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SUMMARY 
 
The paper presents the problem of calculating the righting arms (GZ-curve) for a freely floating ship, longitudinally bal-
anced at each heel angle. In such cases the GZ-curve is ambiguous, as it depends on the way the ship is balanced. Three 
cases are discussed: when the ship is balanced by rotating her around the trace of water in the midships, around a normal 
to the ship plane of symmetry (PS), and around a normal to the initial waterplane, fixed to the ship, identical with the curve 
of minimum stability. In all these cases the direction of the righting moment in space and area under the GZ-curves, which 
is the lowest possible, are preserved. Angular displacements (heel and trim) are the Euler's angles related to the relevant 
reference axis. The most important features of the GZ-curve with free trim are provided. Exemplary calculations illustrate 
how the way of balancing affects the GZ-curves. 
 
 
NOMENCLATURE 
 

a height of gravity centre above buoyancy centre 
in upright position of the ship 

B centre of buoyancy 
BP base plane 
BZ   �r � n, height of the centre of gravity above 

the centre of buoyancy 
D product of inertia of the waterplane 
e direction of rotation axis (unit vector normal to 

plane of rotation) 
e�, e� unit vectors of traces of water in PS and in the 

midships section 
F centre of floatation (centre of gravity of the 

waterplane 
f unit vector of axis of floatation 
HL   RL � BZ, longitudinal metacentric height 
G centre of ship gravity 
i, j, k unit vectors of Oxyz system 
i', j, k' unit vectors of Ox'yz' system 
i' unit vectors of Ox'   (cos T�, �, sin T�) 
k' unit vectors of Oz'   (�sin T�, �, cos T�) 
J�, J� principal moment of inertia of the waterplane 
JT    J['' � D'' tanF, transverse moment of inertia 
JK'' longitudinal moment of inertia of the waterplane 
L, B, T length, breadth and mean draught of ship, re-

spectively 
l, ld righting arm GZ and dynamic arm 
le   e � r, distance of centre of buoyancy from the 

plane of rotation 
n unit vector normal to waterline, directed upwards 
Oxyz coordinate system, fixed to ship 
Ox'yz' system Oxyz rotated by angle T� around the axis 

Oy 
OXYZ coordinate system, fixed to the plane of rotation 
P weight of ship 
PS plane of symmetry 
r  { GB   (xB � xG, yB � yG, zB � zG), radius vector 

of the centre of buoyancy relative to the ship 
centre of gravity 

rB   JT/V, transverse metacentric radius BM 
RL   JK''/V, longitudinal metacentric radius 
V volumetric displacement of ship 

w unit vector of the trace of water on initial water-
plane 

- angle between traces of water-level and PS in BP 
-' angle between traces of water-level and PS on 

initial waterplane 
4� angle of inclination of x-axis relative to sea level 
D angle between BP and water-level 
D' angle between initial waterplane and water-level 
E angle between traces of water in PS and mid-

ships 
E' angle of inclination of axis of rotation e with 

respect to trace of PS on the waterplane 
F angle between axis of floatation and axis of ro-

tation 
'   VJ, ship buoyancy (weight of displaced water) 
I angle of deviation of PS from the vertical, identi-

cal with angle of inclination of y-axis relative to 
sea level 

J'� angle between principal axis of waterplane and 
the axis of rotation e from the range ¢���q, ��q² 

J� specific gravity of water�
K rotation angle of plane of rotation in general case 
M angle of inclination of trace of water in midships 

relative to y-axis of ship 
T angle of inclination of trace of water in PS rela-

tive to x-axis of ship 
T� angle of ship trim at upright position 
U density of water 
[K� co-ordinate system of the waterplane ([-axis 

coincides with the trace of water in the PS) 
['K' central system of the waterplane, parallel to 

system [K  
[''K'' central system of the waterplane, where [''-axis is 

parallel to the axis of rotation e  
[�K� system of principal axes of inertia of waterplane 
W angle of rotation of the waterplane around axis 

transverse to axis of rotation e  
<  �\ � -', twist – angle between traces of water-

level and PS on initial waterplane for a rig with 
changed orientation relative to the wind direction 

\ azimuth – angle between the wind impact plane 
and PS 
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1. INTRODUCTION 
 
The GZ-curve is the basis for the assessment of ship sta-
bility. Until 2008 for intact ships classification societies 
required the GZ-curve to be calculated at level keel. Nowa-
days, it is commonly calculated for freely floating ships. 
 
For the intact ship it is practically meaningless which mode 
of calculations is employed: fixed trim, constant during 
heeling, or a varying trim as for a freely floating ship, which 
changes trim depending on longitudinal equilibrium. This 
is due to minor asymmetry of the ship relative to the mid-
ships. However, for damaged ships and platforms the situ-
ation is opposite. The mode of calculations is therefore 
important, as it affects the GZ-curve after the immersion 
of the deck edge in water. The righting arm GZ means 
here the distance between the lines of action of buoyancy 
and gravity forces at a given heel angle in still water. 
 
It can be demonstrated that the GZ-curve for a free trim is 
equal to or smaller than that for a fixed trim. For this rea-
son, the GZ-curve is nowadays obligatorily calculated for 
a freely floating ship. In such cases, however, we face the 
problem of understanding the angle of heel, as it is then an 
ambiguous notion, manifested in various definitions of this 
angle and, hence, various GZ-curves. 
 
The stability of a freely floating ship is a relatively new 
issue, explored mainly by Vassalos et al (1985), van 
Santen (1986), the author Pawlowski (1991, 1992a, 
1992b, 2005 & 2013), and others. 
 
2. HISTORICAL OUTLINE 
 
Why a body floats in a fluid had been already known in the 
antiquity since the times of Archimedes (around 287–212 
BC). However, how to assess and investigate the stability of 
floating bodies had not been known until the discovery of 
the Newtonian laws. In 1746 Bouguer introduced the notion 
of the metacentre and the metacentric height as a measure of 
initial stability (Bouguer, 1746). In 1749 Euler delivered the 
equation for the coefficient of stiffness, and a theorem on 
the equi-volume waterplanes (Euler, 1749). A thorough 
survey of the development of the theory of stability of ships 
since the antiquity is provided in (Nowacki & Ferreiro, 
2009). In 1796 Atwood published a method for calculating 
the righting arm for given heel angle, based on a shifted 
wedge volume method (Atwood, 1796). From this method it 
follows that freeboard is crucial for the stability of ships. 
Nonetheless, for over a hundred years only the initial meta-
centric height h� { GM was used for assessing ship stability. 
It is stability related accidents at the end of the XIX century 
that led to a conclusion that the use of the GM as the sole 
criterion is far insufficient for the appraisal of stability, and 
pointed to the importance of freeboard and the GZ-curve. 
 
The metacentric height, which otherwise is an important 
index of stability, allows neither for direct estimation of 
the stability range, nor the maximum righting lever. In this 
context the widely described sinking of HMS Captain in 

1870 is worth mentioning, with her metacentric height of 
���� m (White, 1879). The ship capsized during a storm 
in the Bay of Biscay, whereas the accompanying battleship 
Monarch of a similar size and characteristics, survived 
the storm unharmed, despite a smaller metacentric 
height of ���� m. The fact was very surprising for the 
naval architects at that time. It is very easy to explain the 
accident, if one observes the very different freeboards of 
the two ships: the Captain had a freeboard of ���� m, 
while the Monarch of ���� m. As a result, despite the 
smaller metacentric height, the GZ-curve of the Monarch 
had much better parameters than that of the Captain, whose 
GZmax   ���� m instead of ���� m, Imax   ��º, instead of 
��º, and the range of stability ��º, instead of ��º. 
 
The Captain’s accident gave evidence that the metacentric 
height alone is an insufficient measure of stability safety 
and made it necessary to pay attention to the stability of 
ships at large angles of heel. As a result, at the end of the 
XIX century the curve of righting arms (GZ-curve) began 
to be widely used for the assessment of ship stability 
termed also the Reed’s curve in memory of their propaga-
tor (Reed, 1885). The first GZ-based stability criteria ap-
peared as late as in 1939, provided by Rahola, (1939). 
These are recommendations on minimum values of some 
parameters related to the GZ-curve, extracted from the 
analyses of the GZ-curves for ships that capsized during 
service and for those regarded as safe. At the end of the 
1960s the said criteria were adopted by IMCO (Intergov-
ernmental Maritime Consultative Organisation, established 
in 1958), presently IMO (International Maritime Organisa-
tion since 1982), and they are in force until today, supple-
mented by the Weather Criterion (IMO, 2009a). 
 
Though the GZ-curve had been used for stability assessment 
of intact ships for more than a century, the stability of dam-
aged ships until recently had been assessed with the meta-
centric height and freeboard. The previous SOLAS conven-
tions were happy with the residual freeboard as low as three 
inches and the metacentric height of two inches. With such 
parameters, the GZ-curves are marginal. A change took 
place as late as in 1990, when the GZ-curve was standard-
ised with the help of SOLAS 90 criteria (IMO, 2009b). 
However, these criteria did not provide a real progress, as 
they were introduced by purely administrative decision, not 
supported by any evidence. Hence, they had alleged rather 
real link to actual safety of ships in damaged condition. A 
breakthrough took place in 1995 when the mechanism of 
ship capsizing in damaged condition was revealed (Paw-
lowski, 1995; Vassalos, Pawlowski & Turan, 1996/97; Paw-
lowski, 2007a & 2007b). It makes it possible to link the 
critical sea state and damaged stability at the moment of 
capsizing applying only static calculations, like for calculat-
ing the GZ-curves. 
 
3. FORMULATION OF THE PROBLEM 
 
Until recently almost all widely known methods for cal-
culating the GZ-curve assumed the ship at level keel. This 
meant indirectly that the centre of buoyancy B was sup-



Trans RINA, Vol. 159, Part A1, Intl J Maritime Eng, Jan-Mar 2017 

© 2017: The Royal Institution of Naval Architects                    A-3 

posed to be free of longitudinal displacements, i.e., when 
the ship heeled it moved strictly in a frame plane. There 
was no need for considering earlier a different situation, as 
the GZ-curves were calculated solely for intact ships, for 
which the foregoing assumption was almost ideally valid. 
However, in situations when the centre of buoyancy under-
goes longitudinal displacements, which takes place when 
the waterplane is asymmetrical with respect to the plane 
of rotation, as in the case of ships with low L/B ratio, or 
ships in damaged condition, this fact cannot be any longer 
ignored and the calculations have to be carried out for 
a freely floating object, longitudinally balanced. Determi-
nation of the GZ-curve in such cases becomes ambiguous 
and the problem has to be fine-tuned by determining the 
way the ship is balanced. 
 
It is worth emphasising that angular rotations of a freely 
floating object go beyond the basic ship theory. In the 
classic ship theory the GZ-curve is determined for a ship 
with fixed trim, performing rotations of one degree of free-
dom. These are elementary rotations, understood by all. 
Meanwhile, a freely floating ship varies its trim during 
heeling, that is to say, it performs a rotation of two degrees 
of freedom. Such a rotation is spatial, much more intricate 
than that of one degree of freedom. For this reason, and 
to make the calculations easier vector calculus is applied 
in this work. 
 
Orientation of a body in space is defined by three Euler’s 
angles, related to a given reference axis (Figure 1). In the 
case of a freely floating ship, two Euler’s angles are used, 
as the third one, describing the azimuth, is irrelevant, as by 
definition it is constant. One of the two angles plays the 
role of the angle of heel, while the other – the angle of trim. 
In the subject literature they are called frequently as gen-
eralised heel and trim angles. The Euler’s angles are de-
grees of freedom, i.e. they can be changed independently 
of each other. A plane normal to the reference axis has no 
name in mechanics; for convenience we will call it as the 
reference plane. One rotation is around the reference axis, 
and the other around the line of nodes NN, i.e. the trace of 
water at the plane of reference. 
 
 

 
Figure 1. Euler's angles 
 
 

The reference axis is customarily one of the axes of the co-
ordinate system. There are then three possible reference 
axes, three reference planes, normal to them, and three 
lines of nodes. However, a reference axis can be any axis, 
if necessary. 
 
When a line of nodes is the trace of water in the mid-
ships, the Euler’s angles are related to the x-axis, nor-
mal to the midships, denoted by M and 4. The first one 
is the angle of heel, i.e. the angle of inclinations of the 
trace of water in the midships relative to the y-axis, 
while the other is the trim angle, i.e. the angle of in-
clination of the x-axis relative to a horizontal plane 
(sea level). The reference plane is any frame plane 
(station), not necessarily the midships. If the ship is 
trimmed in an upright position, the Euler’s angles are 
related to the x'-axis, normal to vertical frame planes, 
denoted by M' and 4'. The first one is the angle of in-
clinations of the trace of water in the vertical frame 
planes relative to the y-axis, while the other is the an-
gle of inclination of the x'-axis with respect to the hor-
izontal. The vertical frames are deviated from regular 
frames by an angle of initial trim T�, and incline to-
gether with the ship. 
 
When a line of nodes is the trace of water in the PS, 
the Euler’s angles are related to the y-axis, normal to 
the PS, denoted by I and T. The first one is the angle 
of heel, i.e. the angle of rotation of the PS around the 
trace of water, equal to the angle of inclination of the 
y-axis relative to the horizontal (sea level), while the 
other is the angle of trim, i.e. the angle of rotation of 
the PS around the y-axis. 
 
