proper if its Euclidean length is respectively mr(α) for a 
right turn and ml(α) for a left turn. Our modeling of the 
turn speeds is illustrated in Figure 4 for a right turn. The 
line segment (p1,v) corresponds to the first proper leg and 
the line segment (v, p2)  corresponds to the second proper 
leg where v is a LAG vertex, yet p1 or p2 is not 
necessarily so. Observe that d(p1,v) = d(v, p2) = mr(α). 
Upon the vessel's arrival at the point p1, its speed is h(0). 
Along the first proper leg, that is, on the line segment (p1, 
v), the vessel's speed decreases from h(0) all the way 
down to h(α). Along the second leg, i.e., on the line 

segment (v, p2), the vessel starts gaining speed, and by 
the time it arrives at p2, the vessel reaches its original 
speed of h(0). For convenience and simplicity, we 
assume that the vessel's average speed along both the 
first and second proper legs is denoted by hleg(α) and 
calculated as: 
 

� � � �
:

0 ( )
2

h h
hleg

D
D

�
              (eq.5) 

  
We make the observation that a vessel loses about one 
fifth of its speed after a 45q (American Bureau of 
Shipping, 2006). Hence, we use the following model for 
h(α) in our vessel navigation example: 
 

� � � � 10 1 ,     0 45
5 4

:
5

oh h o
DD D

§ ·§ ·§ ·¨ ¸� d d¨ ¸¨ ¸¨ ¸© ¹© ¹© ¹
            (eq.6) 

 
It should be noted that turn speeds and rates of 
acceleration and deceleration change considerably from 
one vessel to another. Consequently, the above model is 
likely to require some fine-tuning in different 
applications. 
 
Time lengths of TC-LAG edges are defined based on the 
speed model described above. In particular, time lengths 
of edge segments corresponding to proper legs are 
calculated with respect to the average speed hleg(α)  in 
Equation 5 and time lengths of other edge segments are 
calculated with respect to the speed h(0). 
 
4.4 SMOOTHENING OF THE OPTIMAL PATH 
 
Once the time-wise shortest s,t path is found on the TC-
LAG graph using Dijkstra's Algorithm, the final step is to 
smoothen the path for a more natural look. For the 
smoothening process, we use classical Bézier splines 
composed of cubic Bézier curves. Bézier curves are 
commonly used in computer graphics, font engines, and 
2D/ 3D digital animation to smoothen curves (Bartels et 
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al., 1998). We remark that once smoothened, the shortest 
s,t path may intersect a buffer zone, albeit slightly. Should 
this be the case, a possible provision would be an 
appropriate increase in the safety distance for the 
associated ice block and rerunning of the algorithm. 
 
An m-th order Bézier curve is defined by a set of m+1 
control points. Thus, a cubic Bézier curve is specified by 
four control points, which we denote by Q0,…,Q3. The 
first and last control points are the end points of the 
curve. A Bézier curve is always contained in the convex 
hull of its control points. On the other hand, the 
intermediate control points only provide directional 
information and typically do not lie on the curve. A cubic 
Bézier curve is parameterized as follows:  
 

� � � �3 2 2 3(1 ) 3(1 ) 3 1 ,       [0.1]0 1 2 3B Q Q Q QO O O O O O O O � � � � � � �

 (eq.7) 
 
Optimal path is denoted by the sequence of vertices 
<s=v0,v1,…,vm-1,t=vm>. In order to smoothen this path 
using cubic Bézier curves, we need four points on the 
path for each curve, which we choose as follows: 
 
x For the first Bézier curve, we set Q0 = s, Q1 = v1, Q2 

= v2, Q3 = v2,3 where vi,j is defined as the midpoint of 
the edge (vi,vj) for 1 ≤ i,j ≤ m. 

x For the last Bézier curve, if m is odd, we set Q0 = vm-

3,m-2, Q1 = vm-2, Q2 = vm-1, Q3 = t. If m is even, we set 
Q0 = vm-2,m-1, Q1 = vm-1, Q2 = vm-1,t, Q3 = t.  

x For Bézier curves in the middle, we set Q0 = vk,k+1, 
Q1 = vk+1, Q2 = vk+2, Q3 = vk+2,k+3 where 2 ≤ k ≤ n-4. 

 
Once these curves are constructed, they are concatenated 
to form one continuous Bézier spline representing the 
optimal path the vessel is to navigate. 
 

