Distributed Ship Service Systems Architecture in The Early Stages of Designing Physically Large and Complex Vessels: The Submarine Case

Main Article Content

M H Mukti
R J Pawling
D J Andrews

Abstract

In the initial sizing of complex vessels, where recourse to type ship design can be overly restrictive, one crucial set of design features has traditionally been poorly addressed. This is the estimation of the weight and space demands of the various Distributed Ship Services Systems (DS3), which include different types of commodity services beyond those primarily associated with the ship propulsion system. In general, naval vessels are typified by extensive and densely engineered DS3, with the modern naval submarine being at the extreme of dense outfitting. Despite this, the ability for the concept designer to consider the impact of different configurations for the DS3 arrangements has not been readily addressed in concept design. This paper describes ongoing work at University College London (UCL) to develop a novel DS3 synthesis approach utilising computer tools, such as Paramarine™, MATLAB®, and CPLEX®, which provide the concept designer with a quantitative network-based evaluation to enable DS3 space and weight inputs early in the design process. The results of applying the approach to a conventional submarine case study indicate quantitative insights into early DS3 sizing can be obtained. The paper concludes with likely developments in concluding the research study.

Article Details

Section
Articles