When a line of nodes is the trace of water in the initial wa-
terplane (waterplane in an upright position that inclines to-
gether with the ship), the Euler’s angles are related to the z'-
axis, normal to the initial waterplane (when the ship in an 
upright position at level keel, the reference axis is the z-axis, 
normal to the BP). The Euler’s angles are denoted by D' and 
-' or by D and -, respectively. The first one is the angle of 
heel, i.e. the angle of rotation of the initial waterplane 
around the line of nodes, equal to the angle of deviation of 
the z'-axis from the vertical, while the other one is the angle 
of trim, termed also as twist, i.e. the angle of rotation of the 
initial waterplane around the z'-axis, equal to the angle be-
tween the traces of water and PS in the initial waterplane. 
The reference plane is also any plane that is parallel to the 
initial waterplane. For a ship at level keel this can be in par-
ticular the BP. 
 
For a ship heeled with fixed trim, all the three angles of heel 
are the same, i.e. M'   I   D', while the trim angles vanish, 
i.e. 4'   T   -'   �. If a ship is not restrained, then at a given 
heel angle, she will assume a trim to be longitudinally bal-
anced. In the first case, she will trim (rotate) vertically 
around the trace of water in the midships (Figure 2), in the 
second – around the y-axis (Figure 3), and in the third case – 
around the z'-axis (Figure 4). In the last two cases the ship 
trims in oblique planes. 
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Figure 2. Vertical trimming of the ship 
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Figure 3. Oblique trimming around the y-axis 
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Figure 4. Oblique trimming around the z'-axis 
 
Note that for the trim angle 4'   ��q (when the ship assumes 
a vertical position) the angle M' looses the meaning of the 

heel angle, while for the angle I   ��q the trim angle T is 
indeterminate. Only for the reference axis z', the trim angle 
-' is definite, when the heel angle D'   ��q. 
 
Longitudinal balance occurs when the centre of buoyancy 
is at a vertical plane, termed the plane of rotation, passing 
through the centre of ship gravity. In the first case, the said 
plane is parallel to the line of nodes, while in the two other 
cases – perpendicular. As the line of nodes is fixed in space, 
the direction of the righting moment is also fixed in space. 
Hence, the curve of centre of buoyancy is strictly flat in 
space, lying in the plane of rotation (for a ship with fixed 
trim, the said curve is a projection of a spatial curve on the 
plane of rotation). A unit vector, normal to the plane of 
rotation, termed the axis of rotation, denoted further down 
by e, is also fixed in space. 
 
Calculations of the GZ-curve for a freely floating ship are 
carried out under the following assumptions: 
 
x  The ship is inclined by a pure heeling moment, act-

ing statically. It means that ship inclinations are 
equi-volume 

x  The vector of the heeling moment is strictly horizon-
tal. Otherwise, the heeling moment would have a ver-
tical component that would rotate the ship around a 
vertical axis 

x  The vector of the heeling moment is normal to the 
plane of rotation. Otherwise, the ship would not be 
longitudinally balanced 

x  At each heel angle the ship is in static equilibrium, 
i.e. the sum of forces and moments acting on her van-
ish. Hence the ship's weight is equal to her buoyan-
cy, i.e. P   D, and the static heeling moment is bal-
anced by the righting moment of the opposite direc-
tion 

x  The righting moment is formed by a couple of forces: 
i.e. the gravity force applied in the ship's centre of 
gravity and the buoyancy force passing through the 
ship's centre of buoyancy. These forces are equal to 
each other and of opposite direction to each other. 
The moment vector is horizontal and normal to the 
plane of rotation. 

 
The above assumptions yield some consequences: 
 
x  For inclinations with fixed trim the centre of buoyancy 

need not be in the plane of rotation, therefore the 
moment acting on the ship has no constant direction 
in a horizontal plane 

x  The righting lever l { GZ is the arm of the couple form-
ing the righting moment, measured in the plane of ro-
tation; the said arm is a function of the angle of rota-
tion K of the plane of rotation around the axis of ro-
tation e. The angle of rotation depends on the refer-
ence axis. In the second case K { I, in the third case 
K { D'. In the first case K   ∫dMcos4. For the refer-
ence axis Ox', the angle of rotation has no simple in-
terpretation. This comes from the fact that the refer-
ence axis is not normal to the plane of rotation (ver-
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tical frame). Therefore, K � M. For ships the angles K 
and M are practically the same, since the trim angles 4 
are less than �q. In the case of platforms, the differ-
ences between the two angles can be large, due to 
large trims 

x  The orientation of the ship to the plane of rotation is 
ambiguous, as it depends on the adopted line of nodes 
and related method of balancing; therefore the GZ-
curves are also ambiguous. The trace of water in the 
PS (Figure 3) is appropriate for intact ships, as it 
idealises the direction of the wind heeling moment. 
On the other hand, the edge of intersection of the ini-
tial waterplane with the waterplane is appropriate for 
damaged ships, where the heeling moment is created 
by gravitational forces, assuming minimum potential 
energy at the position of equilibrium 

x  In the case of objects arbitrarily orientated to wind 
direction (e.g. semi-submersible units) the PS should 
be replaced by a wind impact screen, perpendicular to 
the wind direction at an initial position and rotating 
together with the object. For a ship asymmetrically 
flooded this is a plane parallel to the principal axis of 
the waterplane in an upright position. The Euler's an-
gles are related to the system Ox'y'z', fixed to the 
windscreen 

x  It can be seen that the projection of the y-axis on the 
horizontal plane is perpendicular to the trace of wa-
ter in the PS. Hence, this line of nodes strictly corre-
sponds to the direction of the heeling moment due to 
a shift of cargo in the ship's transverse plane. It ap-
plies also to the heeling moment of ro-ro vessels in 
damaged condition, resulting from the accumula-
tion of water on the car deck when a symmetrical 
compartment has been flooded in the midships. For 
the same reason the GZ-curve measured by means 
of the Di Belli method is strictly consistent with the 
above model of inclinations. In this method, a heel 
angle of ship model is measured, induced by shift-
ing a weight along an arm perpendicular to the PS, 
identical with the inclination of the arm relative to 
the horizontal 

x  As the righting moment is all the time perpendicular 
to the plane of rotation, work done by the righting 
moment is the integral of the moment with respect to 
the angle of rotation of the plane of rotation K, iden-
tical with the heel angle, dependent on the line of 
nodes. At the same time, this is the least work which 
is to be performed in order to heel the ship up to a 
given heel angle. In other words, for the ship with 
fixed trim or not fully balanced, work of the righting 
moment is larger. 

 
It is worth emphasising that in space there is only one 
rotation plane (large circle in the said three figures). 
However, the ship sets differently with respect to it 
depending on the way of balancing. In the case of the 
reference axis x, longitudinal balance of the ship is 
achieved by vertical trimming around the trace of wa-
ter in the frame planes (Figure 2), in the case of the y-
axis – around a normal to the PS (Figure 3), i.e. 

around the y-axis, and in the case of the axis z' – 
around a normal to the initial waterplane (Figure 4). 
Hence, the ship after balancing has various orienta-
tions relative to the plane of rotation, producing dif-
ferent righting arms, dependent on the way the ship is 
balanced (the choice of the reference axis). Nonethe-
less, the direction of the righting moment in space is 
the same. 
 
 
4. STABILITY CHARACTERISTICS 
 
A number of stability characteristics, of basic im-
portance for a freely floating ship will be discussed 
here, such as the angle of rotation, righting arm, mo-
ments of inertia of the waterplane (understood as a 
cross-section of the ship hull by a flat surface of the 
sea), metacentric radii, axis of floatation, and cross 
curves of stability. We will start by a description of 
the waterplane for arbitrarily inclined ship, which is 
independent of the choice of the reference axis. 
 
 
4.1 BASIC RELATIONSHIPS 
 
A right hand-side co-ordinate system Oxyz, shown in Figure 
5, fixed to the ship, is assumed. The x-axis is directed for-
ward, the y-axis – portside, and the z-axis – upwards. An 
arbitrarily inclined waterplane is described by the equation: 
 

z   T� � x tanT � ytanM (1) 
 
in which three independent parameters appear: the angle 
of inclination of the trace of water T in the PS relative to 
the x-axis, the angle of inclination of the trace of water M 
in the midships relative to the y-axis, and the draught T� of 
the z-axis. The two angles M and T are termed the analytical 
angles. They are positive if a positive increment of x or y 
corresponds to a positive increment of z. Hence, the trim 
angle T ! � is positive, when the ship is trimmed by bow, 
while the angle M ! � is positive, when the ship is heeled 
portside (in Figure 2–4 the ship is inclined to starboard, 
therefore heel angles are negative in these figures). Both 
angles are easy to measure, as tanT   t/Lpp, and tanM   
'TLR /B, where t { 'TBS is a trim, i.e. the difference of 
draughts at the bow and stern perpendiculars, and 'TLR is 
the difference of draughts at portside and starboard in the 
midships section. 
 
It is known from analytical geometry that a vector normal 
to the waterplane, as given by equation (1), is as follows: 
 

R   (tanT, tanM, �1) 
 
which is directed downwards, and whose absolute value 
R   (1 � tan�T � tan�M)���. Hence, a unit vector, normal to 
the waterplane, and directed upwards, equals n   �R/R. 
Note that n is defined by the two analytical angles. As the 
two angles define any other angles, particularly the Euler’s 
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angles the unit vector n in terms of the analytical angles is 
valid for any reference axis. 
 

 
Figure 5. Analytical angles of inclined waterplane 
 
 
For example, two Euler’s angles D and -, and a line of 
nodes related to the z-axis, are shown in Figure 5. The 
former is the heel angle and the latter – twist angle. 
 
We will find now some angles of interest for given ana-
lytical heel angles. An angle between planes is the same 
as between vectors normal to them. Hence, the angle D 
between the waterplane and BP, or an upright waterplane, 
is given by the equation: cosD   k �n   �k �R/R   �Rz/R. 
Therefore, cosD   �/R   1/(� � tan�T � tan�M)���. Hence,  
 

tanD   (tan�T � tan�M)����
 
The sign of the angle D is the same as that of the angle M. 
Taking into account that ��R   cosD, components of the 
unit vector n   �R/R   �cosDR are as follows: 
 

n   (�tanT cosD, �tanM cosD, cosD) (2) 
 
The trim angle related to the axis Ox, i.e. the angle 4, is 
equal to the angle of inclination of the x-axis relative to 
the sea surface. Hence, cos(��q � 4)   i �n   nx, which is 
equivalent to: sin4   �nx. Thus, 
 

sin4   tanTcosD, 
tan4   tanTcosM. 

(3) 

 
The angle of heel related to the trace of water in the PS, 
denoted by I, is equal to the angle of inclination of the y-
axis relative to the surface of the sea. Hence, cos(��q � I) 
  j �n   ny, which is equivalent to: sinI   �ny. Thus, 
 

sinI   tanMcosD, 
tanI   tanMcosT. 

(4) 

 
Note that the angle I d D, which follows immediately from 
the identity cosI   cosD/cosT, obtained by dividing sinI 
by tanI. From equation (4) it follows moreover that the 
angle I d M. Hence, the heel angle I is never greater than the 

angle D, or the angle M. However, bearing in mind that for 
conventional ships the vertical trim angle 4 is below �q, 
even for the largest trims, differences between heel angles 
I, M and D are imperceptible. 
 
The angle of inclination of the trace of water in the BP 
relative to the x-axis, denoted by -, is the slope (gradient) 
of the line in a plane z   const. From equation (1) we get 
immediately that 
 

tan-   �tanT/tanM (5) 
 
In an upright position, for M   �, equation (5) is inde-
terminate. In such a case, -   �. Equivalent forms of 
equation (5) are as follows: 
 

sin-   �tanT/tanD, 
cos-   tanM/tanD. 

 
It is worth noting that traces of water in the PS and midships 
(or any frame plane), shown in Figure 5, are not gener-
ally perpendicular one to another. The angle between them 
can be easily found with the help of the unit vectors e� and 
e� of both traces; they look at the directions of the x- and y-
axes. Denoting the angle between the said traces by E, then 
cosE   e� � e�, where the unit vector of the trace of water in 
the PS e�   (cosT, 0, sinT), while the unit vector of traces 
of water in the frame planes e�   (�, cosM, sinM). Hence, 
 

cosE   sinTsinM (6) 
 
When both analytical angles are of the same sign, the an-
gle between the unit vectors is acute (which is also seen 
in Figure 5. Otherwise, the angle is obtuse. 
 
With the help of the above identities, the unit normal 
vector n, given by equation (2), can be easily expressed 
by the Euler’s angles, appropriate for a given reference 
axis. Eliminating the analytical angles, the following is 
obtained: 
 

n   (�sin4, �cos4sinM, cos4cosM), 
   (�sinTcosI, �sinI, cosTcosI), 
   (sin-sinD, �cos-sinD, cosD). 

(7) 

 
 
The first expression is in terms of the Euler’s angles for 
the x-axis, the second and third – for the y- and z-axis. 
 