5. VESSEL NAVIGATION APPLICATION 
 
We now illustrate how our methodology can be used 
to find optimal paths for vessels navigating in ice-
covered waters. In our example, we consider a 5×3 km 
navigation area with unit edge length of 100 meters, 
i.e., Rx = 50 and Ry = 30. We use a standard 100,000 
tones merchant vessel with a cruising speed of k=10 
knots, a right-turn radius of 545 meters, and a left-turn 
radius of 475 meters (American Bureau of Shipping, 
2006). We consider an ice concentration of about 
20%. In order to generate a random ice field with this 
concentration, we do the following: (1) generate 
random points inside the navigation area, (2) construct 
the corresponding Voronoi tiles representing ice 
blocks, and then (3) shrink them by 80%. For each ice 
block, we set the buffer zone safety distance to 120 
meters. Figure 5 depicts the navigation area filled with 
polygon-shaped ice blocks with buffer zones around 
these blocks. 
 
We conduct two sets of computational experiments 
within the navigation area described above: (1) 
unconstrained shortest paths on regular LAGs, and (2) 
turn-constrained shortest paths on TC-LAGs. We 
consider k values ranging from 1 to 6. We break down 
the computational time for each k into two: time 
required for constructing the underlying LAG/ TC-LAG 
graph and the time required for the Dijkstra run. For 
each experiment, we visually illustrate the paths found 
for different k values and also tabulate execution times, 
path lengths, and graph sizes. Our goal here is to gain 
insight into impact of the k value on execution time and 
solution quality in both constrained and unconstrained 
cases. These experiments were run on a PC with 32 GB 
memory and an Intel Core i7 processor with a 3.8 GHz 
clock speed.  
 

 
 

 
 

Figure 4: Illustration of proper legs for a right turn. The line segments (p1,v) and (v,p2) are proper right turn legs and both 
have a Euclidean length of mr(α). 
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Figure 5: The navigation area filled with polygon-shaped ice blocks with buffer zones around them in the ice navigation 
example. 
 
Table 1: Comparison of results for unconstrained and turn-constrained shortest paths obtained by Dijksra's Algorithm on 
LAG and TC-LAG graphs, respectively, for different k values. 

Unconstrained Dijkstra on a LAG graph Turn-constrained Dijkstra on a TC-LAG graph 
k Graph 

Constr. 
(sec) 

Dijkstra 
(sec) 

Path 
Length 
(min) 

No. 
Vertices 

No. 
Edges 

k Graph 
Constr. 
(sec) 

Dijkstra 
(sec) 

Path 
Length 
(min) 

No. 
Vertices 

No.  
Edges 

1 3.44  0.22 18.56 1,500 11,524 1 170.47 2.35 19.36 264,685 596,961 
2 6.52  0.28 17.42 1,500 22,580 2 997.12 14.37 17.75 918,794 3,441,841 
3 9.49 0.31 16.85 1,500 33,324 3 2,923.45 46.17 17.40 1,751,689 9,672,551 
4 11.99 0.36 16.47 1,500 43,736 4 5,038.52 84.90 16.81 2,322,264 16,295,633 
5 15.23 0.40 16.47 1,500 53,876 5 6,971.08 124.07 16.81 2,669,858 22,119,898 
6 17.55 0.42 16.47 1,500 63,684 6 10,883.26 187.25 16.81 3,343,571 31,830,312 

 
 
5.1 UNCONSTRAINED SHORTEST PATHS ON 

REGULAR LAGS 
 
We first run Dijkstra's Algorithm on regular LAG graphs to 
obtain unconstrained shortest paths, which are illustrated in 
Figure 6 for k=1,3,4,5,6 respectively. Our purpose with this 
exercise is to illustrate that regardless of turn constraints, 
LAG discretization can result in shorter and more realistic 
paths. Computational results for this set of experiments are 
included in Table 1. In the table, optimal path lengths are 
given in minutes. The last two columns show the number of 
LAG vertices and edges for the respective k values. As can 
be seen in the table, optimal path lengths do not change for k 
≥ 4, yet both computational times slightly increase with k, 
illustrating the fact that LAG graphs offer a significant 
degree of flexibility in balancing computational burden 
against solution quality. A visual inspection of Figure 6 
reveals that higher k values result in not only shorter, but 
also more natural paths, particularly avoiding the unpleasant 

zigzagging pattern seen in the case of k=1 that is common 
in the literature. 
 