 
4.1 (a) Effect of the initial trim 
 
If the ship has the initial trim T� in an upright position, the 
Euler’s angles are related to the co-ordinate system Ox'yz', 
as in Figure 6. The axis Ox' is horizontal, i.e. parallel to the 
sea level, while the axis Oz' is vertical, i.e. normal to the sea 
level. The initial trim does not change the axis Oy. Hence, 
it does not change the Euler’s angles, related to this axis, 
while it changes them for the two other axes. As previously, 
we want to express them in terms of the analytical angles. 
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Figure 6. Co-ordinate system for a trimmed vessel 
 
The reference plane for the axis Ox' is a vertical frame 
section, fixed to the ship, deviated from the regular frame 
planes by the initial trim angle T� (Figure 6); the angle T� 
! � is positive for bow trim. The trim angle 4', related to 
the axis Ox', is equal to the angle of inclination of the axis 
Ox' relative to the horizontal. Hence, cos (��q � 4')   i' �n, 
where i'   (cosT�, �, sinT�) is a unit vector of the axis Ox'. 
Hence, sin4'   �i'�n, which yields: 
 

sin4' = (tanT cosT� � sinT�)cosD�
 

If T�   �, the above equation reduces to equation (3). 
 
The heel angle M' is equal to the angle between the traces 
of water and initial waterplane at the reference plane (ver-
tical frame section). The unit vector of the trace of water 
e�' at the vertical frame section equals: 
 
 e�'   n× i'/sin(��q � 4')   n× i'/cos4' (8) 
 
while the other unit vector is identical with the unit vector 
j of the axis Oy. Therefore, cosM'   j � e�'. Hence, 
 
 cosM'   (cosT� � sinT� tanT)cosD/cos4' 
 
When T� → �, M' →M, since cosM'   cosD /cos4. Substi-
tuting for cos4    cosD /cosM, in the limit we get cosM'   
cosM , which implies M'   M . 
 
The reference plane for the axis Oz' is any plane parallel 
to the waterplane in an upright position, fixed to the ship. 
Its unit normal vector k'   (�sinT�, �, cosT�) is identical 
with a unit vector of the axis Oz'. The heel angle D' is 
given by the equation: cosD'   k' �n, which yields: 
 
 cosD'   (1 � tanT� tanT)cosT�cosD�
 
The trim angle -' (twist angle) is the angle between the 
traces of water and PS in the reference plane (initial wa-
terplane). The unit vectors of these traces are as follows: 
w   k' ×n/sinD' and i'. Hence, the twist angle is given by: 
cos-'   i'�w   i' � (k' ×n)/sinD'   �ny /sinD'. Thus: 
 
 cos-'   tanM cosD/sinD' 
 
The sign of the angle -' is opposite to the sign of the an-
gle T, which follows from equation (5), i.e. it is negative, 
when the trim is on the bow. If T�   �, then D'   D, while 
-'   -, which can be easily shown. A change of the trim 
angle does not affect the heel angle, which is not seen at 
the first glance. And this holds for any reference axis. 
 

4.1 (b) Wind impact screen 
 
Consider now the angles related to the wind impact plane, 
deviated from the PS by an angle \, termed the azimuth, 
wherein \ ! �, if it is anti-clockwise. A system Ox''y'z' is 
fixed to this plane, rotated by the angle \ around the axis 
Oz' relative to the system Ox'yz'. By definition, the said 
plane is perpendicular to the direction of the wind. When 
\   �, the impact plane coincides with the PS. 
 
The unit vectors i'' and j' of the system Ox''y'z' are rotated 
by the angle \ relative to the unit vectors i' and j. Hence, 
taking their projections on the system axes, we get: 
 
 i''   i'cos\ � j sin\  
      (cosT�cos\, sin\, sin T�cos\), 
 j'   �i'sin\ � j cos\  
    = (�cosT�sin\, cos\, �sin T�sin\). 

(9) 

 
In the case of the reference axis Oy', normal to the wind 
impact plane, playing a role of the reference plane, the line 
of nodes is the trace of water in the said plane e�'. This trace 
is at the same time the axis of rotation related to the refer-
ence axis Oy'. The unit vector e�' results from trimming of 
the ship by an angle T' relative to the axis Ox''. In other 
words, rotating the unit vectors i'' and k' by the angle T' 
around the axis Oy' the unit vector i'' becomes the unit 
vector e�', and k' becomes k''. Hence, 
 
 e�'   i''cosT' � k'sinT', 
 k''   k'cosT' � i''sinT'. 

(10) 

 
Finally, the unit vector n results from the rotation of the 
ship (waterplane) around the trace of water in the wind 
impact plane e�' by an angle of heel I', i.e. the angle of in-
clination of the y'-axis relative to the horizontal. Hence, 
 
 n   k''cosI' � j'sinI' (11) 
 
The angles T' and I' are the Euler angles, related to the 
reference axis Oy'. The former results from longitudinal 
balancing of the ship. The knowledge of the unit vector 
n defines the analytical angles, essential for calculating 
the geometric characteristics of the waterplane and ship’s 
hull. When \   T�   �, equation (11) reduces to the second 
expression in equation (7). 
 
For the reference axis Oz', the line of nodes is a given trace 
of water in the initial waterplane, playing the role of the 
reference plane; the unit vector of this trace is denoted by 
w. In an upright position, w   i'. It is at the same time the 
axis of rotation e, related to this axis of reference. Obvi-
ously, w   k' ×n/sinD'. However, this equation cannot be 
used now, as the unit vector n is treated here as given, while 
the unit vector w is resultant, whereas it should by the other 
way round. 
 
Both unit vectors w and n result from rotations. The unit 
vector n results from the rotation of the ship (waterplane) 
around the trace of water w on the initial waterplane by 
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a heel angle D', whereas the unit vector w of the trace of 
water on the initial waterplane results from the rotation of 
w around the unit vector k' by a trim (twist) angle -' (Figure 
1). They are given by equations for the rotation of a vector 
by a given angle in an appropriate base of unit vectors: 
 
 n   k'cosD' � (w u k')sinD', 
 w   i''cos-' � j'sin-', 

(12) 

 
where the unit vectors i''  and j' are given by equations (9), 
D' is the angle of heel, i.e. the angle of inclination of the 
initial waterplane relative to the horizontal, and -' is the 
trim angle measured in the initial waterplane from the 
direction i''  (when -' ! �, the twist is by aft); these are the 
Euler angles, related to the axis Oz'. The angle -' results 
from longitudinal balancing of the ship. The knowledge of 
the unit vector n defines the analytical angles, essential for 
calculating the geometric characteristics of the waterplane 
and ship’s hull. 
 
The unit vector w is rotated in relation to the unit vector i' 
by the angle <   \ � -', equal to the sum of the azimuth 
and the angle of trim (twist). Hence, both unit vectors in 
equation (12) can be expressed simpler in the base of the 
system Ox'yz': 
 
  n   i'sinD'sin<  � jsinD'cos< � k'cosD', 
 w   i'cos< � jsin<. 

(13) 

 
In view of the fact that the rotation of the unit vector w by 
an angle < relative to i' can take place in a horizontal initial 
waterplane before heeling, van Santen calls this rotation as 
“twist” (Santen van, 2009 & 2019), without a clear indica-
tion that this is one of the two Euler’s angles, related to trim, 
measured in the initial waterplane after heeling (Figure 4). 
 
The following identities result from equations (12) and 
(13): k' �n   cosD', k'×n   wsinD', i' �w   cos<, i'×w   
k'sin<. When \   �, <   -'.  For a trimmed ship in an 
upright position equations (12) yield: 
 
 w   (cos-', sin-', �), 
 n   (sin-'sinD', �cos-'sinD', cosD'). 

(14) 

 
For a ship at level keel, the angles D' and -' are replaced 
by D and -. The unit vector n becomes then identical 
with the third expression in equation (7). 
 
In the case of the reference axis x'', it is easier to find the 
final position of the object heeling it first by an angle M' 
around the axis Ox'', described by the unit vector i'', and 
next trimming it by an angle 4' around the trace of water 
in a plane normal to the axis Ox'', described by the unit 
vector e�'. As a result of the first rotation around the axis 
Ox'' new unit vectors e�' and k'' are obtained, while the sec-
ond rotation around e�' yields the unit vector n: Hence: 
 
 e�'   j'cos�M' � k'sin�M', 
 k''   k'cos�M' � j'sin�M', 
 n   k''cos�4' � i''sin�4', 

(15) 

where the unit vectors i'' and j' are given by equations (9). 
The angles M' and 4' are the Euler’s angles, related to the 
reference axis Ox'; the latter results from longitudinal bal-
ancing of the ship. 
 
A change of orientation of the object in the horizontal 
introduces a third Euler angle – the azimuth \. However, 
it follows from equations (13) that at least for the axis Oz' 
the unit vector n, describing the attitude of the ship relative 
to the horizontal, depends on two Euler’s angles: the heel 
angle D' and twist <   \ � -'. For other reference axes 
things are more complicated – the unit vector n depends 
on three Euler’s angles, not on two. It means that in such 
cases the relationship between the two Euler’s angles (heel 
and trim) and analytical angles M and T is affected by the 
azimuth \.  
 
 
4.2 RIGHTING ARM 
 
To calculate the GZ-curve, we have to choose a reference 
axis. Generally, there are three possibilities. In the case of 
the reference axis Ox', commonly used for calculating the 
GZ-curves with free trim, e.g. in the Napa system, Proteus, 
Stataw, WinSEA, and in many other computer programs, 
the plane of rotation is a vertical frame station, parallel to 
the trace of water in the frames (Figure 2); in the case of 
the axis Oy, it is normal to the trace of water in the PS 
(Figure 3), and in the case of the axis Oz' – normal to the 
trace of water in the initial waterplane (Figure 4). 
 
The plane of rotation at which the ship is balanced is de-
fined by a unit vector e, normal or parallel to the line of 
nodes, depending on the reference axis. When the line of 
nodes is the trace of water in the midships (Figure 2), the 
axis of rotation e   e� un, where e�   (�, cosM, sinM) is 
the unit vector of the trace of water in the midships. Sub-
stituting for n equation (7), the axis of rotation is: 
 

e   (cos4, �sin4sinM, sin4cosM) (16) 
 
When the ship has an initial trim, the unit vector e� is re-
placed by the vector e�', given by equation (8), and when 
the azimuth \ ≠ �, the unit vector e� is replaced by e�', given 
by equation (15). When the line of nodes is the trace of 
water in the PS (Figure 3), e   e�, where e�   (cosT, �, sinT) 
is a unit vector of the trace of water in the PS, and when the 
line of nodes is the trace of water in the wind impact plane, 
the rotation axis e   e�', where e�' is given by equation 
(10). When the line of nodes is the trace of water in the 
initial waterplane w (Figure 4), the rotation axis e   w, 
where the unit vector w is given by equation (12), valid 
both for the ship at level keel, trimmed at an upright posi-
tion, or rotated by a certain azimuth \. 
 
The three axes of rotation diverge, if trim varies in the 
course of inclinations. For example, the axis of rotation e, 
related to the reference axis Ox, is deviated from the trace 
of water in the PS by an angle J�   E � ��q, where E is the 
angle between the traces of water in the midships and PS, 
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given by equation (6). Further, the axis of rotation e   
k un/sinD, related to the reference axis Oz, is deviated from 
the trace of water in the PS by an angle J�, which can be 
found from the equation: e�u e   sinJ�n. Hence, sinJ�    
�sinT/sinD. As can be seen, the axes of rotation coincide 
with each other, when there is no trim. 
 
The plane of rotation rotates around the axis of rotation e, 
whereas the waterplane, i.e. the ship, rotates around an 
instantaneous axis of floatation f, oblique relative to the 
axis of rotation. The axis of floatation f is understood as 
the edge of intersection of two waterplanes inclined rela-
tive to one another at an infinitely small angle. In the case 
of equi-volume waterplanes it passes through the centre of 
floatation F, i.e. the centre of gravity of the waterplane. The 
above follows from the Pappus–Guldinus' theorem, known 
in ship theory as the Euler’s theorem on equi-volume water-
planes. This theorem says nothing about orientation of the 
axis of floatation, defined by a unit vector f, discussed below. 
In mechanics, the axis of floatation is termed the instanta-
neous axis of rotation. To find the axis of floatation it is 
necessary to know moments of inertia of the waterplane, 
which is not trivial in the case of a freely floating ship. 
 
When the ship is being inclined the displacement remains 
constant, whereas the centre of buoyancy B moves in the 
plane of rotation (large circle in Figure 2–4), normal to the 
axis of rotation e. Hence, it has to satisfy the equation of 
the plane of rotation: e � r   �, where r { GB   (xB � xG, 
yB � yG, zB � zG) is the radius vector of the centre of buoy-
ancy relative to the ship centre of gravity. The quantity e � r 
{ le is a longitudinal component of the righting arm, iden-
tical with a distance of the centre of buoyancy from the 
plane of rotation (if le ! �, it is forward of the plane of ro-
tation). For given volume displacement V and heel angle 
(angle of rotation of the plane of rotation K) the longitu-
dinal component le   e � r is a function of the trim angle. 
 