5.2 TURN-CONSTRAINED SHORTEST PATHS 

ON TC-LAGS 
 
Next, we run Dijkstra's Algorithm on k-connected TC-LAG 
graphs in order to obtain turn-constrained shortest paths, as 
illustrated in Figure 7 for k=1,2,4,5,6 respectively. As can 
be seen in this figure, increasing k results in shorter, more 
realistic, yet still feasible paths. Table 1 includes the 
computational results for this set of experiments. We 
observe that path lengths improve progressively up to k=4, 
after which increasing k does not yield any additional 
benefits. In particular, the case here for k=1 that only allows 
45q turns corresponds to the methodology of Ari et al. 
(2013) for the same problem. In this particular case, 
allowing for additional turn angles with a 4-connected LAG 
discretization results in a 15% decrease in path length. 
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(a) k=1 

 

 
(b) k=2 

 

 
(c) k=4,5,6 

 
Figure 6: Smoothened unconstrained shortest paths on regular LAG graphs for different values of k.  

 



Trans RINA, Vol 159, Part A1, Intl J Maritime Eng, Jan-Mar 2017 

A-72                      ©2017: The Royal Institution of Naval Architects 

 
(a) k=1 

 

 
(b) k=2 

 

 
(c) k=4,5,6 

 
Figure 7: Smoothened turn-constrained shortest paths on TC-LAG graphs for different values of k. For k ≥ 4, while the 
unconstrained shortest path passes through the region between the three ice blocks shown by the arrow, it is too much of 
a sharp turn for the vessel, and therefore it is avoided in the turn-constrained shortest path. 
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Figure 8: The navigation area inside the simulator console and progress of the ship's navigation. 
 

 
Figure 9: The complete manually navigated path inside the simulator. 
 
6. SIMULATOR APPLICATION 
 
Similar to aircrafts, automated navigation systems are 
available for ships for navigation in open waters. 
However, common practice in restricted waterways is to 
switch to hand-steering mode due to the vessel's limited 

maneuvering capability. Thus, in a real-world 
application, the optimal path obtained above in our ice 
navigation example needs to be traversed manually by a 
qualified helmsman. In this section, we present a proof-
of-concept by having a licensed captain manually steer 
the optimal path in a full-mission vessel handling 
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simulator (FMSHS). Our purpose with this simulation is 
to illustrate real-world feasibility of our methodology. 
The FMSHS we use is a Japanese Marine Science 
branded one that is capable of fully simulating various 
vessel maneuvers in restricted waterways.  
 
Figure 8 shows navigation area inside the simulator 
console and progress of the vessel's navigation. The 
complete manually navigated path inside the simulator is 
shown in Figure 9. We observe that the manual path 
follows the smoothened graph-theoretical path very 
closely, suggesting that the optimal graph-theoretical 
path in our example is consistent with the complex 
maneuvering dynamics of the vessel under consideration. 
 
 
7. SUMMARY AND CONCLUSIONS 
 
In this study, we utilize large-adjacency grid (LAG) 
graphs to solve the problem of vessel navigation in ice-
covered waters with turn-constrains. Our approach 
allows for considerably higher degrees of flexibility 
regarding the turn angles leading to practical and optimal 
paths that can be undertaken by ships in reality in order 
to navigate through ice in Arctic waters. We demonstrate 
that regardless of turn constraints, particularly after a 
Bézier spline smoothening, a LAG discretization offers 
short, practical and natural-looking navigation paths. We 
validate our methodology on a vessel navigation example 
in ice-covered waters and we present a proof-of-concept 
in a full-mission vessel handling simulator application. 
 
Regarding implementation of turn constraints, we first 
construct a new graph based on a regular LAG that embeds 
all feasible moves and prohibits any illegal ones, which we 
call a TC-LAG. Once constructed, we run Dijkstra's 
Algorithm on the TC-LAG to find the optimal turn-
constrained path. Our modeling of turn constraints allows 
for resolution-independent discretization of the navigation 
area and it is optimal with respect to the underlying LAG 
discretization. This model also allows for asymmetric 
minimum left and right turn radii as well as reduced turn 
speeds as a function of the turn angle. In our limited 
computational experiments, we observed that k=4 seemed to 
be sufficient for practical purposes. Increasing k beyond 4 
resulted in relatively higher run times with little to no 
additional benefits in solution quality. 
 
As can be seen in our vessel navigation example, the 
number of vertices and average degree of the graph in 
TC-LAGs can be rather high, resulting in increased run 
times for the Dijkstra's Algorithm. As a remedy to this 
problem, future research may consider the following: (1) 
use fast heuristics-based searches such as A* instead of 
Dijkstra's Algorithm, or (2) run two sequential searches: 
the first search being in the LAG (using A* and perhaps 
Euclidean distance as the heuristic function), and the next 
search being in the TC-LAG with the heuristic function 
being derived from the costs obtained in the LAG search. 
 

In this work, environmental forces such as winds, waves, 
or sea currents were assumed to be non-existent. 
Nonetheless, such forces often play a crucial role in 
vessel navigation. Future research might also investigate 
modeling and incorporation of such forces in the model. 
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