The righting moment is given by the equation M   r un', 
where '   JV is the ship buoyancy. Vector M is parallel 
to the rotation axis e, hence: M   e � (r un)'. The righting 
arm GZ   M/' is therefore given by the equation: 
 

GZ   e � (r un) (17) 
 
The effect of the plane of rotation (reference axis) on the 
GZ-curve can be clearly seen in equation (17), where the 
righting lever l { GZ depends on r, n and e. For the same 
analytical angles M and T, the vector r un is the same but 
the different rotation planes have different e, which in turn 
gives different righting levers l. Nonetheless, the areas 
under GZ-curves for various reference axes have to be the 
same. The proof is simple. If the large circles in Figure 2–
4 is rotated so that the righting arm GZ   � vanishes, then 
the maximum work is performed, i.e., the ship reaches 
maximum of potential energy. Since, only one maximum 
exists, it has to be independent of the choice of the refer-
ence axis. That is to say, the areas under GZ-curves are 
conserved. Hence, if ranges of the GZ-curves for various 
reference axes are different, as it happens in the case of 

rigs, then in the descending part of these curves they have 
to intersect with each other. However, the differences 
between them are modest. 
 
The differences between the various GZ-curves are solely 
attributed to the axes of rotation e. Deviations of these axes 
from the trace of water in the PS are described by the angles 
J�, J� and J� (normally, J�   �). For the GZ-curve of mini-
mum stability J�   J�   J�, which means a common plane of 
rotation, independent of the reference axis. If the axes e 
were the same for the various reference axes, GZ-curves 
would be the same. The larger angles between the rota-
tion axes, the larger differences between the GZ-curves. 
Typically, the axes of rotation e for the reference axes x' 
and y are nearly parallel, therefore the GZ-curves for the 
two axes are almost identical. However, they differ some-
what from the GZ-curve for the axis z'. 
 
As can be seen, the basis for finding the GZ-curve with free 
trim is the knowledge of co-ordinates of the centre of buoy-
ancy B, the rotation axis e, and the normal n to the water-
plane. The result of calculations is a curve of righting arms 
with the lowest values, called the GZ-curve of minimum 
stability, introduced by Siemionov-Tiań-Szański (1960). 
 
 
4.3 PROPERTIES OF THE GZ-CURVE 
 
During equi-volume inclinations the centre of buoyancy B 
moves in the plane of rotation along a flat curve termed 
the curve of centres of buoyancy (Figure 7). The curvature 
of this curve is termed the metacentric radius, denoted by 
rB { BM, derived later. The metacentric height h { ZM is 
equal to: 
 

h   d/dK l   rB � BZ (18) 
  

 

 
Figure 7.  Rotation plane 
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where rB { BM is the metacentric radius, BZ   �r � n is the 
height of ship centre of gravity above its centre of buoyancy 
(Figure 2–4), r   GB is the radius-vector of ship centre of 
buoyancy relative to its centre of gravity. Equation (18) 
can be immediately obtained by considering the line of 
action of buoyancy force in the plane of rotation (Figure 7) 
for heel angle increased by dK, where the angle of rotation 
K   I or D, depending on the line of nodes (the system B�YZ 
is fixed to the plane of rotation, whose origin is at an initial 
position of the centre of buoyancy B�). The metacentric 
height can be also obtained by differentiating the righting 
arm l { GZ, given by equation (17), with respect to heel 
angle (angle of rotation) in the ship-fixed reference sys-
tem. This derivative is given by the equation: 
 
 GZ'   e'� (r un) � e � (r' un) � e � (r un' )  
     rB � r �n 
 
identical with equation (18), where ' stands for differentiat-
ing respective to the heel angle K. It can be shown that 
the first term e' � (r un) vanishes (it is sufficient to observe 
that the three vectors are coplanar, i.e. lie in the plane of 
rotation), the second one is the metacentric radius rB   BM, 
and the third one equals r � n. 
 
Work done by the righting moment M is given by: 
 
 L   ³�

K
MdK   ' ³�

K
ldK   ' ld, 

 ld   ³�
K

ldK, 

(19) 

 
where '  is buoyancy of the ship, and ld is the dynamic arm, 
the same as the first integral curve of the GZ-curve, i.e. the 
area under the GZ-curve. Considering rotation of the plane 
of rotation by an angle dK (Figure 7), one can easily 
demonstrate that the differential GZdK   d(BZ) is an in-
crement of the segment BZ due to a vertical shift of point 
Z, as the buoyancy centre B moves horizontally, i.e. par-
allel to the waterplane. Hence, the classic formulation for 
the dynamic (righting) arm is obtained: 
 

ld   BZ � a (20) 
 
where a   B�G is the height of the ship gravity centre G over 
buoyancy centre in an upright position (i.e. for K   �). The 
said equation has a simple physical interpretation – the 
dynamic (righting) arm is equal to the vertical increment 
of the distance between the centre of gravity and centre of 
buoyancy. It is useful in checking accuracy of calculation 
of the GZ-curve. 
 
The GZ-curve with free trim complies with the theorem 
of minimum potential energy, i.e. heeling of the ship (un-
derstood as rotation of the plane of rotation) by a given an-
gle requires the least work. This is an important feature of 
the GZ-curve. The deflection of the ship from its longitudi-
nal equilibrium is not possible without applying a trimming 
moment and doing additional work that increases its po-
tential energy, which proves the above theory. Thus, the 
GZ-curve of a freely floating ship is at most equal to or 

smaller than that for a ship with fixed trim. Considering 
the above, the following holds for the dynamic arms of 
a freely floating ship and with fixed trim: 
 

ld   ldc � ³�
4 (e � r)d4�
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Figure 8. True view of the waterplane 
 
 
where 4 is the trim angle for a given angle of rotation K 
of the plane of rotation, measured at a vertical plane. If 
one assumes that the longitudinal metacentric height HL 
is constant in the course of trimming, then e � r   HL4. 
Hence, ld | ldc � ½HL4

�. As can be seen, the sign of the 
trim has no meaning. 
 
From the above equation two important conclusions can be 
drawn. Firstly, the greater the change of trim after balancing 
the ship, the lesser is the GZ-curve with free trim. Secondly, 
the GZ-curves of yet smaller arms would have to have yet 
larger trim changes, which is impossible due to the lack 
of the other equilibrium trim than that for a freely floating 
ship. By changing the trim, the centre of buoyancy perma-
nently moves away from the plane of rotation. Hence, the 
GZ-curves with free trim are identical with GZ-curves of 
minimum stability. In other words, the longitudinal bal-
ance of the ship provides at the same time the minimum 
potential energy at a given heel angle. 
 
It is worth remembering that a fixed trim T, measured in 
the PS, does not mean that trim at a vertical plane 4   
const. Equation (3) implies that when T   const, the angle 
4 decreases to zero, when M tends to ��q. This means that 
with an increase of the heel angle the difference between 
the GZ-curves at level keel and with fixed trim as in the 
initial position should vanish, which is supported also by 
numerical calculations, shown later. 
 
As discussed earlier, the same GZ-curves for various refer-
ence axes and the same analytical angles M and T can be 
obtained, if the rotation axes e are the same, which is pos-
sible when the azimuth is accounted for. In addition, the 
dynamic (righting) arms ld and the angles of rotation of 
the plane of rotation would be the same as well. The latter 
results from equation (19) for the dynamic arm ld. 
 
The notion of cross-curves of stability is fully valid for 
a freely floating ship, related to the reference axis Oz', 
normal to the initial waterplane. In other cases the GZ-
curve should be corrected by a correction, accounting for 
the effect of trim change, induced by change of height of 
ship's centre of gravity (Pawlowski, 2013). 
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4.4 MOMENTS OF INERTIA 
 
Given a hull of the ship, described in the Oxyz system, cut 
by an arbitrary plane. In ship statics the plane is the surface 
of the sea, whereas the cross-section itself is termed the wa-
terplane. We want to find the principal moments of inertia 
for the said cross-section. They can be found indirectly, 
making use of moments of inertia for a projection of the 
cross-section (waterplane) on one of the co-ordinate planes 
(BP or PS), discussed in reference (Siemionov-Tian-
Shansky, 1960), or directly, by calculating geometrical 
characteristics of the cross-section with the help of traces of 
the waterplane in the frame planes (Pawlowski, 1992b). 
 
Moments of inertia will be found by the direct method. A 
typical cross-section of the hull, i.e. the waterplane, is 
shown in Figure 8. The [-axis coincides with the trace of 
water in the PS, whereas the K-axis is normal to the unit 
vectors n and e�. The origin of the K-axis is at the point of 
intersection of the z-axis with the trace of water in the 
PS. The traces of the waterplane in the frame planes, i.e. 
widths of the frames in the waterplane are oblique rela-
tive to the [-axis (trace of water in the PS); some of them 
are shown in Figure 8. 
 
The angle between the unit vectors of the traces is equal to 
E. The [-axis divides a trace into two segments of lengths 
a and b; which can be directly measured in the frame planes. 
The quantities a and b have the meaning of the co-ordinates 
of the ends of the traces, measured along a trace. These co-
ordinates are positive, if they are to the left of the [-axis, 
and negative, if they are to the right (Figure 8). 
 
Introducing notation: 
 
 I�   ³ (b � a)dx, J��   ³ (b � a)xdx, 
 I�   ³½(b� � a�)dx, J��   ³½(b� � a�)xdx, 
 I�   ³⅓(b� � a�)dx, J��   ³ (b � a)x�dx, 
 
where, in general In { J�n, finally we get the following ex-
pressions for the area of the waterplane, its static moments, 
cross-product and inertia moments: 
 
  A   I�sinE/cosT, 

M[   I�sin�E/cosT, 
MK   J��sinE/cos�T � ½I�sin2E/cosT, 
 D    J��sin�E/cos�T � I�sin�EcosE/cosT, 
 J[    I�sin�E/cosT, 
 JK   J��sinE/cos�T � J��sin2E/cos�T � 
 I�cos�EsinE/cosT. 

(21) 

 
Co-ordinates of the centre of gravity of the waterplane 
are as follows: [C   MK/A, KC   M[/A, whereas the central 
moments of inertia in the system ['K' shifted parallel to the 
waterplane centre of gravity (centre of floatation) are given 
by the parallel axes (Huygens–Steiner) theorem: 
 
 J['   J[ � AKC

2, 
 JK'   JK � A[C

2, 
 D'   D � A[CKC. 

(22) 

In further applications we need to know the central mo-
ments of inertia in the system [''K'', where the [''-axis is 
parallel to the axis of rotation e. For the reference axis y, 
the axis of rotation e   e� is parallel to the [-axis, there-
fore the system [''K'' coincide with the system ['K'. For the 
reference axis x, the axis of rotation e is perpendicular to 
the trace of water on the frame planes e�. The [''-axis is 
therefore rotated with respect to the [-axis by an angle 
E'   E – ��q. For the reference axis Oz', normal to the initial 
waterplane, the axis of rotation e is inclined with respect 
to the [-axis at an angle E', given by the equation: cosE'   
w � e�, where w is a unit vector of the trace of water in the 
initial waterplane. It can be shown that the angle E' ! �, if 
T ! T�. The central moments in the system [''K'', rotated by 
an angle E' relative to the system ['K', can be found from 
transformation of moments (22), given in the system ['K', 
discussed further down. 
 
When the deck edge is immersed in water, the [-axis in 
Figure 8 (trace of PS in the waterplane), can go beyond 
the contour of the waterplane for large heel angles. The s 
co-ordinates of both ends of the trace of water at the frames 
have then the same sign. This has no particular meaning 
for calculations. It is worth knowing, however, that the 
[-axis can be defined by any buttock plane y   const, par-
allel to the PS, where the constant corresponds e.g. to the 
centre of projection of the trace of water in the midships 
section onto the BP. Selection of the [-axis is meaning-
less for the central moments of inertia, and hence, for the 
principal values of these moments. 
 
4.5 METACENTRIC RADII. AXIS OF  

FLOATATION 
 
In order to find an expression for metacentric radii, we 
have to resort to the theorem on shifted masses, and apply 
it to the wedges formed by rotation of the waterplane 
around the axis of floatation f. It has the following form: 
Vds   v|g�g�|, where ds is the shift of the centre of buoyancy 
along the arc of the curve of centres of buoyancy, V is the 
volume displacement of the ship, g�, g� are the centres of 
volume of the emerged and immersed wedge, v is the vol-
ume of one wedge, and v|g�g�| is the static moment of the 
shifted wedge volume. This moment has two components: 
transverse, equal to JfdD�, and longitudinal, equal to DfdD�. 
Hence, Vds   v |g�g�|   (Jf

�� Df
�)���dD�, where Jf and Df 

are the central moments of inertia of the waterplane: trans-
verse and cross-product, related to the axis of floatation f. 
Introducing the notation: Js { (Jf

� � Df
�)���, the above 

equation yields: Vds   JsdD�. This can be written, as 
 
 ds   rs dD� { rB dK�
 
where rs { Js /V is a proportionality factor between the shift 
of centre of buoyancy ds and the angle dD�, whereas the 
last identity results from definition of the metacentric radius. 
Considering that dD�cosF   dK, the following then results 
for the metacentric radius: 
 
 rB   rs /cosF (23) 
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As we can see, the metacentric radius rB directly depends on 
the orientation of the floatation axis f relative to the axis of 
rotation e. The knowledge of this axis accelerates the cal-
culations. The metacentric radius rB can be expressed in 
terms of the geometric characteristics of the waterplane in 
the system [''K''. 
 
The central moments of the waterplane relative to the axis 
of floatation f are given by the expressions: Jf   s � af, 
where s   ½(J[' � JK') is the centre of the inertia interval, 
and af is the radius of the inertia interval of the waterplane 
after rotation, given by the equations: 
 

Df   a''sin2F � D''cos2F, 
 af   a''cos2F � D''sin2F, 

(24) 

 
a''   ½(J['' � JK'') is the radius of the inertia interval before 
rotation (in the [''K'' system), whereas D'', J['', JK'' are the 
moments of inertia of the waterplane in the central system 
[''K'', parallel to the axis of rotation e (Figure 9). Equations 
(24) are general; they say how the central moments change 
with a rotation of the system. 
 
The centre of buoyancy moves in the rotation plane in 
parallel to the waterplane (water level). Therefore, the 
vector of displacement of centre of buoyancy is equal to 
dr   (n u e)ds. 
 

ef

B�

B�

B

F

ds

F

[''

K''

 
Figure 9. View from the top on the waterplane 
 
Rotating the waterplane by an angle dD�, the transverse 
component of the buoyancy centre displacement BB�, 
relative to the axis of floatation (Figure 9) is proportional 
to Jf , whereas the longitudinal component B�B� is pro-
portional to Df. We want the resultant displacement to be 
normal to the direction of the heeling moment (axis of 
rotation e). To be so, the angle B in Figure 9 has to be 
equal to F, which results from the property of angles, whose 
arms are normal respectively. Hence, the angle of inclina-
tion of the axis of floatation relative to the axis of rotation 
has to satisfy the equation: 
 
 tanF   Df /Jf (25) 
 
The angle F has the same sign as that of the waterplane 
product of inertia (in Figure 9 it is positive). It should be 
remembered that moments Df and Jf are also dependent on 

the angle F, which converts the above formulation to an 
equation. Substituting Jf   s � af, equation (25) will take 
the form:  
 
 Df � (s � af) tanF   ��
 

 
Figure 10. Mohr’s circle for the waterplane 
 
The quantities Df and af, given by equation (24), represent 
a parametric equation of the Mohr’s circle (Figure 10). Sub-
stituting them to the above equation yields: 
 

rsin(2J � 2F) � [s � rcos(2J � 2F)]tanF   ��
 
where r   (a� � D �)��� is the radius of the Mohr’s circle, 
independent of the orientation of the central system, the 
phase �J�   tan��(D''/a''), the angle �J   �J�, if a'' ! �, oth-
erwise �J   �J� � ���º; a'' and J� are negative in Figure 10. 
The secant sD'' defines the location of the [''-axis in the 
Mohr’s circle plane, while the principal axis [� coincides 
with the abscissa axis but it has the opposite direction. The 
angle between them equals: �J'   ���º � �J   ��J�. The 
principal moments are given by the equation: J���   s r r. 
 
When cos2F and sin2F in the above equation are ex-
pressed by tanF, it can be reduced to a simple equation: 
D''   (s � a'') tanF. Hence, 
 
 tanF   D''/JK'' (26) 
 
where _ F _ d sin��(r/s), and _F_ d _J �_ � ��q, which is seen in 
Figure 11. The axis of floatation f is between the axis of 
rotation e and the principal axis if inertia of the waterplane 
[�. Triangle J�sD'' is an isosceles triangle, in which the 
exterior angle equals �J'. Thence, secant J�D'' is inclined 
relative to the abscissa axis at the angle J'   �J�. 
 

 
Figure 11. Principal direction and transverse moment of 
waterplane inertia JT 
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Equation (26) has a simple physical interpretation. The 
directed angle fdD� has two components in the system [''K'': 
the axial dK and normal dW. Rotation of the waterplane 
around the axis e yields a longitudinal displacement of the 
centre of buoyancy, proportional to D''dK, which must 
be compensated by trimming JK''dW. Hence, D''dK   JK''dW. 
Therefore, dW/dK   D'' /JK'', where the ratio of differentials 
dW/dK   tanF. 
 
Strictly speaking, the static moment of the shift of volume 
displacement in the longitudinal direction D''dK has to be 
compensated by the trimming moment VHLdW, where VHL  
is the longitudinal coefficient of stiffness. Hence: D''dK   
VHLdW. Thus: dW/dK   D'' /VHL, which yields an improved 
equation (26), provided in publication [5]: 
 
 tanF   D''/VHL (27) 
 
where V is the volumetric displacement of the ship, HL   
RL – BZ is the longitudinal metacentric height, RL   JK'' /V 
is the longitudinal metacentric radius, while BZ   �r � n is 
the height of the gravity centre above the centre of buoy-
ancy (Figure 2–4). Hence, the coefficient of stiffness VHL 
  JK'' � V�BZ. In the case of conventional ships, the term 
BZ�V is negligibly small in comparison to the longitudinal 
moment of inertia of the waterplane JK'', therefore equation 
(26) is practically the same as equation (27). In the case of 
platforms and for large heel angles, this term cannot be 
neglected. 
 

 
Figure 12. Mohr’s circle and stability characteristics 
 
 
Geometrical interpretation of solution (27), denoted by F�, 
is shown in Figure 12. The solution of equation (26) is 
denoted by F�. Straight line AD'' is inclined at the angle F�. 
It is clear that F� ! F�, which decreases the moment of iner-
tia of the waterplane JT , thereby decreases the metacentric 
radius rB. It can be seen also in Figure 12 that F� � J'. 
 
The shift of the centre of buoyancy can be analysed also 
in the principal system [�K�, rotated by the angle J' relative 
to the central system [''K'' (Figure 13). The directed angle 
fdD� has two components in the system [�K�: the axial one 
'D�cos(J' � F), and normal �'D�sin(J' � F), causing trim by 
bow. The transverse component of the buoyancy centre dis-
placement BB� is proportional to J�'D�cos(J' � F), whereas 
the longitudinal one B�B� is proportional to J�'D�sin(J' � F). 
The resultant displacement has to be normal to the axis of 

rotation e. To be so, the angle B in Figure 13 has to be 
equal to J', whose tanJ'   B�B�/BB�, leading to a simple 
equation for the angle F: 
 
 (J�/J�) tan(J' � F)   tanJ'  (28) 
 
where J� and J� are the principal moments of inertia of the 
waterplane. It follows from equation (28) that the angle F is 
inside the interval ¢�, J'². In other words, the axis of float-
ation f is between the principal axis of inertia [� and the 
axis of rotation e. The three axes coincide only, when the 
angle J'   �. Equation (28) can be improved replacing the 
principal moments by the coefficient of stiffness. 
 

e
f

B�

B�

B

F

ds

F

[''

K''

[�

K�

J'

J'
 

 
Figure 13. Components of shift of centre of buoyancy in 
the principal co-ordinate system [�K��

 

The knowledge of the angle F defines the direction of 
the axis of floatation f. The unit vector of this axis is as 
follows: f   ecosF � (nu e)sinF. 
 
Examine now the transverse moment of inertia of the 
waterplane JT that defines the metacentric radius rB { 
JT/V. Multiplying equation (23) by the volumetric dis-
placement V, and accounting for equation (26), the 
following is obtained: 
 
 JT   Js /cosF   (Jf

� � Df
�)���/cosF 

       Jf [�� (Df /Jf )�]���/cosF  
      Jf (�� tan�F)���/cosF   Jf /cos �F�
 
Substituting Jf   s � af , where s   ½(J['' � JK'') is the centre 
of the inertia interval of the waterplane, while af is the 
radius of the inertia interval of the waterplane after rotating 
by an angle F, given by equation (24), the following is 
obtained: 
 
JT   (s � af)/cos �F   (s � a''cos2F � D''sin2F)/cos �F  
     s/cos �F � a''(� – �/cos�F) � 2D'' tanF  
     (s � a'')(� � tan�F) � 2a'' � 2D'' tanF  
      s � a'' � (s � a'') tan�F � 2D'' tanF  
 �    J['' � JK'' tan�F � 2D'' tanF�
 
Taking into account equation (26), we get the equation: 
 
 JT   J['' � D'' tanF (29) 
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from which it follows that JT d J[''. It means that balanc-
ing the ship decreases the transverse moment of inertia 
of the waterplane JT, and also the metacentric radius rB, 
which in turn causes a reduction of the righting arm – a 
conclusion consistent with the foregoing considerations 
that balancing the ship decreases the stability. The expres-
sion JT   Js /cosF   J['' � D'' tanF has a simple interpreta-
tion, shown in Figure 11 and Figure 12. 
 
Equation (29) can be derived directly. A rotation of the 
waterplane around the axis e yields a transverse shift of 
the centre of buoyancy, proportional to J[''dK. On the other 
hand, balancing the ship decreases this shift by D''dW. The 
resultant shift, by definition, is proportional to JT dK. Hence: 
JT dK   J[''dK � D''dW. Dividing it by dK yields equation (29). 
 
Equations (25) to (29) were derived assuming that e � dr   
�, i.e. that the displacement of the centre of buoyancy dr is 
strictly perpendicular to the axis of rotation e. However, 
for a freely floating ship this is not the case. Note that 
when the ship is heeled the trim has to be changed to 
balance the ship, which changes orientation of the rota-
tion axis e relative to the ship. 
 
Differentiating e � r   � we get: e � dr   �de � r, i.e. in the 
co-ordinate system fixed to the ship the displacement of 
centre of buoyancy is not strictly normal to the axis of rota-
tion. This should be intuitively obvious: since the centre of 
buoyancy has to remain all the time in the plane of rotation, 
which changes its orientation relative to the inclining ship, 
the displacement of centre of buoyancy has to be 
oblique to it. 
 
When the axis of floatation f is known, it is easy to find 
new analytical angles M and T, describing orientation of 
the ship relative to the water at the new angle of heel. 
Namely, rotating the waterplane by an angle 'D�, the unit 
vector n rotates around the axis of floatation by the an-
gle 'D�. Hence, the new unit vector n� is as follows: 
 
 n�   ncos'D� � (f un)sin'D��

 
Knowing new unit vector n ({ n�), the new analytical an-
gles, corresponding to the new unit vector can be easily 
obtained from the first formulation in equation (7). Namely, 
tanT   �nx/nz, whereas tanM   �ny /nz. The knowledge of 
new angles of waterplane inclination largely speeds up the 
process of finding the correct location of the centre of buoy-
ancy at a new angle of heel M, I or D, depending on the line 
of nodes. The equation of new waterplane at first iteration 
is as follows: 
 

nx(x � xF) � ny(y � yF) � nz(z � zF)   ��
 
where xF, yF, zF are co-ordinates of the previous centre of 
floatation F, whereas (nx, ny, nz)   n� are components of 
the new unit vector n. Knowing the equation of the water-
plane it is necessary to check by iterations, if the ship dis-
placement V   const is conserved, and if the ship is longitu-
dinally balanced, i.e. if the equation e � r   � is satisfied. 

If not, then the waterplane should be shifted in the normal 
direction by a distance 'n   �'V/AWL, and the trim angle 
4, T or -, depending on the line of nodes, should be cor-
rected. If the centre of buoyancy is in front of the plane 
of rotation (le ! �), the trim angle should be somewhat de-
creased, by rotating the waterplane around the axis K'' 
(Figure 9) in positive direction by an angle 'W   le/HL, 
where HL is the longitudinal metacentric height. Depend-
ing on the reference axis (line of nodes) the change of 
trim angle is as follows: 
 
� �'W   'TcosI   �'-sinD   '4 (30) 
 
which results from the vector properties of small rotations, 
i.e., a projection of the directed angle of trim on the hori-
zontal plane (Figure 14). Substituting 'W   le/HL, the fol-
lowing is obtained: 
 

�le   HL'4   (HLcosI)'T    �(HLsinD)'-�
 
The multipliers of the trim changes are the coefficients 
of stiffness with respect to trim, i.e., the longitudinal meta-
centric heights. Except the vertical trim, in the case of 
oblique trims the metacentric heights are incomplete, as 
they neglect the effect of the horizontal change of trim. 
 
Calculations of the GZ-curve can be significantly accel-
erated, if they are based on the Kryłov–Dargnies' method, 
modified for a freely floating ship, utilising the proper-
ties of equi-volume waterplanes for such a ship, unknown 
in literature. In a finite interval of the angle of rotation 'K 
equi-volume waterplanes roll over the surface of a certain 
non-circular cone, the parameters of which can be pre-
dicted in advance [5]. The rolling waterplanes are tangent 
to the cone along the instantaneous axis of floatation f. 
 

�
I

jdT
PS

 

�

�kd-

D

 
Figure 14. Positive change of oblique trim 
 
The axis of the cone is inclined relative to the waterplanes 
by an angle H determined by the following expression: 
sinH   dF/dD�. Its derivation is elementary. When a cone 
rolls over a plane with no slip, the base of the cone moves 
along an arc of length lF   rD. Hence, F/D   r/l   sinH, 
where F is the angle of rotation of the cone in the plane, D 
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is the angle of rotation of the cone around its own axis of 
symmetry, r is the radius of the base, and l is the length of 
the generatrix. In kinematics, the said cone, over which 
equi-volume waterplanes roll over, is an example of a ruled 
fixed axode, whereas rolling waterplanes – a moving axode. 
 
When the angle dF ! 0 is positive the cone is located above 
the waterplanes, if not – below. The apex of the cone is 
located at a distance from the generatrix l from the centre 
of floatation F, given by the equation l   �dK'F /dF, where 
dK'F is the displacement of centre of floatation normal to 
the axis floatation (when l ! 0, the apex is located in the 
direction of the bow). Taking into account that dK'F   rFdD� 
one obtains: 
 

l   �rF dD�/dF   �rF /sinH 
 
where rF   dJf /dV is a differential metacentric radius (ra-
dius of curvature of the curve of centres of floatation). This 
formulation shows that the radius of the cone base at the 
level of the centre of floatation is equal to the differential 
metacentric radius. 
 
 
4.6 MECHANISM OF EQUI-VOLUME  

INCLINATIONS 
 
An infinitesimal rotation of the waterplane around the 
axis of floatation f can be regarded as resulting from two 
rotations: ship's rotation by an angle dK around the axis 
['', parallel to the axis of rotation e, and ship's rotation by 
angle dW around the axis K'', normal to the axis of rotation 
e (Figure 9). Hence, the directed angle fdD� has two com-
ponents in the system [''K'', equal to the two said elemen-
tary rotations: fdD�   (dK, dW). 
 
The directed angle fdD� is inclined at an angle F to the 
rotation axis e (Figure 9). Positive angle F corresponds to 
positive normal component of dW, whereas the change of 
trim is negative (by stern), therefore the normal compo-
nent has to be taken with an opposite sign. Projection of 
dD� on the rotation axis yields the axial component dK   
dD�cosF, which implies that the elementary rotation dK ! 
� (the angle F � ��q). Resorting to the relationships inher-
ent for rectangular triangles, the normal component dW 
can be written in two ways: 
 
 dW   dD�sinF   dK tanF (31) 
 
The above equation indicates that: �) the more deflected 
the axis of floatation from the rotation axis, the greater 
changes of ship trim during inclinations, which is intuitive; 
�) when F   �, i.e. when e   f, the ship trim does not change, 
as for a ship with fixed trim; �) as dW is finite the trim angle 
4 � ��q cannot reach ��q. In other words, in the course of 
heeling the rig cannot “rear”, and �) from equation (30) it 
follows that for I   ��q (the PS is then horizontal) dW   �. 
We will see later that achieving the angle I   ��q is im-
possible by a free-floating ship. 
 

In the case of the reference axes y and z, the rotation of 
the reference planes around normal vectors, associated 
with trimming, equals to jdT or �kd- has also a vertical 
component d\, which equals the rotation (the change of 
orientation) of the ship in the sea surface. In the case of 
the PS, it equals dTsinI, and in the case of the BP, it equals 
�d-cosD (Figure 14). Hence, 
 
 d\   �dT sinI   �d-cosD. (32) 
 
In both cases, the vertical component of rotation of the 
plane of rotation is directed downwards, which means 
that rotation of the ship in the horizontal is clockwise. 
If this rotation were neglected, the trim would change 
the azimuth. 
 
Considering equations (30) and (31) the differential d\ 
can be expressed in terms of an increase of the heel angle 
dK. Namely, d\   dW tanI   dW cotD, where dW   dK tanF 
is a rotation of the ship in the horizontal. The angles of 
rotations of the PS or the initial waterplane around the 
trace of water have no vertical components, as they are 
directed horizontally (Figure 1). 
 
A different situation occurs in the case of the reference axis 
x: a change of the trim angle, as a vector, is directed hori-
zontally, therefore it has no vertical component (Figure 2). 
However, the angle of rotation of the midships around its 
normal �idM has a horizontal component �dMcos4, and 
vertical: �dMsin4. Rotations of the waterplane relative to 
the ship have the opposite sign: (dM cos4, dM sin4). The 
horizontal component is the angle of rotation of the water-
plane relative to the ship. Hence, dK   dM cos4. The verti-
cal component d\   dM sin4   dK tan4 is a change of ori-
entation of the rotation axis e relative to ship. When in an 
upright position the ship is trimmed, the angles M and 4 are 
replaced by M' and 4', and the angles D and - by D' and -'. 
 
The rotation of the ship in the horizontal by an angle d\, 
induced by trimming (balancing) the ship, has no direct 
effect on calculating the GZ-curve. In particular, it has no 
effect on the orientation of the axis of floatation f in the 
ship system. Hence, if for a new waterplane the angle F 
changes by dF the new floatation axis will rotate relative 
the previous one by an angle dF, as rotation of the ship in 
the horizontal plane does not change the waterplane. When 
the angle dF ! � is positive, the new floatation axis f shifts 
towards the heel, i.e. it departs from the rotation axis e. 
 
If ship heel is increased by dK, the displacement of centre 
of buoyancy, normal to the plane of rotation, is proportional 
to D''dK, where D'' is the product of inertia of the water-
plane in the [''K'' system (Figure 9). The said displacement 
must be compensated by trim JK''dW. Equating them to each 
other one gets dW   (D''/JK'') dK. Hence, dW/dK   D''/JK''. 
Taking into account equation (31), the above yields equa-
tion (26). A more exact solution can be obtained by using 
the metacentric formulation for dW   (D''/VH�)dK, where 
H� { GML   BML � BZ is the longitudinal metacentric 
height. As tanF   dW/dK, the above yields equation (27). 
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The righting arm is given by equation (17). In order to make 
use of it, for given heel angle K   const and given volume 
displacement V   const we have to know the trim at which 
the ship is balanced, i.e. e � r   �. Usually, we find it by an 
iterative method. This process can be accelerated, if the 
change of the longitudinal component of the righting arm 
dle   d(e � r)   de � r � e � dr, induced by trim is known.  
 
The change of the axis of rotation de in the ship hull system 
due to trimming can be easily worked out with the help 
of Figure 2–4. In the first case the change results from 
vertical rotation of the unit vector e by an angle d4, in 
the second – by an angle dT in the PS, and in the third 
case – by an angle d- in the initial waterplane. Hence, 
 
 de   nd4, 
 de   (e u j)dT, 
 de   �(e u k)d-. 

(33) 

 
 
The above equations can be easily checked directly by 
differentiating e with respect to appropriate trim angle 4, 
T or -, depending on the reference axis. Thus, 
 
 de � r   r � nd4   �BZd4, 
 de � r   r � (e u j)dT   r � eZ    rZdT  
    �(BZcosI � lsinI)dT,  
 de � r   �r � (eu k)d-   r � (k u e)d-  
    (BZsinD � lcosD)d-, 
 
where BZ is a vertical distance between the ship centre 
of gravity and centre of buoyancy (Figure 2), eZ  { e u j 
is the unit vector of the OZ axis, fixed to the plane of rota-
tion; the said axis is the edge of intersection between the 
PS and rotation plane (Figure 3), rZ  is a projection on the 
axis OZ of the radius vector r of the centre of buoyancy 
relative to the ship centre of gravity, and r � (k u e)  is a pro-
jection of r on the edge of intersection between the plane 
of rotation and the initial waterplane. The second relation 
results from a projection of the segment BZ on the OZ-
axis, deviated from the vertical by the angle I (Figure 3), 
and the third one – from a projection of BZ on the axis Oz', 
deviated from the vertical by the angle D' (Figure 4). 
 
In the case of the reference axis Ox', the second contribu-
tion to the change dle is given by the relation: e � dr   RLd4, 
where RL is the longitudinal metacentric radius, which 
follows from the preceding considerations. For other ref-
erence axes, the vertical change of the trim angle is given 
by equation (30). 
 
Additionally, we have to account for the effect of rotation 
of the ship in the horizontal on the displacement of the 
centre of buoyancy relative to the (stationary) plane of 
rotation. It equals to �ld\, which directly results from 
Figure 3–4, where d\ is the trim induced rotation of the 
ship in the horizontal, given by equation (32), and l { GZ 
is the righting arm. When d\ � �, the rotation is clock-
wise, while the displacement of the centre of buoyancy is 
positive, i.e. in the bow direction. For the reference axis 

x', d\   �, since the vertical change of trim does not cause 
any rotation in the sea surface (Figure 2); the said rotation 
occurs only during oblique trimming (Figure 3–4).  
 
Hence, combining the said contributions, depending on 
the reference axis the following is obtained for change of 
the trimming arm dle: 
 
 dle   (RL � BZ)d4, 
 dle   [RLcosI � (BZcosI � lsinI)  � lsinI]dT, 
 dle   [�RLsinD � (HFsinD � lcosD) � lcosD]d-. 
 
 
After simplifications, we get eventually: 
 
 dle   HLd4, 
 dle   (HLcosI � 2lsinI)dT,  
 dle   (HLsinD � �lcosD)(�+d-)� 

(34) 

 
 
In the third case, we have to pay attention to the sign of D. 
When the heel is to portside (D ! �), a positive increase of 
the twist angle d- means trimming by aft, i.e. the change dle 
� � is negative. Hence, d- has to be taken with the oppo-
site sign. When the heel is to starboard (D � �), a positive 
increase of the twist angle d- produces the change dle 
consistent with the sign of d-. In other words, the expres-
sion for HL- changes the sign when D � �. 
 
These equations allow for quick finding of the equilib-
rium trim. The expressions in the parentheses represent 
a derivative of the longitudinal component of the righting 
arm le relative to the respective trim angle, that is, the lon-
gitudinal metacentric height for a given reference axis 
HL4 HLT i HL-, understood as the stiffness relative to a re-
spective trim angle. The first one is the classic longitudinal 
metacentric height HL4 { HL for vertical trims. In the case 
of oblique trims, the longitudinal metacentric height de-
pends additionally on the righting arm l { GZ. 
 
In the course of heeling the longitudinal metacentric height 
varies. When it becomes negative, it means the lack of lon-
gitudinal balance, ipso facto, the lack of opportunity for 
determining the righting arm. This phenomenon is termed 
as fading stability. This phenomenon does not occur when 
doing calculations with fixed trim – the GZ-curve is de-
fined at each heel angle. 
 
In an upright position HL4   HLT   HL, and HL-   ��l�. 
When l�   �, where l� is the righting arm in an upright po-
sition, the longitudinal metacentric height is an even func-
tion of the heel angle. When l� z �, i.e., when an initial heel 
occur, in the case of the reference axis Oz' the GZ-curve is 
indefinite in some one-sided neighborhood of zero. For two 
other reference axes, the GZ-curve is continuous around 
zero. When D→ ��q, HL-→HL tends to the longitudinal 
metacentric height, as for the reference axis Ox', whereas 
HLT tends to negative values. It means that in some vicinity 
of the angle I   ��q the GZ-curve related to the reference 
axis Oy is indefinite. 
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The expression for HL- allows for the estimation of the 
external end of the interval, in which the GZ-curve for the 
axis Oz' is indefinite. Equation (34) yields: 
 
 tanD   �l/HL (35) 
 
The above angle can be expressed in terms of the initial 
heel D�. Assuming that D�   �l�/h�, where h� is the initial 
metacentric height, we get: D   ��D�h�/HL. As we can see, 
the length of the interval with faded stability is proportional 
to the angle of initial heel, located on the other side of zero, 
starting exactly at zero. For conventional ships the said 
interval is imperceptible. However, it is characteristic for 
semisubmersible platforms, particularly for jack-up rigs, 
where the longitudinal metacentric height is relatively 
small and the righting arms relatively large. For inclina-
tions in the direction of the initial heel, the GZ-curve is 
definite at each point. 
 
The angle F, given by equation (27), describing orientation 
of the axis of floatation f relative to the axis of rotation e, 
was obtained without accounting for the rotation of the ship 
in the horizontal plane. The said angle affects the trans-
verse metacentric radius rB   JT /V through the transverse 
moment of inertia of the waterplane JT, given by equation 
(29). The improvement of the relation for the angle F is 
simple. The rotation of the ship by an angle dK yields not 
only the static moment of shifting the displacement in the 
longitudinal direction, equal to D''dK, but yields also the 
rotation in the horizontal by an angle d\   dMsin4, directed 
upwards, if the ship is trimmed by bow. The said rotation 
moves the centre of buoyancy away from the plane of rota-
tion towards the aft by ld\. The resultant change of the 
static moment has to be compensated by a trimming 
moment VHLdW. Hence:  
 
 D''dK � Vld\   VHL dW, 
 D''  � Vld\/dK   VHLdW/dK. 
 
Taking into account that d\/dK   tan4, and dW/dK   tanF, 
the following is obtained: 
 
 tanF   (D''  � Vl tan4) /VHL (36) 
 
The above equation is valid for the reference axis Ox. When 
the ship has an initial trim, the angle 4 is replaced by 4'. 
If tan4 is negligible, the above reduces to equation (27). 
 
In the case of the two remaining reference axes, the ele-
mentary rotation of the ship dK, equal to dI or dD, there 
is no a vertical component. Therefore, the static moment 
of shifting the displacement in the longitudinal direction 
D''dK has to compensated by trimming �Vdle, where dle 
is given by equation (34). Hence: D''dK has to be equal to 
�VHLTdT or VHL-d-. Accounting for equations (30), the 
following is obtained: 
 
 tanF   cosID'' /VHLT  
 tanF   –sinDD'' /VHL-  

(37) 

 

When the ship has an initial trim, the angle D is replaced 
by D'. 
 
5. GZ-CURVE OF MINIMUM STABILITY 
 
As previously mentioned, most heeling moments acting 
on the ship, including the wind heeling moment, are par-
allel to the PS, therefore a free-floating ship assumes the 
position in which the trace of water in the PS is normal to 
the rotation plane. In the case of platforms arbitrarily ori-
entated to the wind, the wind generated heeling moment 
is parallel to the wind impact plane, perpendicular to the 
wind direction in an upright position, fixed to the platform. 
Hence, the heeling moment is parallel to the trace of water 
in the impact plane, whereas the rotation plane is perpen-
dicular to the said trace. A question then arises which posi-
tion does the ship assume when the direction of the moment 
is not related to the ship? 
 
In order to answer unequivocally this question, the mecha-
nism of inclining the ship in the case of a free heeling 
moment must be known. In such a case the ship assumes 
a position in which the potential energy is minimal, i.e., 
the work required to incline the ship is lowest. We know 
that this property has a freely floating ship, longitudinally 
balanced. For a given heel angle there is only one equilib-
rium position e � r   �, corresponding to minimum energy, 
independent of the reference axis. 
 
The work is proportional to the dynamic (righting) arm, 
hence the minimum of potential energy corresponds to the 
minimum of the dynamic arm ld, given by equation (19), 
valid in any case. From the classic ship theory it is known 
that the dynamic arm depends on the run of metacentric 
radii in function of the heel angle, which for a freely floating 
ship means in function of the rotation angle K of the rota-
tion plane. Hence, in a general case: 
 
 ld   ³�

K
rB sin(K � Q)dQ � a (� � cosK), (38) 

 
where Q is a dumb variable of integration, varying from 
� to K (given angle of rotation of the rotation plane), rB   
JT /V is the metacentric radius in the rotation plane, whereas 
a   BG is a constant, equal to the distance between the cen-
tre of buoyancy and centre of gravity at an upright posi-
tion. It is obvious that the minimum is dependent on the 
integrand in equation (38), which is minimal for the least 
metacentric radii in function of the rotation angle. And this 
happens, when the angle F by which the axis of flotation 
f is deviated from the axis of rotation e, given by equation 
(36) or (37), is minimal. This happens, when the azimuth 
\   �, and when the ship is longitudinally balanced. 
 
In other words, the ship inclines around the instantaneous 
axis of flotation f. That is, it rolls over a non-circular cone 
(a fixed axode), tangent to the waterplane along a genera-
trix, coinciding with the axis of flotation. Centre of buoy-
ancy B moves in the ship system along a spatial curve, lying 
on the surface of a horizontal cylinder of varying radius 
of curvature, forming a kind of helix, intersecting at a cer-
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tain angle the stationary rotation plane (the large circle 
in Figure 2–4). At each point the said line has a tangent, 
parallel to the respective waterplane (Figure 15). The right-
ing arm l { GZ is a chord of the arc, created by the projec-
tion of the curve of centres of buoyancy on the sea surface, 
the axis of rotation e is perpendicular to the righting lever l, 
inclined at an angle F with respect to the axis of floatation 
f, while the dynamic arm ld is an increase of the vertical 
distance between points G and B. 
 
The righting arm GZ lies at the vertical rotation plane, sta-
tionary in space, passing through points G and B. The centre 
of buoyancy moves in the rotation plane along a flat curve 
of centres of buoyancy, whose metacentric radius rB   
JT /V, where JT  is the transverse moment of inertia of the 
waterplane, given by equation (29), dependent on the wa-
terplane geometrical characteristics in the system related 
to the axis of rotation e. 
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Figure 15. Projection of curve of centres of buoyancy on 
the waterplane 
 
The least GZ-curve, termed the GZ-curve of minimum 
stability is identical with the curve for a freely floating 
ship, related to the axis Oz'. The righting arm for a given 
heel angle corresponds to the first zero of the curve le { 
e � r in function of the azimuth \ (Figure 22). In this point 
the absolute minimum of potential energy occurs (mini-
mum of the dynamic arm ld), clearly seen in the said fig-
ure, consistent with the meaning of this curve. The axis 
of floatation f is located between the axis of rotation e 
and the principal axis of inertia of the waterplane [�, as 
discussed in section 4.5. 
 
GZ-curves for the reference axes Ox' and Oy have the 
least values for the azimuth \   �. They have the same 
area between the angle of equilibrium and angle of van-
ishing stability, as in the case of the axis Oz'. Therefore, 
they can also be regarded as the curves of minimum sta-
bility. The direction of the righting moment for the said 
reference axes, described by the axis of rotation e, is sta-
tionary in space. The same applies to the reference axis 
Oz', though it is said literature that the righting moment 
of the curve of minimum stability has a varying direction 
in space, which is not true. The plane of rotation (the large 
circle in Figure 2–4) is stationary in space, and the same 
applies to the axis of rotation e, normal to it. 

For the reference axes Ox' and Oy it is possible to find such 
an azimuth that the axis of rotation e are the same, as for 
the reference axis Oz', which entails the same GZ-curves 
and the same heel angles K   I'   D'. Equal heel angles (an-
gles of rotation) are possible, when the vertical frame is 
perpendicular to the edge of intersection between the ini-
tial waterplane and the sea level, and when the wind 
impact screen passes through the said edge. 
 
In ABS publications (Breuer & Sjölund, 2006 & 2009) 
the GZ-curve of minimum stability is found by the 
analysis of the dynamic arm ld, as the function of the 
Euler's angles M and 4, related to the reference axis x'. 
For this purpose, iso-energy contours ld.  const are used in 
the plane of the two said angles (Figure 16). Applying the 
method of the steepest descent path (SDP) it is possible to 
find a curve of the least dynamic arms, and thereby a 
curve of the least righting arms. They are both a func-
tion of the angle of rotation K   I'   D' of the rotation 
plane, unmentioned by the authors. The steepest descent 
method is complex, time consuming (it requires hundreds 
of calculation points for the ship longitudinally unbalanced), 
and entirely detached from the mechanism of inclinations 
with the least work. Nonetheless, it is identical with the GZ-
curve of minimum stability for a freely floating object, as 
for the reference axis Oz'. 
 

 
Figure 16. Steepest descent method (SDM) 
 
Another possibility of calculating the GZ-curve with free 
trim is the free twist method applied by van Santen 
(2009 & 2013). In this method an axis of rotation e   w 
is sought on the initial waterplane to be perpendicular 
to the righting arm l after rotation by a given heel angle D' 
around the axis. The GZ-curve thus obtained corresponds 
to the reference axis Oz'. Such a method, however, is not 
the most effective, particularly for large heel angles. 
 
The GZ-curve of minimum stability can be best found as 
for a freely floating ship for the reference axis Oz', since 
the two curves are identical. For a given heel angle M or 
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D' the trim angle T or -' is found by iterations until the ship 
is longitudinally balanced, i.e., e � r   �, where the axis of 
rotation e   w and the unit vector n are given by equations 
(14). The knowledge of the Euler’s angles (the heel and 
trim angles) defines the unit vector n, and this in turn de-
fines the analytical angles M and T, essential for calculating 
the geometrical characteristics of the hull. 
 
The curve of minimum stability can be obtained also with 
the help of the wind impact screen, described by the azimuth 
\. Two reference axes can be used: Ox'' and Oy'. For the 
first one, the rotation axis e   e�'un, where the unit vectors 
e�' and n are given by equations (15), for the second, the 
rotation axis e   e�' and the unit vector n are given by equa-
tions (10) and (11), The latter quantity value defines the 
analytical heel angles M and T, essential for calculating the 
geometrical characteristics of the hull. The unit vector n 
depends on three degrees of freedom, dependent addition-
ally on the azimuth \, whereas the axis of rotation e on two 
(in the case of the axis Ox'') or three (in the case of the axis 
Oy'). Hence, the condition of longitudinal balance e � r   �, 
for a given heel angle and azimuth defines the equilibrium 
trim. Knowing the three degrees of freedom the righting 
arm GZ and dynamic arm ld can be obtained. 
 
The determination of the GZ-curve with free trim is time 
consuming, since apart from balancing by iterations the 
displacement of the ship, we have to balance the ship lon-
gitudinally. The labour intensity can be drastically reduced 
by the Krilov–Dargnies method, which in a natural way 
tracks movements of the axis of floatation f during incli-
nations. In this method the new position of the ship is found 
without any iteration, making use of the differential prop-
erties of equi-volume waterplanes. The method implies 
that there is no room for the orthogonal tipping, understood 
as the loss of longitudinal stability during heeling the ship. 
 
If we assume that in order to find the proper volume dis-
placement and trim we need on average � y� iterations, 
then to find one point of the GZ-curve with free trim we 
need on average ��y��   �� y�� iterations. Hence, the 
Krilov–Dargnies method would be �� y �� times faster than 
buoyancy methods, which is worth considering. 
 
 
6. NUMERICAL EXAMPLE 
 
Based on the theory of a freely floating ship, presented 
here, the computer software WinSEA used in PRS for 
stability calculations has been modified by Dr. Andrzej 
Laskowski, the author of the program. The user can 
choose three modes of calculating the GZ-curve: 1) "engi-
neering", related to the axis Ox' or Ox'', 2) "physical", re-
lated to the axis Oy or Oy', and 3) "natural", related to 
the z'-axis, identical with the curve of minimum stability. 
There is also a zero option of "maximum stability", for 
a ship with constant trim, normally not used. 
 
Calculations for conventional ships show that the choice 
of the reference axis is meaningless. This is because for 

trims that occur the angle E between the traces of water in 
the PS and midships is virtually equal to the right angle. It 
yields the same rotation axes, independent of the reference 
axis. Hence, at the initial range up to the deck edge immer-
sion, all the modes of calculations are virtually identical. 
The reason are small angles J', even for the extremely 
asymmetric waterplanes. For example, for a rectangular 
waterplane with the ratio L/B   �, which lost ¼ of the 
area, the angle J'   ����°, although asymmetry of the wa-
terplane is maximum (Pawlowski, 2013). This explains 
why the GZ-curve of minimum values at the initial range 
of stability cannot differ significantly from the remaining 
modes of calculations. 
 
 
6.1 FISHING BOAT 
 
For illustration, GZ-curves were calculated for a fishing 
boat and for a jack-up rig. More numerical examples 
can be found in the PRS report (Pawlowski, 2013). 
Main particulars of the fishing boat are as follows: 
 
 length between perpendiculars ............ Lpp   ���� m, 
 breadth ................................................. B   � m, 
 depth .................................................... H   ��� m, 
 design draught .....................................  T   ��� m, 
 block coefficient . . . . . . . . . . . . . . . . . . . . . . . .  cB   ����� 
 
The fishing boat has a transom stern of a long overhang 
and a large forecastle. Her GZ-curves are shown in 
Figure 17. Calculations were performed for a freely float-
ing intact vessel in a partial loading condition, trimmed by 
stern, by the three modes of calculations, defined by the 
reference axes x', y, and z' in function of the appropriate 
angle of rotation K. In addition, calculations were per-
formed for the ship with fixed trim, as in the position of 
equilibrium (curve c), and at level keel. 
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Figure 17. GZ-curves of the fishing boat 
 
At the initial range of stability (up to the angle Kmax, at 
which the GZ-curve reaches maximum) all the calculation 
modes yield the same results. The differences start above 
Kmax. As expected, the highest values of the GZ-curves 
for large heel angles (in the sloping part) are obtained for 
the ship at level keel, greatly overestimating the range of 
stability. Somewhat smaller values are obtained for the 



Trans RINA, Vol. 159, Part A1, Intl J Maritime Eng, Jan-Mar 2017 

A-20                      ©2017: The Royal Institution of Naval Architects 

ship with fixed trim, the same as at the initial position 
(curve c). As expected, both curves converge at the heel 
angle ��q. The least GZ-curves are obtained for the ship 
with free trim, wherein these curves are practically unaf-
fected by the way the ship is balanced. They practically 
collapse into one curve. 
 
 
6.2 JACK UP RIG 
 
The situation is different for platforms at large heel angles, 
above the deck edge immersion. To see the effect of vari-
ous reference axes on the GZ-curves, calculations were 
carried out for a jack-up rig. Its main particulars are these: 
 
 length .................................................. L   ���� m, 
 maximum breadth ............................... B�   ���� m, 
 minimum breadth ............................... B�   �� m, 
 depth ................................................... H   � m, 
 draught ................................................ T   ���� m, 
 waterplane coefficient of fineness . . . .  cW   �����, 
 height of centre of gravity above BP .. KG   24.37 m. 
 
 
This is a fictitious jack-up of simple geometric shape 
(Figure 18), conceived by ABS for testing calculations and 
widely investigated in literature (Santen van, 2009; 
Breuer & Sjölund, 2006 & 2009). GZ-curves are shown 
in Figure 19, while the run of trims in Figure 20–21. 
Calculations were performed for a damaged rig, 
trimmed by aft (t   ������ m), inclined to starboard with 
a heel of ����q. 
 

 
Figure 18. Generic platform 
 
 
As can be seen from Figure 19, all the calculation modes 
yield practically the same GZ-curves at the initial range 
of stability. Above this range, the largest values correspond 
to the platform at level keel. The way of balancing has only 
a modest effect on the GZ-curves, and this can be taken as 
a rule. As discussed earlier, the GZ-curves for the reference 
axes x and y are virtually the same. Their range of stability 
is somewhat smaller than for the reference axis z'. Since 
the area under the curves has to be the same, the curve of 
larger range intersects with the curves of smaller range, 
and it has a smaller GZmax value. 
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Figure 19. GZ-curves for the rig 
 
Figure 20 shows the run of twist (trim) angle around the 
axis z' in function of the angle of heel D'. Because of an 
asymmetrical flooding and a small ratio L/B, these angles 
assume values larger by one order than for ships. But the 
waterplane is symmetric, therefore twist (rotation) of the 
platform starts above the angle at which the deck enters 
the water. For inclinations to portside the graph has a dif-
ferent character (Figure 21). The range of change of the 
twist angle for inclinations to portside equals ��q, while 
to starboard equals ��q. For heel angles D' � ���q to 
portside the twist angle is indefinite. It means that in the 
range D' � ¢����q, �² the GZ-curve is indefinite. 
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Figure 20. Run of twist around axis Oz' during heeling rig 
to starboard 
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Figure 21. Run of twist around axis Oz' during heeling rig 
to portside 
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In the case of semisubmersible platforms, in view of 
small values of the ratio L/B � �, the regulations require 
that the stability of platforms is analysed for various ori-
entations relative to the wind direction, i.e. at various 
orientations of the rotation axis e relative to the principal 
axis of inertia of the initial waterplane, varying from �q 
to ���q. It is not so much because of the GZ-curve but 
because of the wind heeling moment, strongly dependent 
on platform orientation relative to the wind (the windage 
area dramatically changes in the course of heeling). Cal-
culating the wind heeling moment is not a problem, ex-
cept for its cost. There are, however, problems with in-
terpretation of the GZ-curve with free trim. 
 
Equations (12) and (13) imply that the transverse and longi-
tudinal components of the righting arm: l and le are func-
tions of the angle of heel D' and twist <   \ � -'. The twist 
<   <(D') is a function of the angle of heel, resulting 
from the longitudinal equilibrium, i.e. from the solution 
of the equation le(D', <)   �. 
 
For a given heel angle D'   const there can be only a 
discrete number of twist angles < at which a platform 
is in longitudinal balance. These angles can be easily 
found with the help of a graph le   le(D', <) for a given 
heel angle D', as in Figure 22. As can be seen, there 
are four twist angles <, corresponding alternately to 
minimum and maximum stability. The first angle cor-
responds to the absolute minimum of stability, while 
the last one – to the absolute maximum, which can be 
taken as a rule. These four equilibrium angles indicate 
that for a freely floating object only two meaningful 
orientations of the rotation axis e are possible, i.e. 
when it is parallel in an upright position to one or the 
other principal axis of inertia of the initial waterplane. 
The first orientation is the worst (some say the weak-
est); i.e. it yields the GZ-curve of the lowest arms. 
When the waterplane is asymmetric, the ship has to be 
inclined towards the initial heel. In the second orienta-
tion there are unstable inclinations of maximum poten-
tial energy. 
 
Meanwhile, the regulations require the stability of platforms 
to be analysed at various orientations relative to the wind 
direction, described by the azimuth \ � ¢�q, ���q², varying 
at every �q. The azimuth is measured relative to the axis 
of rotation e, perpendicular to the wind direction. Except 
for the four said orientations, i.e. \   �q, ��q, ���q and ���q, 
in the remaining cases, if the ship is to be longitudinally 
balanced the GZ-curves for the reference axis Oz' are 
simply the same as for the azimuth \   �, and for the 
other reference axes, the righting arms increase, assuming 
maximum values for the azimuth \   ��q and ���q. How-
ever, it is paid for by occurring of longer and longer in-
tervals in which the ship cannot be longitudinally bal-
anced (Figure 23). The said figure, identical for the ref-
erence axes Ox'' and Oy', illustrate at the same time the 
effect of azimuth on the righting arm l { GZ and dynamic 
arm ld for a fixed value of the heel angle D'   ��q. It is 
worth noting that minima of the dynamic (righting) arm 

ld have the same values and occur at the same azimuth, 
irrespective of the reference axis. 
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Figure 22. Run of stability characteristics l, le and ld for 
rig versus azimuth < for D' = ��q�for reference axis Oz' 
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Figure 23. Run of the righting arm l and dynamic arm ld for 
rig versus azimuth < for D' = ��q for reference axis Oy' 
 
Nonetheless, as prompted by regulations, the GZ-curves are 
calculated for any orientations. This is possible only, when 
the platform is longitudinally unbalanced or wrongly bal-
anced. If the ratio L/B is too small, the lack of longitudinal 
balance can occur also for inclinations around the longitudi-
nal axis, which makes it impossible to find the GZ-curve for 
all heel angles. The lack of balance for some heel angles 
does not mean that the platform rears, which is claimed in 
ABS publications (Breuer & Sjölund, 2006 & 2009). This 
phenomenon itself is termed there as orthogonal tipping. It 
is said that stability is then fading, in contrast to vanishing 
stability. The maximum trim, in the absolute values, de-
pends on a given heel angle, normally does not exceed a 
dozen or so degrees. In our case for the heel angle D'   �q the 
angle T ! �����q, and for D'   ��q T ! ������q. Orthogonal 
tipping does not occur in reality, which is self-explanatory 
in the light of the Krilov–Dargnies method. 
 
It is noteworthy that the GZ-curve in Figure 22 has 
two additional extreme points, corresponding to 
points of inflexion on the curve of dynamic arms ld. 
The reason for this strange behaviour is a small ratio 
of the principal moments of inertia of the waterplane 
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in an upright position, equal merely ����. At the first 
equilibrium position the minima of the curves GZ 
and ld are the lowest, which can be taken as a rule. 
Further, from Figure 22 it follows that a surface of 
dynamic arms ld   ld(D', <), termed also as the energy 
to heel surface, should have two valleys (paths), cor-
responding to minimum ld. Meanwhile, Figure 16 
shows three paths (three minima). Admittedly, both 
figures correspond to different reference axes, but the 
choice of the reference axis has no significant effect 
on the dynamic arms. 
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Figure 24. Run of stability characteristics l, le and ld for 
rig versus azimuth < for D' = �q 
 
 
Figure 24 shows the run of stability characteristics for 
a different heel angle D'   �q. The run differs from that 
for the angle D'   ��q (Figure 22). The curve le has 
now only two zeros, instead of four. The zeros pre-
cisely coincide with the extremes of the curve of dy-
namic arms ld but they are clearly shifted off from the 
extremes of the GZ-curve. Apex B of the curve le be-
comes tangent to the abscissa axis at the angle D' | 
���q. Hence, for heel angles D' ! ���q there are again 
four zeros of the curve le (Figure 22), which is a con-
dition for the existence of the GZ-curve for inclina-
tions to portside. At the range D' � ���q, i.e. D' � ¢����q, 
�² this curve does not exist (Figure 25), unless the rig 
turns by ���q around the axis Oz', assuming values as 
for heels to starboard. Due to a small ratio of the prin-
cipal moments of inertia of the waterplane at an up-
right position and a larger asymmetry of flooding (a 
large negative righting arm at an upright position), the 
range in which the GZ-curve is indefinite due to lack 
of longitudinal balance, is exceptionally large, which 
results also from the approximated equation (35). For 
the reference axes Ox' and Oy the GZ-curves do not 
exist for heel angles below ���q (Figure 25–26). How-
ever, they are not the curves of minimum stability. 
 
The angle of twist < and GZ-curve for inclinations to 
portside are shown in Figure 21 and Figure 25. As 
discussed earlier, these characteristics exist for the 
angle D' � ����q. They were obtained as readings for 
the third zero of the curve le, as in Figure 22. An iden-

tical curve can be obtained from direct calculations for 
inclinations to portside. 
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Figure 25. GZ-curves of rig for inclinations to portside 
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Figure 26. GZ-curves of rig for inclinations to both sides 
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Figure 27. Run of righting arm GZ and dynamic arm ld 
for rig versus twist < for heel angle less than critical 
 
 
Figure 27 shows the run of stability characteristics for a 
heel angle D'   �q in function of the azimuth for the refer-
ence axis Ox''. We can see they are different from charac-
teristics for the reference axis Oz' (Figure 24). Nonetheless, 
they both indicate the same features. Also here, due to the 
fact that the angle of heel D'   �q is below the critical val-
ue 7.4°, a graph of the dynamic arm ld in function of the 
azimuth has only one minimum. It defines a righting 
arm of the curve of minimum stability for the angle D'   �q 
in the direction of the initial heel, identical with that in Fig-
ure 24. The lack of the second minimum means that for a 
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heel on the other side the righting arm does not exist. As 
we know from the proceeding considerations, in the range 
of D' � ¢����q, �q² the GZ-curve does not exist, as the 
ship cannot be longitudinally balanced. From Figure 27 
it follows additionally that for the azimuth at the range of 
\ � ¢��q, ���q² the rig cannot be longitudinally balanced, 
if heel angle D'   �q. 
 
In the case of asymmetrically flooded units the extremes 
of GZ-curves are somewhat shifted relative to the equi-
librium position. It can be shown that there is no shift, if 
the principal axis of inertia of the waterplane is parallel 
to the axis of rotation e. A proof is simple – we have to 
differentiate with respect to trim the righting arm l { GZ, 
given by equation (17). Considering that the unit vec-
tor of the axis of rotation e need not be differentiated, we 
get the equation: 
 

l'   e � (r' un) � e � (run' ), 
 
where ' stands for the differentiation with respective to 
trim. It can be easily shown differentiating with respect to 
- the unit vector n, given by equation (17), that the vector 
n'    sinD e is parallel to the axis of rotation e, therefore 
the second term vanishes on the virtue of properties of 
the scalar triple product. Further, the vector r' has two 
components: longitudinal and transverse. A contribution 
to the triple product gives only the transverse component 
r'T   �n u eD''/V, where the differentiation is with respect 
to trim W, and D'' is the product of inertia of the waterplane 
in the [''K'' system (Figure 9), parallel to the axis of rota-
tion e. Hence, 
 

w/wW GZ   �D''/V. 
 
It follows from the above equation that at the equilibrium 
position an extreme of the GZ-curve occurs, if D''   �, i.e. 
when the principal axis of inertia of the waterplane is par-
allel to the axis of rotation e. In the case of ships, even 
damaged, the deviation of the principal axis of inertia from 
the axis of rotation e is small; therefore a shift of the ex-
treme of GZ relative to the equilibrium position is imper-
ceptible. In the case of damaged rigs with four zeros of the 
curve le, the shift is not large, but noticeable (Figure 22), 
whereas in the case of two zeros, a clear shift is visible 
(Figure 24). 
 
 
7. CONCLUSIONS 
 
Based on the results of theoretical and numerical analysis, 
the following conclusions can be drawn: 
 
x  a freely floating ship has minimum stability in the 

sense of the area under the GZ-curve. The said area 
is independent of the reference axes and is the small-
est possible 

x  balancing of the ship does not change in space the 
direction of the righting moment, but decreases  

its value in proportion to the change of trim after 
balancing 

x  at the initial range of stability all the modes of calcu-
lations (including the mode of fixed trim) yield prac-
tically the same results 

x  for conventional ships the GZ-curves are independ-
ent of the reference axis (the way of balancing), 
while for platforms the effect is modest 

x  if the ship has an initial heel, the GZ-curve is indefi-
nite in some one-sided neighborhood of zero, oppo-
site to the initial heel, whose length increases with 
the initial heel. For ships, it is of the order of angular 
minutes, and for platforms – of the order of degrees. 
The azimuth (twist) of the unit in this range of heel 
is unstable, i.e., the unit can rotate automatically 
around the axis Oz' to assume a stable heel towards 
the initial heel 

x  for freely floating units only one GZ-curve is mean-
ingful, related to the azimuth \   �. For other azi-
muths, GZ-curves can have gaps in which they are 
indefinite 

x  the notion of cross-curves of stability is valid for a 
freely floating ship with minimum stability, when 
the ship's centre of gravity varies along the axis Oz', 
normal to the initial waterplane 

x  it is advisable to perform calculations of the GZ-
curve by means of equi-volume waterplane method 
(Krilov–Dargnies), inclined around the instantaneous 
axis of floatation f. It cuts radically the time of cal-
culations (��y�� times) in comparison to buoyancy 
methods, as it needs no iterations. 

 
Hence, for ships there is no revolution – any method of 
calculating the GZ-curve with free trim yields virtually the 
same curve, identical with minimum stability. There is, 
however, a revolutionary conclusion for platforms – there 
is only one meaningful GZ-curve, related to transverse 
inclinations, as for the reference axis Oz'. In other words, 
for rigs there are no GZ-curves for various azimuths, 
required by regulations. In the case of the reference axis 
Oz' they are the same, irrespective of the azimuth, while 
for other reference axes they have, admittedly larger val-
ues but at the cost of unstable intervals, in which the ship 
cannot be longitudinally balanced. Hence, what sort of 
curves has been calculated? Either for rigs with fixed 
trim, or improperly balanced. The latter is very probable; 
as such notions as the reference axis, axis of rotation, plane 
of rotation, and angle of rotation of the plane of rotation 
are not mentioned in literature. Interesting papers, for 
instance (Santen van, 2009 & 2013; Breuer & Sjölund, 
2006 & 2009) do not clearly state in which plane the rig 
was balanced. 
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